
Resource Burning for
Permissionless Systems

Jared Saia

Joint with Diksha Gupta and Maxwell Young

Resource Burning for
Permissionless Systems

Jared Saia

Joint with Diksha Gupta and Maxwell Young

Permissionless System:
Participants are virtual IDs

Join and depart without scrutiny

Permissionless System:
Participants are virtual IDs

Join and depart without scrutiny

Resource Burning:
Verifiable consumption of a resource

 Permissionless Systems
Blockchains

Peer-to-peer

 Resource Burning
Proof of work

CAPTCHAs

↑

↑

Positions

Positions
1.Resource burning is fundamental

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction→

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction→

5.Need domain specific and general results

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Resource burning is fundamental
Cybersecurity:

 [Dwork and Naor ’92] combat spam

Blockchains, DDoS attacks, review spam, DHTs

Resource burning is fundamental

Biology

Economics/Game theory

Cybersecurity:

 [Dwork and Naor ’92] combat spam

Blockchains, DDoS attacks, review spam, DHTs

Biology: Costly Signaling
Sexual selection: peacock tail, antlers

Predator/Prey signaling: stotting

Biology: Costly Signaling
Sexual selection: peacock tail, antlers

Predator/Prey signaling: stotting

Game Theory: Money Burning

Purpose is to signal:

Type of a player

Commitment to an action

Signaling Type: College Game

Signaling Type: College Game

“Great! Seven years of college down the toilet.”

Smart Daft

Attend -1 -3

College?

Smart Daft

Attend -1 -3

College?

Hire?
Smart Daft

Hire 2 -2

Student: Payoff of 2 if hired; else 0

Smart Daft

Attend -1 -3

College?

Hire?
Smart Daft

Hire 2 -2

Student: Payoff of 2 if hired; else 0

Nash equilibrium: (1) Only smart students attend college; (2)
Employer hires only college attendees.

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Resource burning must
be optimized

Resource burning must
be optimized

Bitcoin uses 58 TWh/year; Bangladesh≈

Resource burning must
be optimized

Bitcoin uses 58 TWh/year; Bangladesh≈

Humans spend 150,000 hours/day solving
CAPTCHAs

Resource burning must
be optimized

Bitcoin uses 58 TWh/year; Bangladesh≈

Humans spend 150,000 hours/day solving
CAPTCHAs

Theoretical results suggest significant
improvements possible

Can optimize RB like any other
resource

 = Adversary’s resource burning (RB) rate

 = Algorithm’s resource burning rate

T

f(T)

 RB = Security↓ ↑

Reduced Resource Burning cost can
improve security

Can analyze using game theory

Zero-sum game between adversary and
algorithm

Zero-sum Game

 = cost to attack

 = cost to defend

D = Cost of defeat

T

f(T)
Attack Attack¬

Defend

Defend¬

T − f(T) −f(0)

−D 0

 = cost to attack; = cost to defend;

 = cost of defeat; p = probability to defend

T f(T)

D

Attack Attack¬

Defend

Defend¬

T − f(T) −f(0)

−D 0

To solve, set
 p(T − f(T)) − (1 − p)D = p(−f(0))

 = cost to attack; = cost to defend;

 = cost of defeat; p = probability to defend

T f(T)

D

Attack Attack¬

Defend

Defend¬

T − f(T) −f(0)

−D 0

To solve, set
 p(T − f(T)) − (1 − p)D = p(−f(0))

 p =
D

T − f(T) + f(0) + D

 = cost to attack; = cost to defend;

 = cost of defeat; p = probability to defend

T f(T)

D

Attack Attack¬

Defend

Defend¬

T − f(T) −f(0)

−D 0

To solve, set
 p(T − f(T)) − (1 − p)D = p(−f(0))

 p =
D

T − f(T) + f(0) + D

−f(0)D

T − f(T) + f(0) + D

Payoff:

2 D. Gupta et al.

Domain
Primary
Resource
Consumed

Mechanism
Enabled

Functionality
Conjectured

Cost

Blockchains CPU CPU Puzzles Distributed Ledger O(
p
TJG + JG)

DHTs CPU CPU Puzzles
Decentralized

storage and search
Õ(

p
TJG + JG)

DDoS
Attacks

Bandwidth /
CPU

Messages /
CPU Puzzles

Fair allocation of
server resources

No Conjecture

Review
Spam

Human
Time

CAPTCHAS
Trusted consumer
recommendations

Õ(T 2/3 + PG)

Table 1: Summary of the domains surveyed, along with the corresponding re-
sources, and core functionality that is secured by resource burning. We also make
conjectures on the algorithmic spend rate. Here, T is the adversary’s spend rate;
JG is the join rate for good IDs; and PG is the posting rate of good IDs. We
elaborate on these notions in Section 2.5. The Õ notation omits polylogarithmic
factors.

content. This malicious behavior is referred to as the Sybil attack , originally
described by Douceur [41].

