
An Empirical Study of a Scalable Byzantine Agreement Algorithm

Olumuyiwa Oluwasanmi, Jared Saia
Department of Computer Science,

University of New Mexico,
Albuquerque, NM 87131-1386

Email: {muyiwa,saia}@cs.unm.edu

Valerie King
Department of Computer Science,

University of Victoria,
P.O. Box 3055,

Victoria, BC, Canada V8W 3P6.

Abstract—A recent theoretical result by King and Saia
[8] shows that it is possible to solve the Byzantine agree-
ment, leader election and universe reduction problems in
the full information model with Õ(n3/2) total bits sent.
However, this result, while theoretically interesting, is not
practical due to large hidden constants. In this paper, we
design a new practical algorithm, based on the results
in [8]. For networks containing more than about 1, 000
processors, our new algorithm sends significantly fewer
bits than a well-known algorithm due to Cachin, Kursawe
and Shoup [3]. To obtain a more practical algorithm, we
relax the fault model compared to the model of King
and Saia by (1) allowing the adversary to control only
a 1/8, and not a 1/3 fraction of the processors; and (2)
assuming the existence of a cryptographic bit commitment
primitive. Our algorithm assumes a partially synchronous
communication model, where any message sent from one
honest player to another honest player needs at most ∆
time steps to be received and processed by the recipient
for some fixed delta, and we assume that the clock speeds
of the honest players are roughly the same. However,
the clocks do not have to be synchronized (i.e., show
the same time) nor do we require the protocols to run
in a synchronous mode (i.e., all players must send their
messages at exactly the same time).

Keywords-Leader Election, Byzantine Agreement,
Consensus, Distributed Algorithms, Byzantine, Fault tol-
erance

I. INTRODUCTION

Increases in speed, frequency and severity of attacks
on the Internet have led to a resurgence of interest
in traditional problems of robust distributed computing
like Byzantine agreement (BA) [2], [11]. Unfortunately,
traditional algorithms for solving problems of robust
distributed computation typically require each processor
to send messages to every other processor in the net-
work, and so simply do not scale to modern network
sizes, which may be on the order of hundreds of
thousands for peer-to-peer systems, overlay networks
and server farms.

In this paper, we seek to redress this issue by
designing, implementing and testing an algorithm that
solves Byzantine agreement with a total number of bits
sent that is Õ(n3/2). This paper focuses on a well-
studied message-passing model: n processors are in
a fully connected network and a malicious adversary
controls a constant fraction of these processors. The
contributions of this paper are as follows

• We design a new algorithm which is based on,
but more practical than, the consensus algorithm
from [8]. Our new algorithm significantly reduces
the constants compared to the previous algorithm
through use of cryptography.

• We implement and simulate our new algorithm,
showing empirically that for large networks, it
can achieve consensus with significantly less band-
width than algorithms that are currently used in
practice.

A. Model
We assume a fully connected network of n processors,
whose IDs are common knowledge. Each processor has
a private coin. Communication channels are authenti-
cated, in the sense that whenever a processor sends a
message directly to another, the identity of the sender
is known to the recipient. We assume a non-adaptive
(sometimes called static) adversary. That is, the adver-
sary chooses the set of t bad processors at the start of the

protocol, where t is a constant fraction, of the number of
processors n. The adversary is malicious: it chooses the
input bits of every processor, bad processors can engage
in any kind of deviations from the protocol, including
false messages and collusion, or crash failures, while the
remaining processors are good and follow the protocol.
Bad processors can send any number of messages.

We assume a partially synchronous communication
model: any message sent from one honest player to
another honest player needs at most ∆ time steps to
be received and processed by the recipient for some
fixed delta, and we assume that the clock speeds of
the honest players are roughly the same. However, the
clocks do not have to be synchronised (i.e., show the
same time) nor do we require the protocols to run in
a synchronous mode (i.e., all players must send their
messages at exactly the same time). Our algorithm
makes use of a distributed random number generating
algorithm from [1] and the algorithm from [3] as a
subroutine. Thus, we must make the same assumptions
as in those papers. Namely, we assume the existence
of 1) public key cryptography (but not a public key
infrastructure) ; 2) a digital signature scheme; and 3)
a bit commitment scheme h, i.e. a function such that
h(x) reveals nothing about x.

We overcome the lower bound of [4] by allowing
for a small probability of error. In particular, the Ω(n2)
lower bound on the number of messages to compute
Byzantine agreement deterministically implies that any
randomized protocol which always uses o(n2) messages
must err with some probability ρ > 0, since with
probability ρ > 0, an adversary can guess the random
coinflips and cause the protocol to fail when those
coinflips occur. Thus, any randomized algorithm that
always achieves o(n2) messages must necessarily be a
Monte Carlo algorithm.

B. Problems
One of the most well studied problems in distributed
computing is the Byzantine agreement problem. In this
problem, each processor begins with either a 0 or 1. An
execution of a protocol is successful if all processors ter-
minate and, upon termination, agree on a bit held by at
least one good processor at the start. The leader election
problem is the problem of all processors agreeing on
a good processor [9]. The universe reduction problem
[6] is to bring processors to agreement on a small
subset of processors with a fraction of bad processors
close to the fraction for the whole set. I.e., the protocol
terminates and each good processor outputs the same
set of processor ID’s such that this property holds. For
each of these problems, we say the protocol solves the

problem with probability ρ if, given any worst case
adversary behavior, including choice of initial inputs,
the probability of success of any execution over the
distribution of private random coin tosses is at least ρ.

Almost everywhere Byzantine agreement, universe
reduction, and leader election is the modified version of
each problem where instead of bringing all good proces-
sors to agreement, a large majority, but not necessarily
all, good processors are brought to agreement.

