
ANTS on a Plane
Jared Saia

Joint with Abhinav Aggarwal

ANTS on a Plane
Jared Saia

Joint with Abhinav Aggarwal

ANTS on a Plane
Jared Saia

Joint with Abhinav Aggarwal

ANTS!

ANTS on a Plane
Jared Saia

Joint with Abhinav Aggarwal

ANTS!

ANTS problem
N agents start at node (nest) on infinite grid

Target is placed on node at distance L

Goal: Find the target ASAP

ANTS problem
N agents start at node (nest) on infinite grid

Target is placed on node at distance L

Goal: Find the target ASAP

[Feinerman and Korman, 2017]

Synchronous agents; no communication
Advice: bits to encode #agents, roles, etc

ANTS Results
N agents start at node (nest) on infinite grid

Target is placed on node at distance L

Advice: bits to encode #agents, roles, etc

ANTS Results
N agents start at node (nest) on infinite grid

Target is placed on node at distance L

Advice: bits to encode #agents, roles, etc

[Feinerman and Korman, 2017]

 time with bits advice

 time with no advice, for
any fixed

O(L + L2/N) O(log log N)

O((L + L2/N)log1+ϵ N)
ϵ > 0

 is OptimalO(L + L2/N)

L Area to Search
N agents
Need to search area
Plus time to reach target

≈ L2

≈ L2/N
L

Motivation: Drones seek CO2

Melanie Moses
 moseslab.cs.unm.edu

Use grid to approximate plane?

Use grid to approximate plane?
Problems:

Choosing grid granularity

Too low: May miss target

Too high: Computational load on agents

Hard to handle different target shapes

Use grid to approximate plane?
Problems:

Choosing grid granularity

Too low: May miss target

Too high: Computational load on agents

Hard to handle different target shapes

Solution: Formulate problem on Euclidean plane

Target Shape
What target shape can we handle?

Target Shape
What target shape can we handle?

WA convex shape

Width: Smallest distance between two
parallel lines touching boundary but not
interior

L is distance to segment W. Assume . W ≤ L
W

Our Result - No Advice

 search time

[F&K ’15] time, for any

O L + (L2

NW) log L

O((L + L2/N)log1+ϵ N) ϵ > 0

Our Result - No Advice

 search time

[F&K ’15] time, for any

O L + (L2

NW) log L

O((L + L2/N)log1+ϵ N) ϵ > 0

If agents removed by adversary

 search time

t < N

O (L +
L2(t + 1)

NW) log L

Spokes
Spoke: line segment from nest and back

Say target is on circle of circumference 1

How many spokes are needed to find it?

W

Spokes
Spoke: line segment from nest and back

Say target is on circle of circumference 1

How many spokes are needed to find it?

W Suffices: 1/W evenly spaced spokes

Spokes
Spoke: line segment from nest and back

Say target is on circle of circumference 1

How many spokes are needed to find it?

W Suffices: 1/W evenly spaced spokes

How to get “evenly” space spokes,
when don’t know W in advance?

Idea: Use ϕ
ϕ

Idea: Use ϕ
ϕ

ϕ

Idea: Use ϕ
ϕ

ϕ

ϕ

Idea: Use ϕ
ϕ

[Swierczkowski, ’58] M points placed at arc distance arc
length between any neighboring points is O(1/M)

Moreover, minimizes hidden constant over all numbers

ϕ →

ϕ

ϕ

ϕ

Idea: Use ϕ
ϕ

[Swierczkowski, ’58] M points placed at arc distance arc
length between any neighboring points is O(1/M)

Moreover, minimizes hidden constant over all numbers

ϕ →

ϕ

arc lengths between neighboring
spokes are ≈ 1/4

ϕ

ϕ

Why does well-spread?ϕ →

Why does well-spread?ϕ →

Any number can be written as:

where are integers.

x1 +
1

x2 + 1
x3 + …

xi

Why does well-spread?ϕ →

Any number can be written as:

where are integers.