Such attacks are possible because users are not “ID-bounded” in a permis-
sionless system; that is, there is no cost, and therefore no limit, to the number
of IDs that the attacker (adversary) can generate. However, the adversary is
often “resource-bounded”, even if this bound is unknown. In particular, it may
be constrained, for example, in the number of machines it controls, or total chan-
nel capacity to which it has access. Resource burning leverages this constraint,
forcing IDs to prove their distinct provenance by producing work that no single
attacker can perform.

Paper Overview. Resource burning is a critical tool for defending permission-
less systems. In support of this claim, we survey an assortment of topics: dis-
tributed ledgers, application-layer distributed denial-of-service (DDoS) attacks,
review spam, and secure distributed hash tables (DHTs). Using these examples,
we highlight how results in these di↵erent areas have converged upon resource
burning as a critical ingredient for achieving security; this is summarized in
Table 1.

As prelude to this survey, we predict how resource-burning may evolve, and
how systems may adapt to this technique. These predictions are distilled in four
position statements below.

Position 1 Resource burning is a fundamental tool for de-
fending permissionless systems.

 = attacker’s RB rate
 = good ID join rate
 = good ID posting rate

T
JG
PG

2 D. Gupta et al.

Domain
Primary
Resource
Consumed

Mechanism
Enabled

Functionality
Conjectured

Cost

Blockchains CPU CPU Puzzles Distributed Ledger O(
p
TJG + JG)

DHTs CPU CPU Puzzles
Decentralized

storage and search
Õ(

p
TJG + JG)

DDoS
Attacks

Bandwidth /
CPU

Messages /
CPU Puzzles

Fair allocation of
server resources

No Conjecture

Review
Spam

Human
Time

CAPTCHAS
Trusted consumer
recommendations

Õ(T 2/3 + PG)

Table 1: Summary of the domains surveyed, along with the corresponding re-
sources, and core functionality that is secured by resource burning. We also make
conjectures on the algorithmic spend rate. Here, T is the adversary’s spend rate;
JG is the join rate for good IDs; and PG is the posting rate of good IDs. We
elaborate on these notions in Section 2.5. The Õ notation omits polylogarithmic
factors.

content. This malicious behavior is referred to as the Sybil attack , originally
described by Douceur [41].

Such attacks are possible because users are not “ID-bounded” in a permis-
sionless system; that is, there is no cost, and therefore no limit, to the number
of IDs that the attacker (adversary) can generate. However, the adversary is
often “resource-bounded”, even if this bound is unknown. In particular, it may
be constrained, for example, in the number of machines it controls, or total chan-
nel capacity to which it has access. Resource burning leverages this constraint,
forcing IDs to prove their distinct provenance by producing work that no single
attacker can perform.

Paper Overview. Resource burning is a critical tool for defending permission-
less systems. In support of this claim, we survey an assortment of topics: dis-
tributed ledgers, application-layer distributed denial-of-service (DDoS) attacks,
review spam, and secure distributed hash tables (DHTs). Using these examples,
we highlight how results in these di↵erent areas have converged upon resource
burning as a critical ingredient for achieving security; this is summarized in
Table 1.

As prelude to this survey, we predict how resource-burning may evolve, and
how systems may adapt to this technique. These predictions are distilled in four
position statements below.

Position 1 Resource burning is a fundamental tool for de-
fending permissionless systems.