C. Our Results
We show that by making use of the cryptographic
assumptions detailed above and by relaxing the frac-
tion of bad processors to 1/8, we can significantly
improve the communication costs and improve the load
balancing characteristics while keeping the latency the
same or slightly better. Our algorithm works in the
synchronous model of communication; although we
conjecture that our algorithm could be converted to
make it asynchronous. Our research is an extension
of the work of two previous papers [9], [10] which
introduce the concept of an election graph with groups
of processors called committees. The algorithms in these
two papers use Feige’s protocol described in [5] to
elect processors in committees in successive layer’s
of the election graph. The use of Feige’s protocol in
the previous algorithms carry a heavy penalty in terms
of the message complexity for any reasonable size of
networks.

Our new algorithm has two parts. The first part is
an almost everywhere Byzantine agreement algorithm
similar to [9], [10] except that instead of using Feige’s
protocol we use a protocol by Awerbuch and Schei-
deler [1] to elect processors in the committees. This
allows us to make the sizes of the committees much
smaller, which leads to a significant improvement on
the message complexity performance of our algorithms
from [9], [10]. Secondly, we implement and make use
of a protocol recently described in [8] which allows
us to go from almost everywhere Byzantine agreement
to everywhere Byzantine agreement using only Õ(

√
n)

messages. In particular, this new algorithm ensures that
with high probability all good processors in our new
algorithm learn the correct bit unlike the algorithms in
[9], [10].

D. Related Work
The algorithm presented in this paper, along with the
algorithm of [8], use randomization to break through
the 1985 Ω(n2) barrier [4] for message and bit com-
plexity for Byzantine agreement in the deterministic
synchronous model, if we assume the adversary’s choice
of bad processors is made at the start of the protocol,

2

i.e., independent of processors’ private coinflips. As
mentioned above, the algorithm in this paper also makes
use of algorithms from [9], [10] to solve the almost
everywhere Byzantine agreement problem.

In the empirical section of our paper, we compare
the resource costs of our algorithm with the Byzan-
tine agreement algorithm proposed by Cachin, Kursawe
and Shoup [3]. Their algorithm withstands up to n/3
bad processors, runs in constant expected time, and
sends θ(n2) messages. However, unlike our algorithm,
their algorithm requires a trusted dealer to distribute
cryptographic keys initially in order to set up a public
key infrastructure. We emphasize that our algorithm
does not require the establishment of a public key
infrastructure. As pointed out in the abstract, the algo-
rithm we describe in this paper is partially synchronous,
while the algorithm of Cachin, Kursawe and Shoup is
asynchronous.

Organization of the paper In Section II we describe
our algorithm. In Section III we empirically evaluate
our algorithm. Finally, in Section IV we conclude and
describe open problems.

II. Our Algorithm
Our algorithm consists of two parts: 1) a procedure
for solving almost-everywhere universe reduction (and
BA); and 2) a procedure for going from almost-
everywhere universe reduction to everywhere BA. Our
procedure for solving almost-everywhere universe re-
duction is essentially the same as that of [9], with the
following two differences: (1) we replace the committee
election protocol used in [9], with a new election
protocol based on a random number generation protocol
by Awerbuch and Scheideler [1]; and (2) we reduce the
size of all committees from O(log3 n) to O(log n) and
make the appropriate changes in our election graph. This
reduction in committee size is made possible by the
new election protocol from [1], which makes use of a
cryptographic commitment scheme. It is this reduction
in committee size that leads to significant savings in
bandwidth over the protocol of [9]. We note that we are
not particularly dependent on the algorithm from [1];
any robust, distributed random number generating algo-
rithm will work. We simply use this algorithm because
it is the current state of the art in terms of resource
costs.

Below, we sketch our entire protocol, details are
given in Appendix A.

A. Almost Everywhere Universe Reduction and BA
We first describe our protocol to compute almost every-
where universe reduction, based on [9]. The processors
are assigned to groups of logarithmic size; each pro-
cessor is assigned to multiple groups. In parallel, each
group then elects a small number of processors from
within their group to move on. We then recursively
repeat this step on the set of elected processors until
the number of processors left is logarithmic. Although
this approach is intuitively simple, there are several
complications that must be addressed.

(1) The groups must be determined in such a way that
the election mechanism cannot be sabotaged by the
bad processors.

(2) After each step, each elected processor must deter-
mine the identities of certain other elected proces-
sors, in order to hold the next election.

(3) Election results must be communicated to the
processors.

(4) To ensure load balancing, a processor which wins
too many elections in one round cannot be allowed
to participate in too many groups in the next round.

We address these problems as follows. Item (1):
we use a layered network with extractor-like properties.
Every processor is assigned to a specific set of nodes
on layer 0 of the network. In order to assign processors
to a node A on layer ` > 0, the set of processors
assigned to nodes on layer ` − 1 that are connected to
A hold an election. In other words, the topology of the
network determines how the processors are assigned to
groups. By choosing the network to have certain desired
properties, we can ensure that the election mechanism
is robust against malicious adversaries.

To accomplish item (2), we use monitoring sets.
Each node A of the layered network is assigned a set
of nodes from layer 0, which we denote m(A). The
job of the processors from m(A) is simply to know
which processors are assigned to node A. Since the
processors of m(A) are fixed in advance and known
to all processors, any processor that needs to know
which processors are assigned to A can simply ask the
processors from m(A). (In fact, the querying processor
only needs to randomly select a polylogarithmic subset
of processors from m(A) in order to learn the identities
of the processors in A with high probability. This
random sampling will be used to ensure load balancing.)

Since the number of processors that need to know
the identities of processors in node A is polylogarithmic,
the processors of m(A) will not need to send too many
messages, but they need to know which processors
need to know so they do not respond to too many
bad processors’ queries. Hence the monitoring sets

3

need to inform relevant other monitoring sets of this
information.

Item (3): We use a communication tree connecting
monitoring sets of children in the layered networks with
monitoring sets of parents to inform the monitoring
sets which processors won each of their respective
elections and otherwise pass information to and from
the individual processors on layer 0.

Item (4) is addressed by having such processors
refrain from further participation.

