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Abstract

Intensity modulated radiation therapy (IMRT) is one of the most effective modalities for
modern cancer treatment. The key to successful IMRT treatment hinges on the delivery
of a two-dimensional discrete radiation intensity matrix using a device called a multileaf
collimator (MLC). Mathematically, the delivery of an intensity matrix using an MLC can
be viewed as the problem of representing a non-negative integral matrix (i.e. the inten-
sity matrix) by a linear combination of certain special non-negative integral matrices called
segments, where each such segment corresponds to one of the allowed states of the MLC.
The problem of representing the intensity matrix with the minimum number of segments is
known to be NP-complete. In this paper, we present two approximation algorithms for this
matrix representation problem. To the best of our knowledge, these are the first algorithms
to achieve non-trivial performance guarantees for multi-row intensity matrices.

Keywords: approximation algorithms; intensity modulated radiation therapy; multileaf
collimator; segmentation

1 Introduction

Intensity modulated radiation therapy (IMRT) is an advanced modality of modern cancer treat-
ment aiming to deliver a high radiation dose to a cancerous region while minimizing damage
to the surrounding healthy tissue. Successful implementation of IMRT technology hinges on
the delivery of a two-dimensional integral radiation intensity matrix T using a device called the
multileaf collimator (MLC) [3, 8].

The MLC contains two banks of metal leaves and is able to position these leaves to prevent
radiation from being delivered to certain portions of T . A pair of leaves is associated with each
row of T . One leaf is located to the left of a row and may slide inwards to cover entries from left
to right. Similarly, another leaf is located to the right of a row and may slide inwards to cover
indices from right to left. The two leaves in any particular row cannot overlap. A treatment plan
consists of discrete steps. The leaves of the collimator are first set into appropriate positions
forming an aperture. An amount of radiation, d, is then passed through the apertures onto the
exposed portions of T . All entries of T that are exposed by the MLC aperture decrease by d.
The radiation is then turned off and the leaves are then repositioned to form different apertures
through which another amount of radiation can be delivered. This procedure is repeated until
all entries of T are 0 and the treatment is complete.

The positions of the leaves at a step in the treatment plan can be represented by a matrix
with 0s in those entries covered by leaves and 1s in those entries left uncovered. We call such a
matrix a segment. Setting leaf positions in each step of the treatment plan requires time. Mini-
mizing the number of segments reduces treatment time which helps to avoid patient movement,
which can adversely affect the treatment quality, as well as reduce the cost of the procedure.
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Here we concern ourselves with minimizing the number of segments required to complete the
treatment specified by an intensity matrix.

1.1 Definitions

We formally define a segment as given in [9]:

Definition 1. A segment is an m× n matrix S with integers li, ri for 1 ≤ i ≤ m satisfying the

following two criteria:

li ≤ ri + 1 for all i, 1 ≤ i ≤ m

S[i][j] =

{

1 if li ≤ j ≤ ri

0 otherwise
for all i, 1 ≤ i ≤ m, for all j, 1 ≤ j ≤ n

Thus, a segment is a 0-1 matrix where the values of 1 appear as a single block in any
particular row. This definition corresponds to the setting of the leaves in the MLC. The first
criteria ensures that the left and right leaves of row i do not overlap. The second criteria ensures
that at each row i, values of 1 are listed consecutively in a single block.

Definition 2. An MLC-aperture is a pair (S, c) where S is a segment and c is a positive integer

which we call the beam-on time.

Definition 3. Consider an intensity matrix T . A segmentation of T is a multiset X of MLC-

apertures (Si, ci) such that T =
∑|X|

i=1 ciSi. We say that T has segmentation of length |X |.

Example 1. Let T =





2 3 1
4 4 2
2 1 7



 and let:

S1 =





0 0 0
0 0 0
0 0 1



 , S2 =





1 1 0
1 1 1
1 0 0



 , S3 =





0 1 1
1 1 0
0 1 1



 , S4 =





0 0 0
1 1 0
0 0 1





Then a segmentation of T is X = {(S1, 5), (S2, 2), (S3, 1), (S4, 1)}.

1.2 Related Work

The problem of minimizing the segmentation length for a 1× n intensity matrix is known to be
NP-complete [4, 1]. An unpublished proof by Woeginger demonstrates that the 1 × n case is
NP-complete in the strong sense [9]. The literature contains several leaf-sequencing algorithms
which attempt to reduce the number segments through the use of various heuristic techniques [11,
6, 7, 10]. Bansal et al [2] show that the single row version of the problem is APX-complete.
They provide a 24/13-approximation algorithm for the single row problem and give some better
approximations for more constrained versions. Recent work by Collins et al [5] shows the single
column version of the problem is NP-complete and provides some non-trivial lower bounds given
certain constraints; however, in the most general case, the best approximation currently known
is still the trivial min{dloghe, n}/dlogne.

