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Resource Burning:  
Verifiable consumption of a resource



 Permissionless Systems
Blockchains 

Peer-to-peer 

 Resource Burning 
Proof of work 

CAPTCHAs

↑

↑
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Game Theory: Money Burning 

Purpose is to signal: 

Type of a player 

Commitment to an action
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Signaling Type: College Game

“Great!  Seven years of college down the toilet.”
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Smart Daft

Attend -1 -3

College?

Hire?
Smart Daft

Hire 2 -2

Student: Payoff of 2 if hired; else 0

Nash equilibrium:  (1) Only smart students attend college; (2) 
Employer hires only college attendees.



Positions
1.Resource burning is fundamental 

2.Resource burning must be optimized 

3.Resource burned shouldn’t matter 

4.Need Permissionless  Permissioned reduction 

5.Need domain specific and general results

→



Positions
1.Resource burning is fundamental 

2.Resource burning must be optimized 

3.Resource burned shouldn’t matter 

4.Need Permissionless  Permissioned reduction 

5.Need domain specific and general results

→



Resource burning must 
be optimized



Resource burning must 
be optimized

Bitcoin uses 58 TWh/year;  Bangladesh≈



Resource burning must 
be optimized

Bitcoin uses 58 TWh/year;  Bangladesh≈

Humans spend 150,000 hours/day solving 
CAPTCHAs



Resource burning must 
be optimized

Bitcoin uses 58 TWh/year;  Bangladesh≈

Humans spend 150,000 hours/day solving 
CAPTCHAs

Theoretical results suggest significant 
improvements possible



Can optimize RB like any other 
resource

 = Adversary’s resource burning (RB) rate 

 = Algorithm’s resource burning rate

T

f(T)



 RB =  Security↓ ↑

Reduced Resource Burning cost can 
improve security 

Can analyze using game theory 

Zero-sum game between adversary and 
algorithm



Zero-sum Game

  = cost to attack 

 = cost to defend 

D = Cost of defeat

T

f(T)
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Defend

Defend¬
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−D 0

To solve, set 
  p(T − f(T)) − (1 − p)D = p(−f(0))

  p =
D

T − f(T) + f(0) + D



 = cost to attack;  = cost to defend; 

 = cost of defeat; p = probability to defend

T f(T)

D

Attack Attack¬

Defend

Defend¬

T − f(T ) −f(0)

−D 0

To solve, set 
  p(T − f(T)) − (1 − p)D = p(−f(0))

  p =
D

T − f(T) + f(0) + D

  
−f(0)D

T − f(T) + f(0) + D

Payoff:
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Domain
Primary
Resource
Consumed

Mechanism
Enabled

Functionality
Conjectured

Cost

Blockchains CPU CPU Puzzles Distributed Ledger O(
p
TJG + JG)

DHTs CPU CPU Puzzles
Decentralized

storage and search
Õ(

p
TJG + JG)

DDoS
Attacks

Bandwidth /
CPU

Messages /
CPU Puzzles

Fair allocation of
server resources

No Conjecture

Review
Spam

Human
Time

CAPTCHAS
Trusted consumer
recommendations

Õ(T 2/3 + PG)

Table 1: Summary of the domains surveyed, along with the corresponding re-
sources, and core functionality that is secured by resource burning. We also make
conjectures on the algorithmic spend rate. Here, T is the adversary’s spend rate;
JG is the join rate for good IDs; and PG is the posting rate of good IDs. We
elaborate on these notions in Section 2.5. The Õ notation omits polylogarithmic
factors.

content. This malicious behavior is referred to as the Sybil attack , originally
described by Douceur [41].

Such attacks are possible because users are not “ID-bounded” in a permis-
sionless system; that is, there is no cost, and therefore no limit, to the number
of IDs that the attacker (adversary) can generate. However, the adversary is
often “resource-bounded”, even if this bound is unknown. In particular, it may
be constrained, for example, in the number of machines it controls, or total chan-
nel capacity to which it has access. Resource burning leverages this constraint,
forcing IDs to prove their distinct provenance by producing work that no single
attacker can perform.

Paper Overview. Resource burning is a critical tool for defending permission-
less systems. In support of this claim, we survey an assortment of topics: dis-
tributed ledgers, application-layer distributed denial-of-service (DDoS) attacks,
review spam, and secure distributed hash tables (DHTs). Using these examples,
we highlight how results in these di↵erent areas have converged upon resource
burning as a critical ingredient for achieving security; this is summarized in
Table 1.

As prelude to this survey, we predict how resource-burning may evolve, and
how systems may adapt to this technique. These predictions are distilled in four
position statements below.

Position 1 Resource burning is a fundamental tool for de-
fending permissionless systems.