The protocol results in almost everywhere agree-
ment on the subset of nodes rather than everywhere
agreement, because the adversary can control a small
fraction of the monitoring sets by corrupting their nodes.
Thus communication paths to some of the nodes are
controlled by the adversary. We further note that with
this protocol, it is trivial to communicate a bit to almost
all of the nodes in addition to communicating a small
subset. Thus, it solves both almost-everywhere BA and
almost everywhere Universe reduction. 1

B. Almost Everywhere to Everywhere
In this section, we describe the Almost Everywhere to
Everywhere protocol of [8]. This is exactly the same
protocol as from [8] but we include a description of it
here for completeness. In the almost everywhere proto-
col sketched above all but a 1/ lnn fraction of the good
processors agree on a small subset of representative
processors (and a bit). This result is proven in [8]. Our
goal in this section is to improve the fraction of good
processors that agree on the bit. The protocol assumes
all processors have used the almost-everywhere agree-
ment protocol to ensure that the following precondition
holds:

Precondition: We assume there is a subset C of
O(log3 n) processors, a majority of which are good;
and a bit b that is the input bit of at least one good
processor. Each processor p starts with an hypothesis of
the membership of C, Cp; this hypothesis may or may
not be equal to C or may be empty; and each processor
p starts with a value bp that may or may not be equal
to b. The following assumption is critical: there is a set
S of at least (1/2 + ε)n good processors, such that for
all p ∈ S, Cp = C and bp = b.

Overview of Algorithm: The main idea of this protocol
is for each processor p to randomly select c log n
processors to poll as to the membership of C. Unfortu-
nately, if these requests are made directly from p, the

1Moreover the processors that correctly learn the subset of nodes
will also learn the correct bit for BA.

Algorithm 1 Almost Everywhere to Everywhere
Each processor executes the following steps in any
order:

1) Each processor p selects uniformly at random, in-
dependently, and with replacement three subsets,
Listp, Forwardp, and Pollp of processor ID’s
where: |Listp| = c

√
n log n; |Forwardp| =

√
n;

|Pollp| = c log n;
Verifying Membership in C:

2) memberp ← FALSE
3) If p ∈ Cp, then p sends a message <

Am I in C? > to the members of Pollp;
4) If q receives a message < Am I in C? > from a

processor p ∈ Cq , q sends < Y es > back to the
p;

5) If p receives a message < Yes > from a majority
of members of Pollp then p sets memberp ←
TRUE;

Determing C:
6) p sends a message < Pollp, p, 1 > (type 1

message) to each processor in Listp;
7) For each q: if < Pollp, p, 1 > is the first type

1 message received from processor p and p ∈
Forwardq , then q sends < Pollp, p, 2 > (a type
2 message) to every processor in Cq;

8) For each r: if memberr = TRUE then for every
processor q, for the first

√
n type 2 messages

of the form < Pollp, p, 2 > which are received
from q, send < p, 3 > (type 3 message) to every
processor in Pollp;

9) For each s: for the first
√
n log2 n different type

3 messages of the form
< p, 3 > which are each sent by a majority
of processors in Cs, send < Cs, 4 > (type 4
message) to p;

10) If s receives the same type 4 message < C ′, 4 >
from a majority of processors in Polls then

a) s sets Cs ← C ′; and
b) s answers any remaining type 3 requests that

have come from a majority of the current Cs,
i.e. for each such request < p, 3 > s sends
< Cs, 4 > to p;

4

p q p

Cq

< C ><
Po

ll p
, p

, 1
>

Listp

< Pollp, p,
2 >

< p, 3 >

Pollpp p

Figure 1. Steps 6-10 of Our Protocol

adversary can flood the network with “fake” requests so
that the good processors are forced to send too many
responses. Thus, the polling request are made through
the set C, which counts the messages received from
each processor to enforce that total number of polling
requests sent out is not too large.

Unfortunately, this approach introduces a new prob-
lem: processor p may have an incorrect guess about
the membership of C. We solve this by having p send
a (type 1) message containing its poll-list (Pollp) to
Listp, a set of c log n

√
n randomly sampled processors.

Processor p hopes that at least one processor in the
set Listp will have a correct guess about C and will
thus be able to forward a (type 2) message containing
Pollp to C. To prevent these processors q ∈ Listp from
being flooded, each such processor q only forwards a
type 2 message from a processor p if p appears in the
set Forwardq , which is a set of

√
n processors that

are randomly sampled in advance. Upon receiving a
< Pollp, p > (type 2) message from any processor q, a
processor in C then sends a (type 3) request with p’s ID
to each member s ∈ Pollp. More precisely, a processor
in C only processes the first

√
n such type 2 messages

that it receives from any given processor q: this is the
crucial filtering that ensures that the total number of
requests answered is not too large. Upon receiving a
type 3 request, < p, 3 > from a majority of C, s sends
Cs to p, a (type 4) message.

There are two remaining technical problems. First,
since a confused processor, p, can have a Cp equal to a
mostly corrupt set C ′, C ′ can overload every confused
processor. Hence we require that any processor, p, who
receives an overload (more than

√
n log2 n) of type

3 requests wait until their own Cp is verified before

responding. Second, the processors in C handle many
more requests than the other processors. The adversary
can conceivably exploit this by bombarding confused
processors which think they are in C with type 2
requests. Thus, the algorithm begins with a verification
of membership in C. Each processor p sends a request
message to a randomly selected sample (Pollp) which
is responded to by a polled processor q if and only if
p ∈ Cq .

Example: An example run of our algorithm is shown in
Figure 1. This figure follows the technically challenging
part of our protocol, steps 6-10, which are described
in detail in Algorithm 1 listed below. In Figure 1,
time increases in the horizontal direction. This figure
concerns a fixed processor p that concludes p 6∈ C
in the earlier parts of the algorithm (steps 2-5). For
clarity, in this example, only messages that are sent
on behalf of p that eventually help p to determine C
are shown. Moreover, again for clarity, we show a best
case scenario where all nodes in Pollp are assumed to
have received no more than

√
n log2 n type 3 requests.

