
Nonnegative Integral Subset Representations of Integer

Sets

Michael J. Collins ∗ David Kempe † Jared Saia ‡ Maxwell Young‡

Abstract

We consider an integer-subset representation problem motivated by a med-
ical application in radiation therapy. We prove NP-completeness, derive non-
trivial bounds, and report on the performance of a greedy heuristic.

Keywords: approximation algorithms; combinatorial problems; heuristics;
additive number theory; radiology

1 Introduction

Given a set of positive integers S = {s1 < s2 < · · · < sn}, the Generating
Set problem consists of finding a minimum size set of positive integers T = {t1 <
t2 < · · · < tm} such that every element of S is the sum of a subset of T . Such
a set T is called a “generating set” for S; note that T does not have to be a
subset of S. In addition to being a very natural problem in combinatorial number
theory, this problem is motivated by medical applications in planning radiation
therapy: elements of S represent radiation dosages required at various points, while
an element of T represents a dose delivered simultaneously to multiple points. We
seek to minimize the number of steps required to deliver exactly the specified dose
to each point. There is no need to allow T to be a multiset; if some t appears twice
in T , we can w.l.o.g. replace the second appearance with 2t. Somewhat similar
optimization problems arising from radiation therapy are considered in [1, 3, 4].
The case in which the elements of T can be negative or fractional is considered in
[2, 5, 6]. Trivially dlog ne ≤ m ≤ min(n, dlog sne), since T must be large enough to
have n distinct subsets, and S can be represented by itself or by {1, 2, 4, . . . 2blog snc}.

∗Sandia National Laboratories, Albuquerque, NM, USA; email: mjcolli@sandia.gov
†Dept. of Computer Science, University of Southern California, CA, USA; email: clkempe@

usc.edu
‡Dept. of Computer Science, University of New Mexico, NM, USA; email: saia@cs.unm.edu,

young@cs.unm.edu

1

2 NP-Completeness

In this section, we prove the following decision version of the Generating Set
problem to be NP-complete.

Definition 1. Generating Set:
Input: A target set S of positive integers, and a non-negative integer k.
Question: Is there a set T of positive integers such that |T | = k, and every element
s ∈ S is the sum of some subset of the elements in T?

We prove that Generating Set is NP-complete via a reduction from Positive
NAE-3Sat(5), a variant of nae-3sat, which is proven NP-complete in [7]. Reduc-
tion from subset sum might appear to be more natural, but no such reduction is
known.

Definition 2. Positive NAE-3Sat(5):
Input: A SAT formula φ with n ≥ 5 variables and m clauses. Each clause contains
exactly 3 distinct and uncomplemented variables.
Question: Is there a truth assignment such that each clause of φ contains both a
true variable and a false variable?

Theorem 1. Generating Set is NP-complete.

Our reduction takes an instance φ of Positive NAE-3Sat(5), with variables
labeled x1, . . . , xn and m clauses, and constructs an instance of Generating Set
in the following way:

• Add 1 to S.

• For each variable xi, add ai := ni to S. We call ai the “variable number” for
xi.

• For each clause c containing the variables xi, xj , xk, add the yc := ai + aj +
ak − 1 = ni + nj + nk − 1 to S. We call yc the “clause number” for c.

The decision question of Generating Set is then whether the set S can be repre-
sented by an integer set of size at most n + 1.

We begin by establishing useful lemmas about the possible structures of gener-
ating sets T . In the sequel, we assume that φ is fixed (and has n ≥ 5 variables),
and we always use S to refer to the set generated by the reduction. We also always
assume that T = {1 ≤ b1 ≤ b2 ≤ . . . ≤ bn} is a generating set for S of size n + 1.

Lemma 1. For all i ≤ n, we have ai −
∑i−1

j=1 aj − 1 ≤ bi ≤ ai.

Proof. First notice that 1 must be in T . Second, assume that bi > ai for some
i, and let r be the smallest such index. Because bi ≤ ai for i ≤ r − 1, we have

2

1 +
∑r−1

i=1 bi ≤ 1 +
∑r−1

i=1 ai < nr = ar (for n ≥ 2). This implies that T cannot
generate ar, which is a contradiction. Thus, bi ≤ ai for all i.