1.3 Results

For the family of m× n intensity matrices, we provide two approximation algorithms. The first
is a (dlog he + 1)-approximation where h > 0 is the largest entry in the intensity matrix. The
second is a 2(dlog De + 1)-approximation algorithm where D is the maximum element of a set
containing 1) all absolute differences between any two consecutive row entries over all rows, 2)
the first entry of each row, 3) the last entry of each row and 4) the value 1. These two algorithms
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have a running time complexity of O(mn log h) and O(mn log D), respectively. It is certainly
possible for D to be significantly less than h for an intensity matrix, in which case our second
algorithm guarantees an improved approximation ratio1. To the best of our knowledge, these are
the first algorithms for the general m× n case with non-trivial performance guarantees.

2 Approximation Algorithms for an m×n Intensity Matrix

To simplify the following discussion, we introduce some notion. Let Tb denote the intensity
matrix T where the entries are represented as binary numbers. Let Pi be the 0-1 matrix where
the ijth entry is the jth digit in the binary representation of the ijth entry in Tb. A marker bi is
defined at a cell boundary of a row R of an intensity matrix if R[i] 6= R[i + 1] for 1 ≤ i ≤ n− 1.
Also, a marker exists to the left of R[1] and to the right of R[n]. Therefore, we have markers
b1, ..., bk for some k, 2 ≤ k ≤ n+1, positioned from left to right in R. Let T be an m×n intensity
matrix indexed starting at 1. Define Dj, for j = 1, ..., m, to be the following:

Dj = max







|T [j][i]− T [j][i− 1]| for 2 ≤ i ≤ n
T [j][1]
T [j][n]

and now define D to be the following:

D = max
1≤j≤m

{Dj, 1}

Therefore, D is the maximum element of a set containing 1) all absolute differences between any
two consecutive row entries over all rows j, 2) the first entry of each row, 3) the last entry of
each row and 4) the value 1. Finally, for ease of notation, throughout the paper, unless explicitly
stated otherwise, we will simply use log k to mean d log ke and all logarithms are base 2.

Before we outline the approximation algorithm for the segmentation of an m×n intensity
matrix, we need the following result given in Lemma 1. To the best of our knowledge, this
well-known result has never been published and we include it here only for completeness2.

Lemma 1. There exists an approximation algorithm for the segmentation of a single row inten-

sity matrix R that provides a segmentation X of length no more than 2 · OPT . Furthermore,

each MLC-aperture d ∈ X has a beam-on time cd such that cd ≤ D.

Proof. Consider that we have markers b1, ..., bk for some k, 2 ≤ k ≤ n + 1, positioned from left
to right in R as described above. In each step, OPT can remove at most two such markers
per MLC-aperture. Once all markers are removed, the collection of these MLC-apertures is a
segmentation for R. However, consider a simple algorithm which creates a segmentation X for
R by creating an MLC-aperture for R in the following manner at each step i:

1. Let h be the largest value that appears in R. Set the left leaf to cover all cells up to the
marker bl immediately left of h and set the right leaf to cover all cells up to the marker bl+1

immediately right of h (if h appears more than once between different pairs of markers,
then select the first such instance going left to right along the row). Let Si denote the 1×n
segment corresponding to this leaf setting.

2. Let c1 be the value of the cell immediately left of h and let c2 be the value immediately
right of h (both of which are currently covered by the leaves). Without loss of generality,
let c1 ≥ c2. Add the MLC-aperture (Si, h− c1) to X .

1Note that D ≤ h always.
2An approximation algorithm given in [2] gives an identical approximation ratio for the single row problem;

however, it does not say anything about D.
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3. Remove marker bl.

At each step, the above algorithm removes at least one marker. Therefore, this algorithm
provides a segmentation of length no more than 2 · OPT for a single row intensity matrix. As
will be important later on for Alg 2, step (2) guarantees that the beam-on time during the
step-and-shoot scheme never exceeds D.

2.1 (log h + 1)-Approximation Algorithm

We now present pseudocode for the (log h + 1)-approximation algorithm and proceed to prove
the approximation ratio.

Alg 1 : (log h + 1)-approximation

1: Construct the Pi matrices for T for i = 0, ..., logh.
2: for (i = 0 to log h) do

3: Obtain an optimal segmentation, Yi, for Pi.
4: Output Z =

⋃log h

i=0 Yi

The beam-on time in the segmentation Yi is 2i. The MLC-apertures of Z clearly satisfy T
and it is easy to see that Alg 2 has a run-time complexity of O(mn log h). We now prove the
approximation ratio.