 = attacker’s RB rate 
 = good ID join rate 
 = good ID posting rate

T
JG
PG
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 = cost to attack;  = cost to defend; 

 = cost of defeat; p = probability to defend

T f(T)

D

  
−Df(0)

T + f(0) − f(T) + D

Payoff:



 = cost to attack;  = cost to defend; 

 = cost of defeat; p = probability to defend

T f(T)

D

  
−Df(0)

T + f(0) − f(T) + D

Payoff:

  O(−f(0))  f(T) = f(0) + o(T) →

  f(T) = f(0) + Tf(0) →

Game Payoff

  O ( −f(0)D
f(0) + D )

Algorithm Cost
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Resource Burned Shouldn’t Matter

Resource burning must be 

Verifiable 

Non-amortizable 

Solving  challenges of difficulty  requires
 resource consumption

x d
≈ xd



RB Common Examples
Proof of work via SHA hashing 

Proof of space & space-time 

CAPTCHAs 

Radio resource-testing (wireless networks)
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RB can also do useful work
[Ball et al. ’18]: “Proof of Useful Work” 

[Von Anh et al. ’08]: RECAPTCHA

For Blockchains: 

PoX: Matrix Multiplication  

PrimeCoin: Finding primes 

Permacoin: Maintaining blockchain 

Piecework: Spam deterrence
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ID’s stake must be known



Not RB: Proof of Stake
Used in: Algorand, Ouroboros, Ethereum 

Proof of stake is a measurement 

ID’s stake must be known

I think proof of stake is fundamentally vulnerable…
In my opinion, it’s giving power to people who 
have lots of money  - Dahlia Malkhi
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Permissionless  Permissioned →

Five decades of research on designing 
secure permissioned systems

Permissioned = bounded bad fraction

Can leverage permissioned results if we 
bound fraction of bad IDs in permissionless



Bounding fraction of 
bad IDs 
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n good, synchronized IDs; n unknown 

Byzantine adversary has  fraction of the RB 
resource for “sufficiently small”  

Goal: All IDs have same set S that contains 

All good IDs 

At most  fraction of bad IDs

κ
κ
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GenID Problem
n good, synchronized IDs; n unknown 

Byzantine adversary has  fraction of the RB 
resource for “sufficiently small”  

Goal: All IDs have same set S that contains 

All good IDs 

At most  fraction of bad IDs

κ
κ

O(κ)
Adversary sees all messages, can inject 
any message into network, etc.
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GenID Results
n good IDs; Adversary controls  fraction of RBκ

[Aspnes et al. ’05] Defined problem; but 
inconsistent views of bad

[Andrychowicz et al. ’15] Requires  roundsΘ(n)

[Hou et al. ’18] Requires  roundsΘ ( ln n
ln ln n )

All rely on SHA-style PoW 
Open problem: Adapt these for arbitrary RB



What about Churn?



DefID

Goal: IDs always have same set S that contains 

All good IDs 

At most  fraction of bad IDsO(κ)



Our Result
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DefID [Gupta et al. ’20]
Theorem: Let T be adversarial spend rate 
and JG be good join rate. Then can solve 
DefID with 

 algorithm spend rate                   O(JG + JGT)

These results assume  churn for ;  
Still allows for exponential change in system size.

α, β α, β = Θ(1)



Assumptions

There is  churn for,  

Adversary can’t target specific good IDs 

System size is always “sufficiently large”

α, β α, β = Θ(1)



Epoch

Define epoch to be time till set of good IDs ( )  
changes by constant fraction, e.g. 

 

For some  and 

Gt

|Gt − Gt′ 
| ≥ 3/4 |Gt |

t t′ > t



 Churnα, β



 Churnα, β

Good join rate changes by at most  between epochs:α
ρj−1

α
≤ ρj ≤ αρj−1

 is good ID join rate in epoch jρj



 Churnα, β

Good join rate changes by at most  between epochs:α
ρj−1

α
≤ ρj ≤ αρj−1

 is good ID join rate in epoch jρj

Let  be # good IDs joining in  seconds in epoch j.  Then 
 differs by at most  from expected value: 
nℓ ℓ

nℓ β

⌊
ℓρj

β ⌋ ≤ nℓ ≤ ⌈βℓρj⌉
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Idea behind result

“Small” Committee runs 
algorithm 

Maintenance/Coordination of 
Committee: in paper
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Naive Result
Both Entrance and Purge puzzles cost 1 

Algorithm spend rate is                         

T is adversarial spend rate;  is good 
join rate 

JG

O(T + JG)

Can we do better?