In the first step of this example, p sends the message
< Pollp, p, 1 > to all nodes in Listp. The node q is
the only node in this set such that p ∈ Forwardq , so q
forwards a type 2 message of the form < Pollp, p, 2 >
to all the nodes in Cq . In this example, Cq = C. Next
all nodes in Cq send the message < p, 3 > to all nodes
in Pollp. In this example, all nodes in Pollp know the
set C, so they all send the message < C > to p in the
final step.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
We ran our simulations using the BEA 64 bit Java
6.0 virtual machine JRockit on a machine with 8G of
memory. The size of the network simulated was between
1,000 to 4,000,000 processors. In our algorithm, the
parameters for the sampler were γ = r/s = 60, β =
ε0 = 1/12 making d ≥ 50 lnn. We used the latest draft
standards for hash functions FIPS 180-3 [12] and the
latest draft standards for digital signatures [13] in our
measure of the actual bit complexity of our algorithm.
We used hash functions of size 512 bits, and 2048 bits
for digital signatures.

We simulated two algorithm in the experiments:
our algorithm which has been described previously;
and the algorithm from [3] which we will refer to as
the CKS algorithm. We simulated our algorithm with
parameters set so that it can tolerate a 1/8 fraction
of bad processors. Our choice of the CKS algorithm
was motivated by the fact that if seems to have the

5

Figure 2. Top: Log of number of nodes vs. average number of
messages; Bottom: Log of number of nodes vs log of average number
of messages

smallest message complexity of Byzantine agreement
algorithms described in the literature. We compared
these two algorithms along three metrics: number of
messages sent, number of bits sent, and latency. The
CKS algorithm requires each node to send to every
other node in the network, so the asymptotic number
of messages sent per node is O(n). This is in contrast
to Õ(

√
n) for the same metric for our algorithm. The

latency for the CKS algorithm is a constant in contrast
to the latency for our algorithm which is O(log n). The
CKS algorithm can tolerate a 1/3 fraction of faulty
processors. We emphasize that this is larger than the
fraction of bad processors that can be tolerated by our
algorithm as simulated here. However, our interest in
scalable communication costs inclines us to consider
tradeoffs of fault tolerance for scalability.

B. Experimental Results
The outcomes of our experiments are shown in Fig-
ures 2, 3 and 4. We note that, in our experiments, the
measured message complexity for the CKS algorithm
varies predictably for different network sizes. This is
true since the CKS algorithm requires every node to
send messages to every other node in the network a fixed

Figure 3. Top: Log of number of nodes vs. average number of bits
sent; Bottom: Log of number of nodes vs log of average number of
bits sent

number of times and then always stops. In contrast, the
number of messages that a given node sends in our
algorithm is less predictable. All data points shown in
all of our plots are the average over at least 5 trials.

Figure 2 (top) shows the log of the network size
vs. average number of messages sent. This plot shows
that our algorithm begins to display better performance
at about 65,000 processors on this metric, and for
networks much larger than this size, exhibits significant
improvement over the CKS algorithm. Figure 2 (bottom)
shows the log of the network size vs. log of the average
number of messages sent. Since this is a log-log plot, the
slopes of the two lines fitting the data points give a good
approximation to the exponents of n in the function
giving the average message cost. Thus, as expected, in
this plot the slope for the line for the CKS algorithm is
approximately 1. Moreover, as expected, the slope for
our algorithm is about 1/2, since the almost everywhere
to everywhere part of the algorithm requires each node
to send Õ(n1/2) messages.

Figure 3 (top) shows the log of the network size
vs the average number of bits sent. For this metric, our
algorithm performs better than the CKS algorithm for all
networks of size greater than about 1, 000. This is due to

6

Figure 4. Top: Proportion of bandwidth used by the almost
everywhere part of our algorithm. Bottom: Latency vs. the logarithm
of the number of nodes

the larger message sizes of the CKS algorithm because
of its extensive use of cryptography. The bit complexity
barely registers on the graph because of the resolution
and since it is at most of the order of 108 bits. Figure
2 (bottom) shows the log of the network size vs. log of
the average number of messages sent. Again the CKS
algorithm displays linear slope for this plot. However,
the slope for our algorithm is about 1/4, which much
less than the 1/2 expected. We believe this discrepancy
is due to the fact that the “almost everywhere” stage of
our algorithm dominates in terms of the number of bits
sent for network sizes we tested, and that this stage has
an asymptotic cost less than Õ(n1/2). The dominance
of the almost everywhere stage is likely due to the
fact that it is the only part of our algorithm that uses
cryptography. To verify our conjecture, we separated out
the bit cost for the almost everywhere stage in the plot
shown in Figure 4 (top). As can be seen in this figure,
for larger values of n the dominance of the almost
everywhere stage becomes less pronounced, and so we
expect that for very large values of n, the slope in the
log-log plot will approach 1/2.

Figure 4 (bottom) shows the log of the network
size vs latency. The latency for our algorithm is a

step function since many values of n map to the same
election graphs, and the latency of our algorithm is
dominated by the diameter of the election graph.

IV. FUTURE WORK AND CONCLUSION

We have described in this paper an algorithm for solving
the Byzantine agreement problem using Õ(n1/2) aver-
age messages per node. We simulated this algorithm
and ran extensive experiments suggesting that for large
networks, it requires significantly less bandwidth than
the CKS algorithm from [3], which seems to be one of
the more bandwidth efficient Byzantine agreement algo-
rithms in the literature. For all networks our algorithm
required fewer total bits sent than the CKS algorithm,
and for networks of size larger than about 65, 000, our
algorithm also required fewer messages sent. Our results
suggest that our algorithm might be a significant step
toward developing Byzantine agreement algorithm for
large networks.

Several open problems remain including the follow-
ing. First, the algorithm of Awerbuch and Scheideler [1]
is a significant bottleneck for reducing bit cost in our
algorithm. Can we devise a more efficient subroutine
for choosing random numbers in our committees? We
believe that this might be possible, by careful recursive
use of our algorithm, coupled with use of the algorithm
from Feige [5]. Second, we are interested in designing
scalable algorithms for other fault-tolerant distributed
computing problems, most generally, secure multi-party
computation. A final goal would to implement the
algorithm on a cluster of computers to do an actual
distributed run of the algorithm on multiple processors.