x1 +
1

x2 + 1
x3 + …

xi

Small means rational approximation hardxi

Why does well-spread?ϕ →

Any number can be written as:

where are integers.

x1 +
1

x2 + 1
x3 + …

xi

Small means rational approximation hardxi

“Hardest to approximate” number all → xi = 1

Why does well-spread?ϕ →

Any number can be written as:

where are integers.

x1 +
1

x2 + 1
x3 + …

xi

Small means rational approximation hardxi

“Hardest to approximate” number all → xi = 1

To get this, set . Solving yields: y = 1 +
1
y

y = ϕ

Why does well-spread?ϕ →

Any number can be written as:

where are integers.

x1 +
1

x2 + 1
x3 + …

xi

Small means rational approximation hardxi

“Hardest to approximate” number all → xi = 1

To get this, set . Solving yields: y = 1 +
1
y

y = ϕ

“very irrational” well-spread→

Why not powers of 2?

Q: Why not have evenly space spokes in iteration i?2i

Why not powers of 2?

Q: Why not have evenly space spokes in iteration i?2i

A1: Off from optimal number of spokes by factor of 2
A2: Requires memory for the counter, and also adds
algorithmic complexity.

≤

How many spokes?

L
W/2

How many spokes?

L
W/2

θ = sin−1 W
2L

How many spokes?

L
W/2

θ = sin−1 W
2L

Let be arc length
on unit circle

α

How many spokes?

L
W/2

θ = sin−1 W
2L

α =
1
π

sin−1 W
2L

Power Series: , forsin−1 x ≥ x
|x | ≤ 1

Let be arc length
on unit circle

α

How many spokes?

L
W/2

θ = sin−1 W
2L

α =
1
π

sin−1 W
2L

Power Series: , forsin−1 x ≥ x
|x | ≤ 1

So by [Swierczkowski, ’58], need O(L/W) spokes

Thus, α ≥
W

2πL

Let be arc length
on unit circle

α

How many spokes?

L
W/2

θ = sin−1 W
2L

α =
1
π

sin−1 W
2L

Power Series: , forsin−1 x ≥ x
|x | ≤ 1

So by [Swierczkowski, ’58], need O(L/W) spokes

Thus, α ≥
W

2πL

Let be arc length
on unit circle

α

 search time!
If know in advance
O(L2/W)

L

How to handle unknown L?

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

How to handle unknown L?

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

How to handle unknown L?

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

How to handle unknown L?

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

How to handle unknown L?

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

How to handle unknown L?

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

1 2 4 8 16

1

2

4

8

16

Spoke Length

sp
ok

es

Stream Problem
1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

Cell (x,y) costs x ⋅ y

1 2 4 8 16
1
2
4
8
16

Stream Problem
1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

Cell (x,y) costs x ⋅ y

1 2 4 8 16
1
2
4
8
16

Stream Problem
1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

Cell (x,y) costs x ⋅ y

1 2 4 8 16
1
2
4
8
16

Stream Problem
1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

Cell (x,y) costs x ⋅ y

1 2 4 8 16
1
2
4
8
16

Stream Problem
1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

Cell (x,y) costs x ⋅ y

1 2 4 8 16
1
2
4
8
16

Stream Problem
1) Target hidden in a cell

2) Algorithm chooses a stream of cells

3) Game ends when algorithm finds target

Total cost is sum of costs of cells searched

Cell (x,y) costs x ⋅ y

1 2 4 8 16
1
2
4
8
16

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

Cost for epoch i: 2i ⋅ i

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

Cost for epoch i: 2i ⋅ i

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

Cost for epoch i: 2i ⋅ i

Total cost dominated by last epoch:

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

Cost for epoch i: 2i ⋅ i

Total cost dominated by last epoch:

O (L2

W
log

L2

W) = O (L2

W
log L)

GoldenFA 1 2 4 8 16
1
2
4
8
16

For epoch i = 1 to ,
 For each ,

Make spokes of length ,
rotated by

∞
1 ≤ x ≤ i

2i−x 2x

ϕ
Number of epochs before reaching distance L:
O(log L)

Number of epochs before the spokes are
sufficiently close: O(log (L/W))

Cost for epoch i: 2i ⋅ i

Total cost dominated by last epoch:

O (L2

W
log

L2

W) = O (L2

W
log L)

Multiple Searchers?