Best Entrance Cost

Fix an iteration 

T = adversarial spending rate 

J = join rate for all IDs 

JG = join rate for good IDs  

    = entrance costξ
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Solving for   (Entrance Cost)ξ
T = ξJAssume:

Good spend rate for purges: J

ξ =
J

JG

To Balance:

JG + JGTSo good spend rate: 

Good spend rate for entrance: ξJG

J = J2 = JGξJ = JGT



Our Algorithm: ERGO

All IDs solve 
Purge Puzzle

New IDs solve 
Entrance Puzzle

Purge Puzzles: Require 1 unit of computation

Entrance Puzzles: Require              units of computation
J

J̃G



How to estimate JG?
Problem: Don’t know in advance which 
IDs are good or bad 

We developed an algorithm that 
maintains a constant factor estimate of  
assuming -churn for 

JG
α, β α, β = Θ(1)



How to estimate JG?
Problem: Don’t know in advance which 
IDs are good or bad 

We developed an algorithm that 
maintains a constant factor estimate of  
assuming -churn for 

JG
α, β α, β = Θ(1)

This algorithm for estimating  is key technical 
challenge of our work

JG



Empirical Results
Four data sets: Bitcoin, Ethereum, Gnutella, 
Bittorrent 

Tested ERGO vs 

CCom: ERGO-light: entrance cost is 1 

SybilControl: Puzzle every 5 seconds 

REMP: Puzzle every x seconds, where x is 
based on upper bound of adversary power
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Domain
Primary
Resource
Consumed

Mechanism
Enabled

Functionality
Conjectured

Cost

Blockchains CPU CPU Puzzles Distributed Ledger O(
p
TJG + JG)

DHTs CPU CPU Puzzles
Decentralized

storage and search
Õ(

p
TJG + JG)

DDoS
Attacks

Bandwidth /
CPU
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Fair allocation of
server resources

No Conjecture

Review
Spam

Human
Time
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Õ(T 2/3 + PG)

Table 1: Summary of the domains surveyed, along with the corresponding re-
sources, and core functionality that is secured by resource burning. We also make
conjectures on the algorithmic spend rate. Here, T is the adversary’s spend rate;
JG is the join rate for good IDs; and PG is the posting rate of good IDs. We
elaborate on these notions in Section 2.5. The Õ notation omits polylogarithmic
factors.

content. This malicious behavior is referred to as the Sybil attack , originally
described by Douceur [41].

Such attacks are possible because users are not “ID-bounded” in a permis-
sionless system; that is, there is no cost, and therefore no limit, to the number
of IDs that the attacker (adversary) can generate. However, the adversary is
often “resource-bounded”, even if this bound is unknown. In particular, it may
be constrained, for example, in the number of machines it controls, or total chan-
nel capacity to which it has access. Resource burning leverages this constraint,
forcing IDs to prove their distinct provenance by producing work that no single
attacker can perform.

Paper Overview. Resource burning is a critical tool for defending permission-
less systems. In support of this claim, we survey an assortment of topics: dis-
tributed ledgers, application-layer distributed denial-of-service (DDoS) attacks,
review spam, and secure distributed hash tables (DHTs). Using these examples,
we highlight how results in these di↵erent areas have converged upon resource
burning as a critical ingredient for achieving security; this is summarized in
Table 1.

As prelude to this survey, we predict how resource-burning may evolve, and
how systems may adapt to this technique. These predictions are distilled in four
position statements below.

Position 1 Resource burning is a fundamental tool for de-
fending permissionless systems.

 = attacker’s RB rate 
 = good ID join rate 
 = good ID posting rate

T
JG
PG
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Spam has social cost of 1;  is good posting rate 
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Spam and DDoS
Review Spam:

Weak Learner detects spam with accuracy   

Spam has social cost of 1;  is good posting rate 

Recent Conjecture: Can achieve cost of 

> 1/2

PG

O(T2/3 + PG)
Application-layer DDoS Attack:

Goal: Good IDs obtain a  fraction of service  

Cost per service request set by server  

Weak Conjecture: Can achieve cost of 

1 − O(κ)

o(T)



Conclusion



Conclusion
1.Resource burning is fundamental 

2.Resource burning must be optimized 

3.Resource burned shouldn’t matter 

4.Need Permissionless  Permissioned reduction 

5.Need domain specific and general results

→



Future Work
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Burn, baby burn, 
Resource Inferno!

Other application domains? (besides 
Blockchains, DDoS, Spam, DHTs)

Lower bounds for resource burning

Better integration with game theory

RB cost  Payoff for security game⟷

Rational agents



Questions?



Backup Slides



Communication



Communication

Diffuse: 

Sends a message to all IDs 

Communication time is negligible 
compared RB time  

Messages signed with digital signatures



PoW



PoW

Random Oracle Assumption: We have a 
function, h, and h(x) is uniformly random on 
(0, 1) the first time bit string x is input to h 

Computation Cost: Computational cost is 
number of times h is called  



Committee

Logarithmic size 

Use state-machine replication to get 
committee to act in concert 

After every purge, old committee elects a 
new committee from set of current IDs, using 
Byzantine-resilient coin-flipping



RB can also do useful work
[Ball et al. ’18]: “Proof of Useful Work” 

SETH  Hardness of challenge 

Can use RB challenges for conjectured hard 
problems 

[Von Anh et al. ’08]: RECAPTCHA 

CAPTCHAs used to decipher scanned words 

Digitized New York Times archive

→
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Duration: Length of time for set of all IDs 
to change by 2/3 factor 

J̃G =
number of IDs at start of last duration

length of last duration

bad bad

good & new
2/3 new

duration

J̃G = Θ(JG)

J̃G : Estimate of JG