 = attacker’s RB rate
 = good ID join rate
 = good ID posting rate

T
JG
PG

 = cost to attack; = cost to defend;

 = cost of defeat; p = probability to defend

T f(T)

D

−Df(0)

T + f(0) − f(T) + D

Payoff:

 = cost to attack; = cost to defend;

 = cost of defeat; p = probability to defend

T f(T)

D

−Df(0)

T + f(0) − f(T) + D

Payoff:

 O(−f(0)) f(T) = f(0) + o(T) →

 f(T) = f(0) + Tf(0) →

Game Payoff

 O (−f(0)D
f(0) + D)

Algorithm Cost

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Resource Burned Shouldn’t Matter

Resource Burned Shouldn’t Matter

Resource burning must be

Verifiable

Non-amortizable

Solving challenges of difficulty requires
 resource consumption

x d
≈ xd

RB Common Examples
Proof of work via SHA hashing

Proof of space & space-time

CAPTCHAs

Radio resource-testing (wireless networks)

RB can also do useful work
[Ball et al. ’18]: “Proof of Useful Work”

[Von Anh et al. ’08]: RECAPTCHA

RB can also do useful work
[Ball et al. ’18]: “Proof of Useful Work”

[Von Anh et al. ’08]: RECAPTCHA

For Blockchains:

PoX: Matrix Multiplication

PrimeCoin: Finding primes

Permacoin: Maintaining blockchain

Piecework: Spam deterrence

Not RB: Proof of Stake
Used in: Algorand, Ouroboros, Ethereum

Proof of stake is a measurement

ID’s stake must be known

Not RB: Proof of Stake
Used in: Algorand, Ouroboros, Ethereum

Proof of stake is a measurement

ID’s stake must be known

I think proof of stake is fundamentally vulnerable…
In my opinion, it’s giving power to people who
have lots of money - Dahlia Malkhi

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Permissionless Permissioned →

Permissionless Permissioned →

Five decades of research on designing
secure permissioned systems

Permissionless Permissioned →

Five decades of research on designing
secure permissioned systems

Permissioned = bounded bad fraction

Permissionless Permissioned →

Five decades of research on designing
secure permissioned systems

Permissioned = bounded bad fraction

Can leverage permissioned results if we
bound fraction of bad IDs in permissionless

Bounding fraction of
bad IDs

GenID Problem
n good, synchronized IDs; n unknown

Byzantine adversary has fraction of the RB
resource for “sufficiently small”

Goal: All IDs have same set S that contains

All good IDs

At most fraction of bad IDs

κ
κ

O(κ)

GenID Problem
n good, synchronized IDs; n unknown

Byzantine adversary has fraction of the RB
resource for “sufficiently small”

Goal: All IDs have same set S that contains

All good IDs

At most fraction of bad IDs

κ
κ

O(κ)
Adversary sees all messages, can inject
any message into network, etc.

GenID Results

GenID Results
n good IDs; Adversary controls fraction of RBκ

GenID Results
n good IDs; Adversary controls fraction of RBκ

[Aspnes et al. ’05] Defined problem; but
inconsistent views of bad

GenID Results
n good IDs; Adversary controls fraction of RBκ

[Aspnes et al. ’05] Defined problem; but
inconsistent views of bad

[Andrychowicz et al. ’15] Requires roundsΘ(n)

GenID Results
n good IDs; Adversary controls fraction of RBκ

[Aspnes et al. ’05] Defined problem; but
inconsistent views of bad

[Andrychowicz et al. ’15] Requires roundsΘ(n)

[Hou et al. ’18] Requires roundsΘ (ln n
ln ln n)

GenID Results
n good IDs; Adversary controls fraction of RBκ

[Aspnes et al. ’05] Defined problem; but
inconsistent views of bad

[Andrychowicz et al. ’15] Requires roundsΘ(n)

[Hou et al. ’18] Requires roundsΘ (ln n
ln ln n)

All rely on SHA-style PoW
Open problem: Adapt these for arbitrary RB

What about Churn?

DefID

Goal: IDs always have same set S that contains

All good IDs

At most fraction of bad IDsO(κ)

Our Result

DefID [Gupta et al. ’20]
Theorem: Let T be adversarial spend rate
and JG be good join rate. Then can solve
DefID with

 algorithm spend rate O(JG + JGT)

DefID [Gupta et al. ’20]
Theorem: Let T be adversarial spend rate
and JG be good join rate. Then can solve
DefID with

 algorithm spend rate O(JG + JGT)

These results assume churn for ;
Still allows for exponential change in system size.

α, β α, β = Θ(1)

Assumptions

There is churn for,

Adversary can’t target specific good IDs

System size is always “sufficiently large”

α, β α, β = Θ(1)

Epoch

Define epoch to be time till set of good IDs ()
changes by constant fraction, e.g.