7

References
[1] Baruch Awerbuch and Christian Scheideler. Robust

random number generation for peer-to-peer systems. In
OPODIS, pages 275–289, 2006.

[2] Edward Bortnikov, Maxim Gurevich, Idit Keidar,
Gabriel Kliot, and Alexander Shraer. Brahms: Byzantine
resilient random membership sampling. In PODC ’08:
Proceedings of the twenty-seventh ACM symposium on
Principles of distributed computing, pages 145–154,
New York, NY, USA, 2008. ACM.

[3] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantipole: practical asynchronous
byzantine agreement using cryptography (extended ab-
stract). In PODC ’00: Proceedings of the nineteenth
annual ACM symposium on Principles of distributed
computing, pages 123–132, New York, NY, USA, 2000.
ACM.

[4] Danny Dolev and Rüdiger Reischuk. Bounds on in-
formation exchange for byzantine agreement. J. ACM,
32(1):191–204, 1985.

[5] Uriel Feige. Noncryptographic selection protocols. In
FOCS ’99: Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, page 142, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[6] Ronen Gradwohl, Salil P. Vadhan, and David Zucker-
man. Random selection with an adversarial majority. In
CRYPTO, pages 409–426, 2006.

[7] Bruce Kapron, David Kempe, Valerie King, Jared Saia,
and Vishal Sanwalani. Fast asynchronous byzantine
agreement and leader election with full information. In
SODA ’08: Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, New York, NY,
USA, 2008. ACM Press.

[8] Valerie King and Jared Saia. From almost everywhere to
everywhere: Byzantine agreement with Õ(n3/2) bits. In
To appear in Proceedings of DISC 2009:23rd Interna-
tional Symposium on Distributed Computing. Elche/Elx,
Spain, September 23-25, 2009, 2009.

[9] Valerie King, Jared Saia, Vishal Sanwalani, and Erik
Vee. Scalable leader election. In SODA ’06: Proceed-
ings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, pages 990–999, New York, NY,
USA, 2006. ACM Press.

[10] Valerie King, Jared Saia, Vishal Sanwalani, and Erik
Vee. Towards secure and scalable computation in peer-
to-peer networks. In FOCS ’06: Proceedings of the
47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), pages 87–98, Washington,
DC, USA, 2006. IEEE Computer Society.

[11] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative
byzantine fault tolerance. SIGOPS Oper. Syst. Rev.,
41(6):45–58, 2007.

[12] National Institutes of Standards and Technology. Fed-
eral information processing standards publication 180-
3:secure hash standard. World Wide Web electronic
publication, 2007.

[13] National Institutes of Standards and Technology. Fed-
eral information processing standards publication 186-3:
Digital signature standard. World Wide Web electronic
publication, 2007.

[14] David Zuckerman. Randomness-optimal oblivious sam-

pling. In Proceedings of the workshop on Randomized
algorithms and computation, pages 345–367, New York,
NY, USA, 1997. John Wiley & Sons, Inc.

Appendix
A. COMMITTEES
In a network with n processors, a committee is a
collection of O(lnn) processors in the network. First,
we choose a set of committees each of size O(lnn)
chosen uniformly at random from the n processors in
the network. We call this initial set of processors in
committees layer ’0’ committees.

DEFINITION 1. A committee is called good if less than
a 1/8 fraction of the processors in the committee have
been taken over by the adversary.

B. COMMITTEE SELECTION
We use the sampler to spread out coalitions of bad
processors. Each committee is selected from the pro-
cessors elected by the ELECTHIGHERCOMM algorithm
from the previous layer so that the fraction of bad
committees is bounded by ε′/2 lnn for some ε′ ∈ [0, 1].
The RANDOMID protocol, which guarantees that the
additional fraction of bad processors due to elections
from good committees is also bounded by ε′/2 lnn
which then gives a total bound of ε′/ lnn on the growth
of the fraction of bad processors appearing in successive
layers in the worst case.

C. ELECTION DESCRIPTION
The election graph consists of a full tree with the layer
’0’ committees at the leaf nodes. Initially, there are
committees only at the leaf nodes. These committees are
created by a uniform sampler that assigns the processors
to committees. The processors in non-leaf nodes will
be elected by the algorithm described later in this
section. This algorithm repeatedly makes use of the
RANDOMID protocol from [1]. This protocol is used
to assign random numbers in the range [0, 1]. We use
these random numbers to select a processor in each
committee to advance to subsequent layers. First, we
describe the properties of the protocol in [1] by the
following Theorem from [1].

1) COMMITTEE ELECTION PROTOCOL

The method used to run elections is a simple adaptation
from the random number generation protocol of [1].
This protocol requires a bit commitment scheme h,
where h(x) reveals nothing about x. In practice, a
cryptographic hash function should be sufficient for h.

Suppose that we have a set P of m players,
p1, . . . pm, that know each other and their indexing, with

8

any t of them being adversarial for some t < m/6. The
round-robin random number generator works as follows
for some player p? ∈ P initiating it.

1) Each player pi ∈ P sets Pi := P\{pi} and
waits for 8i time steps. Each time it receives
an accusation (pk)pj from a player pj ∈ P it
has not received an accusation from yet, it sets
Pi := P\{pk}. Once the 8i steps are over, pi
initiates the next step. pi terminates after 8(m+1)
steps.

2) If |Pi| ≥ 2m/3, then pi chooses a random
xi ∈ {0, 1}s and sends (h(xi), Pi)pi to all players
in Pi. Otherwise, pi aborts the protocol (which
will not happen if t < m/6).

3) Each player pj ∈ Pi receiving a message
(h(xi), Pi)pi for the first time from pi with Pi ≥
2m/3 chooses a random xj ∈ {0, 1}s and sends
the message (pi, h(xj), Pi)pj to pi. Otherwise, it
does nothing.