Multiple Searchers?

Random Initial Orientation!

 AgentsN
Each agent chooses a random initial heading
 In epoch i = 1 to ,
 For each ,
 Make spokes of length , rotated by

∞
1 ≤ x ≤ i

2i−x 2x ϕ
N = 3

 AgentsN
Each agent chooses a random initial heading
 In epoch i = 1 to ,
 For each ,
 Make spokes of length , rotated by

∞
1 ≤ x ≤ i

2i−x 2x ϕ
N = 3

 AgentsN
Each agent chooses a random initial heading
 In epoch i = 1 to ,
 For each ,
 Make spokes of length , rotated by

∞
1 ≤ x ≤ i

2i−x 2x ϕ
N = 3

 AgentsN
Each agent chooses a random initial heading
 In epoch i = 1 to ,
 For each ,
 Make spokes of length , rotated by

∞
1 ≤ x ≤ i

2i−x 2x ϕ
N = 3

 faultst < N
Expected search time:

 O (L +
L2(t + 1)

NW) log L

 Agents; faultsN t < N

 Agents; faultsN t < N
Expected search time:

 O (L +
L2(t + 1)

NW) log L

 Agents; faultsN t < N
Expected search time:

 O (L +
L2(t + 1)

NW) log L

Lower bound on expected search time for “spoke-based”:

 Ω L + (L2(t + 1)
NW) log L

“Spoke-based”: All search via line segments from nest

 Agents; faultsN t < N
Expected search time:

 O (L +
L2(t + 1)

NW) log L

Lower bound on expected search time for “spoke-based”:

 Ω L + (L2(t + 1)
NW) log L

“Spoke-based”: All search via line segments from nest

Compute expected #
agents finding target in
each epoch

 Agents; faultsN t < N
Expected search time:

 O (L +
L2(t + 1)

NW) log L

Lower bound on expected search time for “spoke-based”:

 Ω L + (L2(t + 1)
NW) log L

“Spoke-based”: All search via line segments from nest

Compute expected #
agents finding target in
each epoch
Use this expectation to
bound probability
agents find target

≤ t

 Agents; faultsN t < N
Expected search time:

 O (L +
L2(t + 1)

NW) log L

Yao’s Lemma
on Stream Problem

Lower bound on expected search time for “spoke-based”:

 Ω L + (L2(t + 1)
NW) log L

“Spoke-based”: All search via line segments from nest

Compute expected #
agents finding target in
each epoch
Use this expectation to
bound probability
agents find target

≤ t

Experiments

F&K Advice

For stage j = 1 to
For phase i = 1 to j
 Go to a random point at distance

Spiral search for time
Return to nest

∞

≤ 2i

22i+2/N

Each agent does the following:

F&K Advice

For stage j = 1 to
For phase i = 1 to j
 Go to a random point at distance

Spiral search for time
Return to nest

∞

≤ 2i

22i+2/N

 bits of advice to know log N N
 bits of advice to know 2-approximation to log log N N

Each agent does the following:

F&K NoAdvice (fix)ϵ > 0

For epoch = 0 to
For stage i = 0 to

For phase j = 0 to i

 Go to a random point at distance

Spiral search for time

Return to nest

ℓ ∞
ℓ

≤
2i+j

⌈log1+ϵ 2 j⌉
22i+2

⌈log1+ϵ 2 j⌉

Each agent does the following

Algorithms Tested ANTS on a Plane 3

Algorithm Advice (bits) Robustness Runtime

F&K (advice) O(log logN) Not Robust O
!
L+ L2

N

"
for D = Θ(1)

F&K (no advice) 0 Not Robust O
!!