Lemma 2. Over all rows in T , let ρ denote the maximum number of markers present in any

one row. Then, for all i, the number of markers in any row of Pi is at most ρ.

Proof. There is a marker in T whenever there is a difference in the binary representation between
neighbors in Tb. Since the corresponding entry in Pi is equal to the ith digit in the corresponding
entry in Tb, Pi can have at most the same number of differences between neighbors as the
corresponding row in T and, therefore, at most the same number of markers.

Lemma 3. An optimal segmentation of Pi has length at most ρ/2, for all i = 0, ..., logh where

ρ is defined as in Lemma 2.

Proof. A segmentation of Pi is obtained by positioning the leaves of each row such that only the
left-most block of consecutive 1s entries are exposed in each row at each step of the treatment.
This block is satisfied by applying this segment with beam-on time 1. By moving from left to
right in this fashion along each row concurrently, a segmentation of Pi is obtained. For some
fixed i, over all rows of Pi, let ρi denote the maximum number of markers present in any row of
Pi. There are markers on either side of each consecutive block of 1s in addition to a marker at
the endpoints of a row; therefore, the number of blocks of 1s in any row is at most ρi/2. Finally,
by Lemma 2, ρi ≤ ρ.

Lemma 4. OPT requires a segmentation of length at least ρ/2 to satisfy T .

Proof. Clearly, any segmentation of T must satisfy every row of T . The result then follows from
Lemma 1 since OPT can remove at most 2 markers per MLC-aperture.

Theorem 1. Alg 1 is a (log h + 1)-approximation algorithm.

Proof. Lemma 3 and Lemma 4 imply that the size of the segmentation required to satisfy any
Pi is no more than OPT . The approximation ratio follows immediately from noting that the
number of Pi matrices is (log h) + 1.
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2.2 2(log D + 1)-Approximation Algorithm

The pseudocode for our second algorithm, Alg 2, is given below. Alg 2 obtains a segmentation
of length no more than 2(log D + 1)OPT and has a run-time complexity of O(mn log D). We
now prove both correctness and the approximation ratio.

Alg 2: 2(log D + 1)-approximation

1: Let X be the set of MLC-apertures obtained as follows:

• For each row j = 1, ..., m, let Xj denote the segmentation of row j obtained from
Lemma 1.

• Each segment of an MLC-aperture in Xj is a 1× n matrix. Convert each segment into
an m×n matrix by doing the following. Make the 1×n matrix the jth row of an m×n
matrix and set all other entries of the m× n matrix to 0.

• X ←
⋃

j=1 to m

Xj .

2: Let X ′ be the set of MLC-apertures obtained from X as follows:

• For each MLC-aperture (S, c) ∈ X , add (S, 2k) to X ′ if and only if bk = 1 where
bblg (c)c · · · b0 is the binary representation of c.

3: Let Zdj be the sets of MLC-apertures obtained from X ′ as follows:

• Define 2q be the largest beam-on time present over all MLC-apertures in X ′. For all
d = 0, ..., q and all j = 1, ..., m, let Zdj be the set of all MLC-apertures in X ′ of the
form (S, 2d) where S is an m× n matrix with non-zero entries only in the jth row.

for (d = 0 to q) do

for (g = 1 to max1≤j≤n{|Zdj|}) do

For j = 0, ..., n, remove one MLC-aperture dj from each non-empty Zdj.
Denote the sum of the segments removed in the previous step
by the m× n matrix S′

gd.
if (S′

gd contains at least one non-zero entry) then

Z = Z ∪ {(S′
gd, d)}.

4: Output Z.

Theorem 2. Z is a segmentation of T .

Proof. Recall that X is the collection of MLC-apertures from the segmentations of each row
where the 1 × n segments of each MLC-aperture have been converted into an m × n segment.
Clearly, X is a segmentation of T .

An MLC-aperture (S, c) in X may be decomposed into several MLC-apertures in X ′ that share
the same segment S and possess levels that are a power of two and all sum to c. Since X is a
segmentation of T , X ′ is a segmentation of T . Consequently, by construction, the set

⋃

d,j Zdj is
also a segmentation of T .