Next, assume that bi < ai −
∑i−1

j=1 aj − 1 for some i, and let r be the largest
index such that br < ar −

∑r−1
i=1 ai − 1. Then, br+1 ≥ ar+1 −

∑r
i=1 ai − 1 > ar (for

n ≥ 3). This implies that ar is the sum of elements of some subset of {1, b1, . . . , br}.
But 1 +

∑r
i=1 bi ≤ ar − 1, which means that T cannot generate ar, which is a

contradiction. Thus, for all i, bi ≥ ai −
∑i−1

j=1 aj − 1.

Lemma 2. Let b = (b1, b2, . . . , bn), and X = {0, 1, 2, 3}n. Then, for any two
distinct vectors u,v ∈ X, |u · b− v · b| ≥ 3.

Proof. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), and k be the largest
index such that uk 6= vk. Without loss of generality, uk > vk. Then, using Lemma 1,
|u · b − v · b| ≥ u · b − v · b ≥ bk − 3

∑
i<k bi ≥ (ak −

∑
i<k ai − 1) − 3

∑
i<k ai =

nk − 4nk−3n−1
n−1 ≥ 3, for n ≥ 5.

Corollary 1. For all i ≤ n, T generates either ai or ai − 1, but not both, without
using 1.

Proof. Apply Lemma 2, taking u,v to be the 0-1 vectors describing which ele-
ments of T are used to generate ai and ai − 1, and notice that | ai − (ai − 1)| = 1.

Lemma 3. For any “clause number” yc = ai + aj + ak − 1 in S, the following two
statements are true:

1. At least one of {ai, aj , ak} can be generated by T without using 1.

2. There is an a ∈ {ai, aj , ak} such that T generates a− 1 without using 1.

Proof. If each of ai, aj , ak requires 1 to be generated, then taking the corre-
sponding incidence vectors vi,vj,vk for the elements of T except 1, and writing
v := vi + vj + vk, we find that v · b = ai + aj + ak − 3. Now, by Lemma 2, T
cannot generate ai + aj + ak − 2 or ai + aj + ak − 1 without the number 1, and
hence cannot generate ai + aj + ak − 1 at all, a contradiction. Similarly, if all of
ai, aj , ak can be generated without using the number 1, the analogous vector u sat-
isfies u · b = ai + aj + ak. Again, by Lemma 2, ai + aj + ak − 1 is not generated by
T , a contradiction.

We are now ready to prove Theorem 1:

Proof of Theorem 1. It is clear that Generating Set is in NP, and the reduc-
tion clearly runs in polynomial time. To prove the correctness of the reduction, first
assume that we have an assignment such that each clause of φ has either one or

3

two true variables. We create T in the following way. First, T always contains the
number 1. In addition, for each i, if xi = true in the satisfying truth assignment,
T contains the number ni; otherwise, it contains the number ni − 1. Clearly, T
generates all “variable numbers” ai, either simply as ai = ni, or as ai = (ni−1)+1.
Since every clause c has either one or two true variables, summing the values cor-
responding to the variables will give either ai + aj + ak − 1 or ai + aj + ak − 2. In
the former case, yc is already generated, and in the latter case, it is generated by
adding 1.

Conversely, if T is a generating set of size n + 1, we define a truth assignment
to the xi by setting xi = true if T generates ai without using the number 1,
and xi = false otherwise (in which case T generates ai using the number 1, by
Corollary 1). By Lemma 3, for each clause c, the fact that T can generate the
value yc = ai + aj + ak − 1 guarantees that the truth assignment received by the
corresponding clause contains at least one variable set to true, and at least one
variable set to false, completing the proof.

3 Lower Bounds on m

The trivial lower bound from the introduction can be improved in some cases. Let
|T | = m, and define the multiset of differences

DS = {sj − si : i < j ≤ n}.