L+ L2

N

"
log1+ε N

"
for fixed

ε > 0 and D = Θ(1)

GoldenFA 0 t < N O
!!

L+ L2(t+1)
ND

"
logL

"

Table 1. A comparison of GoldenFA and the algorithms by Feinerman and Ko-
rman [10] (abbreviated as F&K). While the latter are not provably robust against
adversarial crash failures, GoldenFA can efficiently handle all but one searchers to
fail, even when these failures are scheduled by an adaptive adversary.

Our algorithm makes use of the Golden Ratio, both to ensure robustness and
to ensure good coverage during the search. To the best of our knowledge, our
algorithm is the first for the ANTS problem that makes use of this value.

1.2 Novelty and Technical Challenges

Our upper bound makes critical use of the Golden Ratio, and the difficultly to
approximate it rationally. In particular, we can write any number as a (possibly
infinite) continued fraction [18] of the form x1 +

1
x2+

1
x3+...

, where the xi values

are all integers for i ≥ 1. The degree to which the original number is well-
approximated by a finite continued fraction depends on how large the xi values
are. For example, if x2 is large, then the absolute difference between x1 and
the original number is small; if x3 is large, then the absolute difference between
x1 + 1/x2 and the original number is small, and so forth.

When xi = 1 for all i ≥ 1, we obtain an irrational number that is most
difficult to approximate. To find this most difficult to approximate irrational
number, we set y = 1 + 1

y , and solve the resulting quadratic equation to obtain

a solution y = 1+
√
5

2 , which is the celebrated Golden Ratio φ.

Using φ to spread-out spokes. In our algorithm, searchers proceed from the
nest in line segments that we call spokes. Each new spoke is oriented at arc
length φ, along the unit circle, from the previous one. The fact that φ is difficult
to approximate with a rational number has useful implications in ensuring the
angles between spokes are “well-spread”. For example, if we start at the point 0
on a unit circle, and iteratively add points by moving clockwise by arc distance
φ, then we will end up with near uniform distance between points (See Lemma 3
and [20, 29]). In particular, if x spokes are added this way, then the maximum
arc length on a unit circle between neighboring spokes is O (1/x) by the Three
Gap Theorem (see Lemma 3). This allows us to locate the treasure efficiently,
when D is unknown. Interestingly, this has connections to how plants add leaves
as they grow. In particular, if the next leaf is added by moving arc length φ

W = Θ(1)

W = Θ(1)

NW

Algorithms Tested ANTS on a Plane 3

Algorithm Advice (bits) Robustness Runtime

F&K (advice) O(log logN) Not Robust O
!
L+ L2

N

"
for D = Θ(1)

F&K (no advice) 0 Not Robust O
!!

L+ L2

N

"
log1+ε N

"
for fixed

ε > 0 and D = Θ(1)

GoldenFA 0 t < N O
!!

L+ L2(t+1)
ND

"
logL

"

Table 1. A comparison of GoldenFA and the algorithms by Feinerman and Ko-
rman [10] (abbreviated as F&K). While the latter are not provably robust against
adversarial crash failures, GoldenFA can efficiently handle all but one searchers to
fail, even when these failures are scheduled by an adaptive adversary.

Our algorithm makes use of the Golden Ratio, both to ensure robustness and
to ensure good coverage during the search. To the best of our knowledge, our
algorithm is the first for the ANTS problem that makes use of this value.

1.2 Novelty and Technical Challenges

Our upper bound makes critical use of the Golden Ratio, and the difficultly to
approximate it rationally. In particular, we can write any number as a (possibly
infinite) continued fraction [18] of the form x1 +

1
x2+

1
x3+...

