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Unreliable 
Components

Imagine have a collection of chips, some of 
which are unreliable

Goal: build a reliable computer
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Components Fail, 
Group Functions
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Group 
Synchronization

Periodically, all components must unite in action

How?  Idea: components vote on correct action

Problem: How to count the votes? 
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Idea: Majority Voting
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Byzantine Agreement

Each processor starts with a bit

Goal: All good processors output a bit, that is the 
same as one of their initial bits

t = # bad processors controlled by an adversary
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Problem Solved
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Importance

BA is synchronization in complex systems

How do fireflies, economic markets, ants, 
computer networks, bees, brains, immune 
systems function without a leader?

Sine qua non of robust computation
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1982: FLP show that 1 fault makes 
deterministic BA impossible in asynch 
model

2007: Nancy Lynch wins Knuth Prize 
for this result, called “fundamental in 
all of Computer Science”

Impossibility Result
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2,800 Cites Later
Deterministic, Randomized

Cryptography, No cryptography

Synchronous, Asynchronous

Adaptive, non-adaptive adversary

Quantum, Shared Memory, Fault-Detectors, 
Sparse Network, Leader Election, Global Coin 
Toss, Etc., Etc,
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Large-Scale BA
Peer-to-peer networks (Oceanstore, Farsite)
“These replicas cooperate with one another in a Byzantine 
agreement protocol to choose the final commit order for updates.”
Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement 
protocol”
Game Theory (Mediators)
“The proofs of the impossibility results bring out deep connections 
between implementing mediators and various agreement problems, 
such as Byzantine agreement”
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Scalability

“Unfortunately, Byzantine agreement requires a number of 
messages quadratic in the number of participants, so it is 
infeasible for use in synchronizing a large number of 
replicas” [REGZK ’03]

“Eventually batching cannot compensate for the quadratic 
number of messages [of Practical Byzantine Fault Tolerance 
(PBFT)]” [CMLRS ’05]

“The communication overhead of Byzantine Agreement is 
inherently large” [CWL ’09]
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Our Model
Synchronous w/ rushing adversary

Private channels

Resilience: t < n(1/3-ε)

Unlimited messages for bad procs

Adaptive adversary
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 Our Goal: Scalable BA

Polylog bits sent per processor

Polylog rounds
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Impossibility

Any BA (randomized) protocol which 
always uses  o(n2) messages will fail with 
probability > 0

Implication of [Dolev, Reischuk ’85]
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Our results

Theorem 1 (BA): For any constants c, ε, there is a 
constant d and a (1/3- ε)n resilient protocol 
which  solves BA  with prob. 1-1/nc  using

Õ(n1/2) bits per processor in O(logd n) rounds
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Also

Theorem 2: (a.e.BA) For any constants. c, ε, there is a 
constant d and a (1/3- ε)-resilient protocol which  
brings 

1-O(1/log n) fraction of good procs to agreement 
with prob. 1-1/nc  using

 Õ(1) bits per proc in O(logd n) rounds
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Previous work

An expected  constant number of rounds suffice. 
(Feldman and Micali 1988) 

However, all previously known protocols use all-
to-all communication
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KEY IDEA:
Short somewhat 
random stream S

S= s1 s2 … sk is a short stream of numbers.

Some a.e. globally known random numbers, some 
numbers fixed by an adversary which can see the 
preceding stream when choosing. 

S can be generated w.h.p.
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Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Generating S
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 Rabin’s BA with Global Coin, GC

vote ← bi; Repeat c log n rounds:

1. Send vote to all procs;

2. maj ← majority bit from others;

3. fraction ← fraction of votes for maj;

4. If fraction ≥ 2/3 then vote ← maj;

5. Else vote ← GC;
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Scalable a.e.BA w/ GC
Use sampler to assign 
neighbors to procs

Ensures almost all 
neighbor sets contain a 
representative fraction of 
good procs

Thus almost all procs 
have correct maj when 
“frac with majority bit” > 
2/3 +ε/2 and t < n/3 - ε

Sampler: Almost all nodes on right 
have majority good neighbors no 

matter how bad distributed
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I: Using S to get a.e. BA

Use S instead of GC --> a.e.BA whp

For i=1,…,k, generate bit si

Run a.e. BA using si  for a.e.global coin

It suffices that clogn bits of S are known 
a.e. and random
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II: Using S to go from 
a.e. BA to BA

Idea: Query random set of procs to ask 
bit. Since almost all good procs agree, 
majority should give correct answer.