4) If all players in Pi reply within 2 time steps,
then pi sends ({(pi, h(xj), Pi)pj |pj ∈ Pi})pi to all
players in Pi. Otherwise, pi sends an accusation
(pj)pi for any pj ∈ Pi that did not reply correctly
or in time to all players in P and stops its attempt
of generating a random number.

5) Once pj ∈ Pi receives ({(pi, h(xk), Pi)pk |pk ∈
Pi})pi from pi, pj sends (xj)pj to pi.

6) If pi gets a correct reply back from all play-
ers in Pi within 2 time steps, then it sends
(xi, {(xj)pj |pj ∈ Pi})pi to all players in Pi and
computes yi = xi ⊕

⊕
pj∈Pi

xj where
⊕

is
the bit-wise XOR operation. Otherwise, pi sends
an accusation (pj)pi to all players in P for any
pj ∈ Pi that did not reply correctly or in time and
stops.

7) Once pj ∈ Pi receives (xi, {(xk)pk |pk ∈
Pi})pi , pj verifies that all keys are correct. Then
pj computes y(i)j = xi ⊕

⊕
qk
∈ Pixk and sends

the message (y
(i)
j)pj to pi.

8) If pi receives yi from at least 2m/3 players in
P within 2 time steps, it accepts the computation
and otherwise sends an accusation (pj)pi to all
players in P for any pj ∈ Pi that did not reply
correctly or in time.

THEOREM 1. Suppose that |P | = m and there are
t < 1/6m adversarial peers in P. Then the RANDOMID
protocol generates random keys y1, y2, . . . yk ∈ {0, 1}s
with m − 2t ≤ k ≤ m and the property that for all
subsets S ⊆ {0, 1}s with σ = |S|/2s, E[|i |yi ∈ S|] ∈
[(m− 2t)σ,m · σ]
Further, the worst-case message complexity of the pro-
tocol is O(m2).

ALGORITHMIC DESCRIPTION.: The RANDOMID
protocol elects only one processor from each committee
to advance to the next layer i of the network and
broadcasts a message to its members informing them
which processor was elected. This is done using a
procedure called ELECTHIGHERCOMM(A) shown in
Figure 1. The procedure is called once for each layer
i − 1 to elect the nodes in layer i. As each processor
is elected to layer i, the processors in its respective
committees in layer i− 1 are informed via a broadcast
to the processors in their committees of the election of
these processors. Within the procedure ELECTHIGHER-
COMM, the selected processors are assigned committees
by the sampler to disperse possible coalitions of bad
processors to reduce the probability of having bad
processors take over a committee. The sampler selects
the processors in each committee such that there are
O(lnn) sized committees with only a small fraction
of these committees being bad at each layer i. The
processors in each committee A ,learn which processors
belong to A by contacting a set of processors called the
monitoring set of A which we will refer to as m(A)
which is a structure from [9]. The monitoring set of a
committee A, is a set of layer ’0’ committees which
know the processors assigned to A, whose identity is
fixed in advance and is known to all processors. The
processors in committee A, need only randomly sample
O(lnn) processors in m(A) to learn the processors
in A with high probability. We will describe later in
this section the mechanism by which these monitoring
sets learn the processors in each committee. These
elections continue until layer l consisting of at least
O(ln3 n) processors, this algorithm is performed by a
procedure called TREESELECT given in figure 2. This
procedure is later called by the BA algorithm shown in
figure 3. After receiving a set of O(ln3 n) processors
from TREESELECT, it runs the Byzantine agreement
algorithm in [3] which we will refer to from now on
as the RANDOMORACLE on these set of processors.
The agreed upon bit by the good processors is then
broadcast to all other processors in the network. This
is done by traversing the Election graph downward in a
breadth first manner and broadcasting the identity of the
processor selected to be the leader to each processor in
each committee. We note here that this algorithm can be
adapted easily to solve the Leader Election problem by
using the RANDOMID protocol to select a leader and
then broadcasting the identity of this leader downward
through the Election graph as mentioned earlier. The
monitoring sets are described in [9].

9

D. ALMOST EVERY WHERE BYZANTINE AGREE-
MENT PROTOCOL
The almost everywhere Byzantine agreement Protocol,
called AEBA, works by calling the RANDOMORACLE
algorithm with the group of processors in the last layer
of the election graph as input. The RANDOMORACLE
algorithm has a message complexity O(n2) on input of
size n. We show that the algorithm AEBA sends no
more that O(ln3 n) messages per processor in a fully
connected communication network. We show this by
the following Theorem.
THEOREM 2. The Byzantine agreement Protocol
AEBA sends at most O(n ln3 n) messages in total
using a fully connected communication network
(complete graph) .

Algorithm 2 INFORMMONITORINGSET(A)
Input: A the set of processors in a committee in layer

i
1: while not layer 0 do
2: if the processors if the processors in the child

nodes C1, C2, . . . Cj for A are unknown then
3: CALL FINDPROCESSORS(Cj) to learn the

processors in each Cj that are children of A.
4: committee A in layer i, sends a message to each

of it’s children C1, C2, . . . Cj in layer i− 1
5: CALL INFORMMONITORINGSET on each of

C1, C2, . . . Cj

Figure 5. Algorithm for informing sending messages to monitoring
sets.

Algorithm 3 FINDPROCESSORS(A)
Input: A the set of processors in a committee in layer

i
1: for each processor p ∈ A do
2: sample uniformly at random a set S of O(lnn)

processors in m(A)
3: poll the processors in S for the identities of the

processors in A
4: accept via majority filtering the identities of the

processors in A from S

Figure 6. Algorithm for learning the identity of the processors its
committee.

Algorithm 4 ELECTHIGHERCOMM(A)
Input: A the set of processors in layer i of the election

graph
Output: D the set of processors, elected to layer i+ 1

in the election graph
1: for each committee C in layer i do
2: for each processor pi in C do
3: FINDPROCESSORS(C)
4: C selects the processor p with

p← RANDOMID(C)
5: add p to D
{use the sampler to spread out the bad processors
in committees}

6: D = F (D)
7: for each committee Ci in D do
8: CALL INFORMMONITORINGSET(Ci).
9: return D

Figure 7. Algorithm for electing the next layer of processors.