, where the xi values

are all integers for i ≥ 1. The degree to which the original number is well-
approximated by a finite continued fraction depends on how large the xi values
are. For example, if x2 is large, then the absolute difference between x1 and
the original number is small; if x3 is large, then the absolute difference between
x1 + 1/x2 and the original number is small, and so forth.

When xi = 1 for all i ≥ 1, we obtain an irrational number that is most
difficult to approximate. To find this most difficult to approximate irrational
number, we set y = 1 + 1

y , and solve the resulting quadratic equation to obtain

a solution y = 1+
√
5

2 , which is the celebrated Golden Ratio φ.

Using φ to spread-out spokes. In our algorithm, searchers proceed from the
nest in line segments that we call spokes. Each new spoke is oriented at arc
length φ, along the unit circle, from the previous one. The fact that φ is difficult
to approximate with a rational number has useful implications in ensuring the
angles between spokes are “well-spread”. For example, if we start at the point 0
on a unit circle, and iteratively add points by moving clockwise by arc distance
φ, then we will end up with near uniform distance between points (See Lemma 3
and [20, 29]). In particular, if x spokes are added this way, then the maximum
arc length on a unit circle between neighboring spokes is O (1/x) by the Three
Gap Theorem (see Lemma 3). This allows us to locate the treasure efficiently,
when D is unknown. Interestingly, this has connections to how plants add leaves
as they grow. In particular, if the next leaf is added by moving arc length φ

W = Θ(1)

W = Θ(1)

NW

GoldenFA-Heuristic:
In epoch , make spokes of length i ⌈c(1 + α)⌉ (1 + α)i

c ← 1.9; α ← 7
F&K-NoAdvice:

ϵ ← .01

Varying W; Varying N
ANTS on a Plane 13

(1) N = 1, L = 500

(2) L = 500, D = 4

(3) L = 500, D = 4, N = 100. Timeout = 108 time steps

1

Fig. 3. Search time versus D/L; L = 500,
N = 1, and D is varied.

(1) N = 1, L = 500

(2) L = 500, D = 4

(3) L = 500, D = 4, N = 100. Timeout = 108 time steps

1

Fig. 4. Search time versus N ; L = 500
and D = 4.

a searcher to travel a distance of 1. All algorithms were implemented in Python
3.6, and all experiments were run on a Macbook Pro with 2.6 GHz Intel Core i7
processor and 16GB RAM.

7.2 Results

Our results show how search time changes as we vary three different values. In
particular, we include three plots giving results of experiments based on varying
(1) the ratio D/L, where D is the treasure diameter and L the distance from
the nest to the center of the treasure; (2) the number of searchers N ; (3) and
the fraction of faults t/N . In each plot, search time is the independent variable,
and it is plotted on a logarithmic scale.

Search Time versus D/L. Our first experiment tracks search time as the
ratio D/L increases. The value of L is fixed at 500, and D increases from 1 to
500.

Figure 3 shows how search time decreases as D/L increases from .1 to 1. As
the plot shows, search time decreases for all algorithms. GoldenFA-Heuristic
consistently has the best search time across values tested, with performance that
is always between 1 and 2 orders of magnitude better than all other algorithms,
when D/L is greater than about .15. Next, in performance, are GoldenFA
and F&K-NoAdvice. Initially F&K-NoAdvice has worse search time than
GoldenFA, but as D/L increases, they both trend towards roughly similar
performance. Last, in the plot is F&K-Advice, which does not decrease nearly
as much as the other algorithms as D/L increases.

It is surprising that F&K-NoAdvice performs better than F&K-Advice
as D/L increases. We conjecture this holds because (1) F&K-NoAdvice has an
algorithmic parameter (*), while F&K-Advice has none; and (2) we optimized
this parameter based on empirical feedback.