However, the segmentation
⋃

d,j Zdj is wasteful. Each segment of an MLC-aperture in
⋃

d,j Zdj

represents a leaf setting where only one row is receiving radiation per discrete step. Alg 2
achieves a more efficient segmentation through Step 3 which we now describe. Let us fix d and
pick at most one m × n Sdj segment per j value. Denote the sum of these segments by the
segment S′

dg. We are able to create max1≤j≤n{|Zdj|} non-zero segments (there exists at least
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one non-zero entry in each segment) in this manner for a fixed d. Each pair (S′
dg, d) is a valid

MLC-aperture. Doing this over all d then gives a segmentation of T where at least one row is
receiving radiation per step.

Theorem 3. Alg 2 returns a segmentation for T of length at most 2(lg D + 1)OPT .

Proof. The length of the segmentation created by Alg 2 is upper-bounded by (q + 1)t where
t = max

1≤j≤n,0≤d≤q
{|Zdj|}. We now bound q and t:

Bounding q: Recall that 2q is the largest beam-on time present over all MLC-apertures in X ′.
The row approximation algorithm of Lemma 1 guarantees that any beam-on time of an MLC-
aperture in X is no greater than D. By the construction of X ′, we have 2q ≤ D and so q ≤ dlg De.

Bounding t: In Step 2, an MLC-aperture (S, c) ∈ Xj can contribute at most one MLC-aperture
(S, 2k) to X ′ for some fixed k, 0 ≤ k ≤ blg (c)c. Therefore, |Zdj | ≤ |Xj | for a fixed j and all
d = 0, ..., q. Consequently, t ≤ maxj |Xj |. The row approximation algorithm of Lemma 1 used
to achieve the segmentation Xj in Step 1 guarantees that |Xj | ≤ 2 · OPT for all j = 1, ..., n.
Therefore, for all d, t ≤ 2 ·OPT .

Therefore, the segmentation created by Alg 2 has length at most 2(lg D + 1)OPT .

Example 2. We illustrate how Alg 2 executes on the intensity matrix T from Example 1. If

we let:

S1 =





0 1 0
0 0 0
0 0 0



 , S2 =





1 1 0
0 0 0
0 0 0



 S3 =





1 1 1
0 0 0
0 0 0



 S4 =





0 0 0
1 1 0
0 0 0





S5 =





0 0 0
1 1 1
0 0 0



 S6 =





0 0 0
0 0 0
0 0 1



 , S7 =





0 0 0
0 0 0
1 0 0



 S8 =





0 0 0
0 0 0
1 1 1





then we have that X = X1 ∪X2 ∪X3 where:

X1 = {(S1, 1), (S2, 1), (S3, 1)}, X2 = {(S4, 2), (S5, 2)}, X3 = {(S6, 6), (S7, 1), (S8, 1)}.

and now we obtain X ′:

X ′ = {(S1, 2
0), (S2, 2

0), (S3, 2
0), (S4, 2

1), (S5, 2
1), (S6, 2

1), (S6, 2
2), (S7, 2

0), (S8, 2
0)}

We then have the following non-empty Zdj sets:

Z0,1 = {(S1, 2
0), (S2, 2

0), (S3, 2
0)}, Z1,2 = {(S4, 2

1), (S5, 2
1)}

Z0,3 = {(S7, 2
0), (S8, 2

0)}, Z1,3 = {(S6, 2
1)}, Z2,3 = {(S6, 2

2)}

We now construct the segmentation created in the for-loop of Alg 2:

• Step d = 0:

– Step g = 1: We choose (S1, 2
0) ∈ Z0,1 and (S7, 2

0) ∈ Z0,3. S′
1,0 =





0 1 0
0 0 0
1 0 0



.

– Step g = 2: We choose (S2, 2
0) ∈ Z0,1 and (S8, 2

0) ∈ Z0,3. S′
2,0 =





1 1 0
0 0 0
1 1 1



.
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– Step g = 3: We choose (S3, 2
0) ∈ Z0,1. S′

3,0 =





1 1 1
0 0 0
0 0 0



.

• Step d = 1:

– Step g = 1: We choose (S4, 2
1) ∈ Z1,2 and (S6, 2

1) ∈ Z1,3. S′
1,1 =





0 0 0
1 1 0
0 0 1



.

– Step g = 2: We choose (S5, 2
1) ∈ Z1,2. S′

2,1 =





0 0 0
1 1 1
0 0 0



.

• Step d = 2:

– Step g = 1: We choose (S6, 2
2) ∈ Z2,3. S′

1,2 =





0 0 0
0 0 0
0 0 1



.

Therefore, Z = {(S′
1,0, 2

0), (S′
2,0, 2

0), (S3,0, 2
0), (S′

1,1, 2
1), (S′

2,1, 2
1), (S′

1,2, 2
2)}.
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