Let dS be the number of distinct elements in DS . At most 3m−1
2 positive differences

can be generated as the difference between two subsets of T ; in such a difference,
each ti appears positively, negatively, or not at all, and half of the nonzero differences
are negative. Thus

m ≥ log3 2dS > 0.63 log 2dS

(where all logs are base 2 unless indicated otherwise). In particular, if dS = αn2/2,
we have

m > 1.26 log n− 0.63 log
1
α

.

More generally, there are fewer than (k + 1)m distinct sums of k subsets of T ,
so this must be larger than the number of distinct values of sums of k elements of
S (allowing multisets). Then, we have

Theorem 2. If there are αnk

k! distinct sums of k elements of S and T generates S,
then

m >
k

log(k + 1)
log n− log k!

log(k + 1)
− log α−1

log(k + 1)
.

We can also obtain lower bounds of 1 + dlog ne by considering parities. Let n′

be the number of odd values in S; if n′ 6= 0 then there must be at least one odd

4

element in T , so exactly 2m−1 subsets of T have odd sums. Thus, 2m−1 must be at
least max(n′, n− n′), and

m ≥ 1 + dlog max(n′, n− n′)e .

More generally, consider the values in S mod M . If any si is not zero mod M , then
some tj is nonzero mod M , thus no more than half of the subsets of T can have the
same value mod M (since adding or removing tj changes the value of a set mod M),
and m ≥ 1 + dlog n̂e where n̂ is the size of the largest equivalence class mod M .

4 Fraction of Instances Requiring Large Representa-
tions

If we are interested in instances whose numbers are bounded by 2k, and n is suffi-
ciently large relative to k, then most of these instances will not have small generating
sets (i.e., sublinear in k). Specifically, there are at most

(
2k

j

)
sets T of size j, each

generating at most 2j distinct sums. The only n-element sets generated by T are
its n-element subsets. Therefore, there are at most(

2k

j

)
·
(

2j

n

)
(1)

subsets of size n that can be generated by sets T of size at most j. On the other
hand, the total number of problem instances of size n is

(
2k

n

)
, and using the bounds

(a
b)b ≤

(
a
b

)
≤ (ea

b)b, the fraction of instances that can be generated by sets of size at
most j is at most

2jk+jn+(log e)(j+n)−kn−j log j . (2)

By taking limits for k, n, we obtain the following:

Theorem 3. Fix α < 1, and consider problem instances of n numbers bounded by
2k.

1. If n
k → ∞ as k, n → ∞, the fraction of problem instances representable with

|T | ≤ αk converges to zero.

2. If n
k → 0 as k, n → ∞, the fraction of problem instances representable with

|T | ≤ αn converges to zero.

For example, if we randomly select fifty sixteen-bit integers (so that trivially
6 ≤ |T | ≤ 16), the probability of being able to represent this set with |T | ≤ 11 is
less than one in seventeen million.

5

5 A Greedy Heuristic

We propose a greedy heuristic for constructing a representing set T . The idea is
that at each step, we choose a t which will enable us to represent the largest number
of s ∈ S which have not been represented already.

Start with T = ∅. In the first iteration, find the most common difference d in
DS and set T1 = {d}. For all sj such that sj − si = d for some i, remove sj from S.
The idea is that after we have removed sj , the representation of sj will be d plus the
representation we eventually find for si. We say that sj has been “retracted” into
si. Let Ri be the representation of si, i.e. the subset of T such that si =

∑
t∈Ri

t.
So at this point we have the partial representation Rj = {d} ∪ Ri. For notational
convenience we let s1 = 0, R1 = ∅. When sj is retracted into zero, or into an si

whose representation was completed in a previous iteration, its representation is
complete (as is the representation of anything that depends, directly or indirectly,
upon Rj).

One additional detail is that we might not be able to simultaneously remove all
such sj , we can only remove sj if we do not remove si (otherwise we would need
two copies of d in T). This situation arises if d appears twice consecutively as a
difference, sj = si + d and sk = sj + d. In such a sequence of repeated adjacent
differences we can only take alternating elements out of S. We take this into account
in selecting the best d.