L = 500; N = 1 L = 500; W = 4

(W/L)Ratio of Width to Distance (W/L) Number of Agents (N)

Faults

L = 500; D = 4; N = 100

14 Abhinav Aggarwal and Jared Saia

(1) N = 1, L = 500

(2) L = 500, D = 4

(3) L = 500, D = 4, N = 100. Timeout = 108 time steps

1

Fig. 5. Search time versus the fraction of fail-
ures (t/N); L = 500, D = 4 and N = 100.

Search Time versus N . Our
second experiment tracks search
time versus the number of searchers,
N . Figure 4 shows the outcome
when L = 500, D = 4, and N
varies from 1 to 200.

In this plot, search time of
all algorithms decreases with N .
GoldenFA-Heuristic performs
about 2 orders of magnitude bet-
ter than any other algorithm,
for all values of N tested. Next
comes F&K-NoAdvice, which
performs up to a factor of about
5 better than the remaining al-
gorithms. Finally, GoldenFA and F&K-Advice are last, with performance
roughly equal for large N .

Search Time versus t/N . Our last experiment tracks search time as the ratio
t/N increases, where t is the number of crash failures and N is the number of
searchers. In these experiments, we hold the following values fixed: L = 500,
D = 4, N = 100; and we vary t from 0 to 99. For each value of t, a random
subset of t searchers are removed after the first 100 time steps of the algorithm.
To prevent any algorithm from running forever, a hard timeout was set at 108

time steps.
The results are given in Figure 5. Again GoldenFA-Heuristic has fastest

search time over the entire range of values tested, with performance a bit less
than an order of magnitude better than then next fastest algorithm, F&K-
NoAdvice. F&K-NoAdvice has search times which increase slowly as t/N
increases. GoldenFA comes next with a search time that increases more rapidly
with t/N . Finally, F&K-Advice comes last, with search time increasing rapidly
with t/N until it times out when t/N is roughly about .20. Our theoretical
analysis suggests that search time forGoldenFA would increase roughly linearly
with t/N . Results from this experiment suggest this is the case with slope of
approximately 10 for search time as a function of t/N .

8 Conclusion and Future Work

We have described an algorithm, GoldenFA that solves the ANTS problem
by finding a treasure that is a convex shape with any diameter D, even in the
presence of t < N crash failures. We have proven that our algorithm takes

O
!!

L+ L2(t+1)
ND

"
logL

"
expected search time, where L is the distance from

the nest to the treasure and N is the number of searchers. Additionally, we
have proven a near-matching lower bound on search time for a class of “spoke-
algorithms”, which search only via line segments emanating from the nest. Our

Conclusion

!%$@#%^!@$%

%$@#!@$%!

%$@#!@$%!

ANTS

Results Recap
L = target distance; W = target width;
N = # agents; t = # faults

Results Recap
L = target distance; W = target width;
N = # agents; t = # faults

Expected search time:

 O (L +
L2(t + 1)

NW) log L

Results Recap
L = target distance; W = target width;
N = # agents; t = # faults

Expected search time:

 O (L +
L2(t + 1)

NW) log L

Lower bound on expected search time for “spoke-based”:

 Ω L + (L2(t + 1)
NW) log L

Future Work

Get the %$@#%! ANTS off the
%$@#%! plane

Get the %$@#%! ANTS off the
%$@#%! plane

Theoretical Problem: Search in ℝ3

Get the %$@#%! ANTS off the
%$@#%! plane

Theoretical Problem: Search in ℝ3

Practical Problem: Many searches have properties
that simplify search along third dimension

Target Density

Target Density

Assume: Agent can sense local target density

Target Density

Assume: Agent can sense local target density

General Problem: Order statistics

Target Density

Assume: Agent can sense local target density

General Problem: Order statistics

Problem 1: Efficiently estimate target mass

Target Density

Assume: Agent can sense local target density

General Problem: Order statistics

Problem 1: Efficiently estimate target mass

Problem 2: Find max target density

Target Density

Assume: Agent can sense local target density

General Problem: Order statistics

Problem 1: Efficiently estimate target mass

Problem 2: Find max target density

Gradient Descent

Questions?