Algorithm 5 TREESELECT(A)
Input: A the set of n processors
Output: P a set of ln3 n processors .

1: Com0 ← A
2: for i=0 to l and |Comi+1| > ln3 n do
3: for each processor in layer i {elect the processors

to layer i+ 1 }
4: Comi+1 ← ELECTHIGHERCOMM(Comi)
5: return P

Figure 8. Algorithm for electing a set of ln3 n processors

E. SAMPLERS
Our protocols makes use of samplers, which are a
special family of bipartite graphs that define subsets of
elements such that all but a small number of the selected
subsets contain close to the fraction of bad elements in
the whole set. We use the definition of samplers found
in [7] and equivalent to the one defined in [14].
DEFINITION 2. Let [r] denote the set 1,. . . r and [s]d be
subsets of [s] size d. Let F be a function [r]→ [s]d that
assigns the elements to subsets of size d. Then F is a
(θ, ε, β) sampler if ∀S ⊂ [s] with |S| > βs ,and at most
an ε fraction of the inputs x have |F (x)∩S|

d > |S|
S + θ

LEMMA A.1. For every r, s, d, θ, ε, β > 0 such that
(log2 e)(dθ

2βr)/3 > s/ε, there exists a (θ, ε, β) sam-
pler [r]→ [s]d.

10

Algorithm 6 AEBA(A)
Input: A the set of n processors
Output: Most good processors agree on the value of a

bit.
1: A0 ← A
2: A1 ← TREEELECT(A0)
3: RANDOMORACLE(A1) { Run Byzantine agree-

ment protocol on A1 O(ln3n) subset of A }
{inform the processors in successive layers the of
the value of the bit}

4: for i=l to 1 do
5: for each node(committee) in layer i
6: Broadcast to the processors in child nodes in

layer i-1 the bit agreed upon.
7: The processors in layer i-1 use majority filtering

to accept the bit agreed upon.

Figure 9. Algorithm for Byzantine agreement.

F. COMMUNICATION TREE AND MONITORING SETS

When processors advance in the election graph, proces-
sors within a committee do not know the identity of
the other peers within the committee. The monitoring
sets provide this information to the members of each
committee. The monitoring set of a committee A , m(A)
is the set of layer ’0’ committees in the election graph
known to everyone in advance, they are children of
committee A in layer ’0’ in the election graph. It is
convenient to assume that the committee A, in layer
i is the root of some tree with it’s children being the
committees linked to it via the processors elected from
layer i−1. We will from now on refer to this tree as the
communication tree. This communication tree is rooted
at the set of O(ln3 n) processors in layer ’0’ of the
election graph referred to in Lemma F. The children
of some node i in layer l in the communication tree
is the set of O(lnn) committees in layer l − 1, that is
committees numbered i · γ, i · γ + 1, · · · , (i+ 1) · γ − 1
from layer l − 1 where γ = r/s from the sampler
properties. The leaf nodes of the communication tree
are the layer ’0’ committees in the election graph. This
scheme embeds the communication tree completely in
the election graph. We assume sending messages from
node A to node B to simply mean every processor in
node A sending messages to every processor in node
B with each processor deciding by majority filtering on
the messages it received. The identity of the processors
in committee A, are sent to m(A) after the election
of each processor to a committee using the procedure

called INFORMMONITORINGSET. The procedure sends
the identity of the elected processors in A to m(A)
by recursively sending messages through the children
of node A in the communication tree.. The procedure
FINDPROCESSORS is called by each processor in a
committee to learn the identities of the processors in that
particular committee. It does this by sampling uniformly
at random O(lnn) processors in m(A) to learn the
identity of the processors in A. This guarantees that
with high probability, these nodes know the processors
in A.
LEMMA A.2. In the election graph, if the number of
processors in layer i − 1 is no less than ln3 n and the
fraction of bad processors is no more than 1/8 − ε0
then, the fraction of bad committees in layer i is no
more than ε′/2 lnn.

Proof: Using the uniform (θ, ε, β) sampler with
θ = ε0, β = 1/8 − ε0, γ = s/r = 1/c1, c1 > 1, ε =
ε′/2 lnn and (log2 e)(dε

2
0(1/8−ε0))/3 > 2 lnn/c1ε

′ ⇒
d > C lnn for some constant C. We see that the bounds
are automatically satisfied from the properties of the
sampler.
LEMMA A.3. Let G be the set of processors elected
from good committees at layer i with at least ln3 n pro-
cessors in layer i, and the fraction of bad processors in
layer i, is no more than fi. Then with high probability,
the fraction of bad processors in G is no more than
fi + ε′/2 lnn.

Proof:
Let Xj be the random variable assigned to jth

processor elected at layer i − 1, such that Xj = 1
if the jth processor is bad and 0 otherwise with
X =

∑i=l
j=1Xj where l is the number of processors

in layer i, then these random variables are independent.
Using Chernoff bounds Pr(|X − µ| ≥ δµ) ≤ 2e−δ

2µ/3

with µ = E[X] = βl, δ = ε′/2 lnn we get Pr(|X −
µ| ≥ βlε′/2 lnn) ≤ 2e−βlε

′2/12 ln2 n = 1/nc for some
constant c, if l ≥ ln3 n.
LEMMA A.4. With high probability, at layer i, with the
number of processors in layer i− 1 being no less than
ln3 n, the fraction of bad processors in layer i is no
more than fi = f0 + iε′/ lnn for some constant ε′.

Proof: The proof is by induction on the layer i.

1) Base case i = 0.
The fraction of bad processors initially at layer 0
is f0 .

2) Inductive Step.
We assume the statement is true for layer i, so us-
ing the Inductive Hypothesis, fi = f0 + iε′/ lnn.
For layer i + 1, using Lemma 1.3 the additional
fraction of bad processors elected to layer i+1 due

11

to bad committees is at most ε′/2 lnn applying
Lemma 1.4 the additional fraction of bad pro-
cessors elected from good committees is at most
ε′/2 lnn. So the total fraction of bad processors at
layer i+1 is fi+ε′/2 lnn+ε′/2 lnn = fi+ε

′/ lnn
which is f0 + (i+ 1)ε′/ lnn.