For some and

Gt

|Gt − Gt′
| ≥ 3/4 |Gt |

t t′ > t

 Churnα, β

 Churnα, β

Good join rate changes by at most between epochs:α
ρj−1

α
≤ ρj ≤ αρj−1

 is good ID join rate in epoch jρj

 Churnα, β

Good join rate changes by at most between epochs:α
ρj−1

α
≤ ρj ≤ αρj−1

 is good ID join rate in epoch jρj

Let be # good IDs joining in seconds in epoch j. Then
 differs by at most from expected value:
nℓ ℓ

nℓ β

⌊
ℓρj

β ⌋ ≤ nℓ ≤ ⌈βℓρj⌉

Idea behind result

Idea behind result

“Small” Committee runs
algorithm

Maintenance/Coordination of
Committee: in paper

Naive Algorithm

All IDs solve Purge Puzzle
after constant fraction of churn

New IDs solve
Entrance Puzzle

Purge Puzzle: Cost of 1

Entrance Puzzle: Cost of 1

Naive Algorithm

All IDs solve Purge Puzzle
after constant fraction of churn

New IDs solve
Entrance Puzzle

Purge Puzzle: Cost of 1

Entrance Puzzle: Cost of 1

Naive Result
Both Entrance and Purge puzzles cost 1

Algorithm spend rate is

T is adversarial spend rate; is good
join rate

JG

O(T + JG)

Naive Result
Both Entrance and Purge puzzles cost 1

Algorithm spend rate is

T is adversarial spend rate; is good
join rate

JG

O(T + JG)

Can we do better?

Best Entrance Cost

Fix an iteration

T = adversarial spending rate

J = join rate for all IDs

JG = join rate for good IDs

 = entrance costξ

Solving for (Entrance Cost)ξ
T = ξJAssume:

Solving for (Entrance Cost)ξ
T = ξJAssume:

Good spend rate for entrance: ξJG

Solving for (Entrance Cost)ξ
T = ξJAssume:

Good spend rate for purges: J

Good spend rate for entrance: ξJG

Solving for (Entrance Cost)ξ
T = ξJAssume:

Good spend rate for purges: J

ξ =
J

JG

To Balance:

Good spend rate for entrance: ξJG

Solving for (Entrance Cost)ξ
T = ξJAssume:

Good spend rate for purges: J

ξ =
J

JG

To Balance:

Good spend rate for entrance: ξJG

J = J2 = JGξJ = JGT

Solving for (Entrance Cost)ξ
T = ξJAssume:

Good spend rate for purges: J

ξ =
J

JG

To Balance:

JG + JGTSo good spend rate:

Good spend rate for entrance: ξJG

J = J2 = JGξJ = JGT

Our Algorithm: ERGO

All IDs solve
Purge Puzzle

New IDs solve
Entrance Puzzle

Purge Puzzles: Require 1 unit of computation

Entrance Puzzles: Require units of computation
J

J̃G

How to estimate JG?
Problem: Don’t know in advance which
IDs are good or bad

We developed an algorithm that
maintains a constant factor estimate of
assuming -churn for

JG
α, β α, β = Θ(1)

How to estimate JG?
Problem: Don’t know in advance which
IDs are good or bad

We developed an algorithm that
maintains a constant factor estimate of
assuming -churn for

JG
α, β α, β = Θ(1)

This algorithm for estimating is key technical
challenge of our work

JG

Empirical Results
Four data sets: Bitcoin, Ethereum, Gnutella,
Bittorrent

Tested ERGO vs

CCom: ERGO-light: entrance cost is 1

SybilControl: Puzzle every 5 seconds

REMP: Puzzle every x seconds, where x is
based on upper bound of adversary power

10-3 10-1 101 103 105 107
100

102

104

106

108

1010

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Positions
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

2 D. Gupta et al.

Domain
Primary
Resource
Consumed

Mechanism
Enabled

Functionality
Conjectured

Cost

Blockchains CPU CPU Puzzles Distributed Ledger O(
p
TJG + JG)

DHTs CPU CPU Puzzles
Decentralized

storage and search
Õ(

p
TJG + JG)

DDoS
Attacks

Bandwidth /
CPU

Messages /
CPU Puzzles

Fair allocation of
server resources

No Conjecture

Review
Spam

Human
Time

CAPTCHAS
Trusted consumer
recommendations

Õ(T 2/3 + PG)

Table 1: Summary of the domains surveyed, along with the corresponding re-
sources, and core functionality that is secured by resource burning. We also make
conjectures on the algorithmic spend rate. Here, T is the adversary’s spend rate;
JG is the join rate for good IDs; and PG is the posting rate of good IDs. We
elaborate on these notions in Section 2.5. The Õ notation omits polylogarithmic
factors.

content. This malicious behavior is referred to as the Sybil attack , originally
described by Douceur [41].