In subsequent iterations we do not only look at differences among the remaining
elements of S, but we also look at how the elements already in T can be used to
build representations. We can have

sj = si − t + t′ + d (3)

for any t ∈ Ri and any t′ ∈ T −Ri such that

• there is no sk whose current representation includes both t′ and Rj (otherwise
t′ would occur twice in Rk)

• there is no sk whose current representation uses Rj and intersects Ri − {t}
(otherwise elements of Rk ∩ (Ri − {t}) would occur twice in Rk)

With proper bookkeeping we can enumerate all allowable choices of (i, j, t, t′) for
which d > 0 in (3). We also do not consider retraction into any si that has a partial
representation: si must either have a completed representation, or not yet have any
representation. Retraction into partially-represented elements would require addi-
tional bookkeeping and more complex restrictions on t and t′. Having enumerated
all possibilities we add d∗ to T , where d∗ is the value which enables us to retract
the largest number of sj .

Of course we are not limited to a single t or t′, we could consider arbitrary
subsets of Ri and of T − Ri. But this leads to exponential growth in the number

6

n dlog sne Avg. Heuristic pct. below trivial
8 6 5.42 57
10 6 5.76 24
15 6 6.0 0
10 8 6.98 90
15 8 7.83 16
20 8 7.98 2
15 12 10.42 93
20 12 11.38 59
30 12 12.0 0
25 16 15.28 64
30 16 15.91 9
40 16 16.0 0

Table 1: Results for instances uniformly randomly generated between 1 and 2m− 1;
100 trials each.

n dlog sne Avg. Heuristic pct. below trivial
15 12 9.52 100
20 12 10.09 99
30 12 11.06 69
25 16 14.85 79
30 16 15.69 28
40 16 15.99 1

Table 2: Results for instances generated by random subsets of {1, 2, 8, 32, 64, 256,
1024, 2048} (12-bit sn) and {1, 4, 8, 16, 64, 128, 512, 1024, 2048, 8192, 16384, 32768}
(16-bit sn); 100 trials each.

of options to consider. To maintain a polynomial running time we must limit the
size of the subsets by a constant; the implementation used for the results of the
next section considers pairs of subsets with union of size at most 3. Thus we may
consider representations such as sj = si − t1 − t2 − t3 + d or sj = si − t + t′1 + t′2 + d
where ti ∈ Ri and t′i ∈ T −Ri satisfy the conditions above.

5.1 Experimental Results

We uniformly randomly generated sets of n m-bit numbers for n, m as shown in Table
1, computing the average size (over 100 random instances) of the representation
found by the heuristic and the fraction of instances for which a better-than-trivial
solution was obtained.

7

These results in Table 1 are difficult to interpret since we do not know what frac-
tion of instances should have better-than-trivial solutions. We generated instances
known to have nontrivial solutions by taking sums of random subsets of a set of
generators of size less than log sn. In this case it is clear that the heuristic is rarely
finding an optimal solution (which would be no larger than the known generating
set), but it tends to find smaller generating sets than were found for uniformly
generated instances. In no case did we find a generating set smaller than the set
actually used to create the instance.

Acknowledgments

We would like to thank Shuang Luan, Cris Moore, and MohammadReza Salavatipour
for useful discussions.

References

[1] N. Bansal, D. Coppersmith, and B. Schieber. Minimizing setup and beam-on
times in radiation therapy. In Proceedings of APPROX 2006, 2006.

[2] M. Develin. Optimal subset representations of integer sets. Journal of Number
Theory, 89:212–221, 2001.

[3] T. Kalinowski. The algorithmic complexity of the minimization of the number
of segments in multileaf collimator field segmentation. preprint.

[4] S. Luan, D.Z. Chen, X.S. Hu, S.A. Naqvi, C. Wang, and C.X. Yu. General-
ized geometric approaches for leaf sequencing problems in radiation therapy.
International Journal of Computational Geometry and Applications (IJCGA),
16:175–204, 2006.

[5] D. Mills. Some observations on subset sum representations. preprint.

[6] D. Moulton and D. Petrie. Representing powers of numbers as subset sums of
small sets. Journal of Number Theory, 89:193–211, 2001.

[7] T. Schaefer. The complexity of satisfiability problems. In Proc. 10th ACM
Symp. on Theory of Computing, pages 216–226, 1978.

8