THEOREM 3. The Byzantine agreement Protocol BA
sends at most O(n ln3 n) messages in total using a fully
connected communication network (complete graph) .

Proof: The number of committees in layer i of the
election graph is n/γi+1. The number of processors in
layer i is Cn lnn/γi+1. The election graph is of height
l = lnnC − 2 ln lnn− ln γ/ ln γ and C lnn is the size
of a committee, where C > 0 is some constant defined
by the properties of the sampler in Lemma 2.2.

• Communication costs for informing monitoring
sets for processors in layer i:

– Each node in the communication tree needs
only to learn the identity of it’s immediate
children in layer i−1 once. The identity of the
processors in child nodes in the lower layers
of the communication tree are already known.

– The cost of learning the identity of a com-
mittee by sampling 10 lnn processors is
10C2 ln3 n.

– The cost of learning the processors for all the
immediate children of the nodes in layer i is
10nC2 ln3 n/γi.

– The cost of learning all the processors in
the communication tree of height l is then
10C ln3 n

(
nC − (γ lnn)

2
)
/γ (γ − 1).

– The cost of sending messages down
the tree for all layers 1 · · · l is:
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)

2.
– So the total cost of inform-

ing the monitoring sets is:
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)

2

+ 10C ln3 n
(
nC − (γ lnn)

2
)
/γ (γ − 1).

Which is O(n ln3 n).

• Next, we calculate the message complexity for the
election process:

– The cost of learning the processors
for all committees in all the
layers of the election graph is
10C ln3 n

(
nC − (γ lnn)

2
)
/γ (γ − 1).

– The cost of running the RANDOMID al-
gorithm for all layers of the algorithm is
10C2 ln2 n

(
nC − γ ln2 n

)
/ (γ − 1)

– The total cost of the election process is

O(n ln3 n).
• The cost of the Byzantine Agreement Algorithm

run on the processors in the last layer is O(ln6 n).
• The cost of sending the agreed bit down to the pro-

cessors in layer ’0’ from the O(ln3 n) processors
in layer l is C ln2 n

(
nC − γ ln2 n

)
/ (γ − 1).

• The total cost of this process is O(n ln3 n).

The proofs of the correctness of the algorithm to
inform all the confused processors can be found in King
and Saia [8].

G. PROOF OF MESSAGE COMPLEXITY OF ALMOST
EVERYWHERE BYZANTINE AGREEMENT ALGO-
RITHM
• Communication costs for informing monitoring

sets for processors in layer i:
– Each node in the communication tree needs

only to learn the identity of it’s immediate
children in layer i−1 once. The identity of the
processors in child nodes in the lower layers
of the communication tree are already known.

– The cost of learning the identity of a com-
mittee by sampling 10 lnn processors is
10C2 ln3 n.

– The cost of learning the processors for all the
immediate children of the nodes in layer i is
10nC2 ln3 n/γi.

– The cost of learning all the processors
in the communication tree of height
l is then

∑
2≤i≤l 10nC2 ln3 n/γi

= 10nC2 ln3 n
(
1− γ−l+1

)
/γ (γ − 1). For

the value of l defined above we have this cost
to be 10C ln3 n

(
nC − (γ lnn)

2
)
/γ (γ − 1).

– The cost of sending messages down
the communication tree from layer
h to inform the monitoring sets in
layer ’0’ is:

∑
1≤i≤l nC

2 ln2 n/γi =

nC2 ln2 n
(
1− γ−h

)
/ (γ − 1).

– The cost of sending messages down
the tree for all layers 1 · · · l is:∑

1≤h≤l nC
2 ln2 n

(
1− γ−h

)
/ (γ − 1) =

nC2 ln2 n
(
γ−l + l (γ − 1)− 1

)
/ (γ − 1)

2.
For the value of l defined
above we have this cost to be
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)

2.
– So the total cost of inform-

ing the monitoring sets is:
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)

2

+ 10C ln3 n
(
nC − (γ lnn)

2
)
/γ (γ − 1).

Which is O(n ln3 n).

12

• Next, we calculate the message complexity for the
election process:

– The communication cost for learning the pro-
cessors in layer i ≥ 1 is 10nC2 ln3 n/γi+1.

– The cost of learning the processors for all
committees in all the layers of the elec-
tion graph is

∑
1≤i≤l−1 10nC2 ln3 n/γi+1 =

10nC2 ln3 n
(
1− γ−l+1

)
/γ (γ − 1). The ac-

tual cost substituting for the value of l is
10C ln3 n

(
nC − (γ lnn)

2
)
/γ (γ − 1).

– The cost of running the RANDOMID algo-
rithm per committee election is 10C2 ln2 n,
the cost of running the algorithm for layer i is
nC2 ln2 n/γi+1. The cost for all layers of the
algorithm is

∑
0≤i≤l−1 10nC2 ln2 n/γi+1 =

10C ln2 n
(
nC − γ ln2 n

)
/ (γ − 1). The ac-

tual cost substituting the value of l is 10 ∗
C ln2 n

(
nC − γ ln2 n

)
/ (γ − 1)

– The total cost of the election process is
O(n ln3 n).

• The cost of the Byzantine Agreement Algorithm
run on the processors in the last layer is 4 ln6 n.

• The cost of sending the agreed bit down
to the processors in layer ’0’ from the
O(ln3 n) in layer l is

∑
1≤i≤l

(
nC2 ln2 n

)
/γi

= C2n ln2 n
(
1− γ−l

)
/ (γ − 1) substi-

tuting the value of l into this we get
C ln2 n

(
nC − γ ln2 n

)
/ (γ − 1).

• The total cost of this process is O(n ln3 n).

Figure 10. Logarithm of the committee size vs logarithm of the
number of nodes.

13