Such attacks are possible because users are not “ID-bounded” in a permis-
sionless system; that is, there is no cost, and therefore no limit, to the number
of IDs that the attacker (adversary) can generate. However, the adversary is
often “resource-bounded”, even if this bound is unknown. In particular, it may
be constrained, for example, in the number of machines it controls, or total chan-
nel capacity to which it has access. Resource burning leverages this constraint,
forcing IDs to prove their distinct provenance by producing work that no single
attacker can perform.

Paper Overview. Resource burning is a critical tool for defending permission-
less systems. In support of this claim, we survey an assortment of topics: dis-
tributed ledgers, application-layer distributed denial-of-service (DDoS) attacks,
review spam, and secure distributed hash tables (DHTs). Using these examples,
we highlight how results in these di↵erent areas have converged upon resource
burning as a critical ingredient for achieving security; this is summarized in
Table 1.

As prelude to this survey, we predict how resource-burning may evolve, and
how systems may adapt to this technique. These predictions are distilled in four
position statements below.

Position 1 Resource burning is a fundamental tool for de-
fending permissionless systems.

 = attacker’s RB rate
 = good ID join rate
 = good ID posting rate

T
JG
PG

Spam and DDoS

Spam and DDoS
Review Spam:

Weak Learner detects spam with accuracy

Spam has social cost of 1; is good posting rate

Recent Conjecture: Can achieve cost of

> 1/2

PG

O(T2/3 + PG)

Spam and DDoS
Review Spam:

Weak Learner detects spam with accuracy

Spam has social cost of 1; is good posting rate

Recent Conjecture: Can achieve cost of

> 1/2

PG

O(T2/3 + PG)
Application-layer DDoS Attack:

Goal: Good IDs obtain a fraction of service

Cost per service request set by server

Weak Conjecture: Can achieve cost of

1 − O(κ)

o(T)

Conclusion

Conclusion
1.Resource burning is fundamental

2.Resource burning must be optimized

3.Resource burned shouldn’t matter

4.Need Permissionless Permissioned reduction

5.Need domain specific and general results

→

Future Work

Burn, baby burn,
Resource Inferno!

Burn, baby burn,
Resource Inferno!

Other application domains? (besides
Blockchains, DDoS, Spam, DHTs)

Burn, baby burn,
Resource Inferno!

Other application domains? (besides
Blockchains, DDoS, Spam, DHTs)

Lower bounds for resource burning

Burn, baby burn,
Resource Inferno!

Other application domains? (besides
Blockchains, DDoS, Spam, DHTs)

Lower bounds for resource burning

Better integration with game theory

Burn, baby burn,
Resource Inferno!

Other application domains? (besides
Blockchains, DDoS, Spam, DHTs)

Lower bounds for resource burning

Better integration with game theory

RB cost Payoff for security game⟷

Burn, baby burn,
Resource Inferno!

Other application domains? (besides
Blockchains, DDoS, Spam, DHTs)

Lower bounds for resource burning

Better integration with game theory

RB cost Payoff for security game⟷

Rational agents

Questions?

Backup Slides

Communication

Communication

Diffuse:

Sends a message to all IDs

Communication time is negligible
compared RB time

Messages signed with digital signatures

PoW

PoW

Random Oracle Assumption: We have a
function, h, and h(x) is uniformly random on
(0, 1) the first time bit string x is input to h

Computation Cost: Computational cost is
number of times h is called

Committee

Logarithmic size

Use state-machine replication to get
committee to act in concert

After every purge, old committee elects a
new committee from set of current IDs, using
Byzantine-resilient coin-flipping

RB can also do useful work
[Ball et al. ’18]: “Proof of Useful Work”

SETH Hardness of challenge

Can use RB challenges for conjectured hard
problems

[Von Anh et al. ’08]: RECAPTCHA

CAPTCHAs used to decipher scanned words

Digitized New York Times archive

→

Duration: Length of time for set of all IDs
to change by 2/3 factor

J̃G =
number of IDs at start of last duration

length of last duration

bad bad

good & new
2/3 new

duration

J̃G : Estimate of JG

Duration: Length of time for set of all IDs
to change by 2/3 factor

J̃G =
number of IDs at start of last duration

length of last duration

bad bad

good & new
2/3 new

duration

J̃G = Θ(JG)

J̃G : Estimate of JG