Problem: In our model, the adversary 
can flood all procs with queries!!

Use s to decide which queries to answer.
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II: Using S to go from 
a.e. BA to BA

Labels= {1,..,n1/2 }

FOR each number s of S=Labelsk :

Each proc. p picks Õ(n1/2)  random queries 

<proc,label> and sends label to proc. 

q answers only if label= s (and not overloaded)

if 2/3 majority of p’s queries with the same label are 
returned and agree on v, then p decides v.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with a 
RANDOM subsequence!
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III Generating S

Sparse Network

Arrays of Random Numbers

Lightest Bin Algorithm

Secret Sharing
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Sparse Network
Tree of supernodes of increasing size

Linked: 1) child & parent; 2) parent & subtree leaves

Links and Supernodes generated via samplers

1,2,3,4,5,6,7,8,9

3,5 4,7 1,5 6,9 5,8 1,9 3,4 2,8 6,7

2,4,7,8,9 1,3,5,8,91,2,3,6,8
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Elections

1,5,9

1,2,3,4,5,6,7,8,9
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1,2,3

1,3,5,8,9

7,8,9

1,2,3,6,8

4,5,6

Each proc p generates array A_p of random numbers and 
secret shares it with its leaf node

Numbers are revealed as needed to elect which parts of arrays 
will be passed on to parent node
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Election at a node
Feige’s algorithm:

1.  Each candidate picks a bin uniformly at random;

2.  Winners are candidates in lightest bin

Requires Agreement on all bin choices

1 2 3 4 5 6
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How to run Feige?
We use scalable a.e. BA
Bin numbers and S given by winning arrays of 
children supernodes.

1,5,9
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S, Bin Numbers

S, Bin Numbers
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Splitting Secrets
As winning array moves up, secret shares are split up 
among more and more procs on higher levels and 
erased from children 
Thus, adversary can’t learn array by taking over small 
number of procs at lower levels 

v

s1 s2

s1,1 s1,2 s2,1 s2,2
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Revealing Secrets
Secrets revealed as needed: by reversing communication 
downward, reassembling shares at subtrees and leaves
Thus, adversary can’t prevent secret from being exposed 
by blocking a single path

v

s1 s2

s1,1 s1,2 s2,1 s2,2

s2s1s1 s2
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Revealing Secrets
Leaves are sampled deterministically by procs in 
subtree root in order to learn the secret value 

v

s1 s2

s1,1 s1,2 s2,1 s2,2

s2s1s1 s2

Sunday, October 17, 2010



Generation of short S

Only a polylog number of arrays are left 
at each of the polylog children of the 
root. These form S.
When agreement on all of S is needed, 
a.e. BA can be run using supplemental 

bits. 
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Uses of S

 Easier to generate than a single random 
coinflip:

– S can be generated w.h.p scalably in the full 
information nonadaptive adversary model 

A polylog size S has sufficient randomness 
to specify a set of n small quorums which 
are all good w.h.p

Asynch alg w/nonadaptive adv 
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Past Scalable BA 
Results

No crypto; Asynch communication; Non-
adaptive Adv; o(1) prob. failure:

Algorithm for BA that requires          
bits per proc and polylog latency

Algorithm for almost-everywhere BA 
(all but o(n) procs) that requires           
bits per proc and polylog latency

Õ(
√
n)

Õ(1)
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Past Scalable Results
(Same Assumptions)

Can solve following with                bits per proc and 
polylog latency

1. Leader Election: Leader good with constant prob

2. Quorum Selection

A good quorum has a majority of good procs

Can reach agreement on n good quorums

Balanced: No proc in more than O(log n) quorums

Õ(
√
n)
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Future work 
Scalable asynchronous BA with 
adaptive adversary?

                bandwidth is fundamental?

Practical scalable  BA

Reducing constant factors and 
polylog terms; Relaxing fault model: 
e.g. bad procs have limited 
bandwidth

Õ(
√
n)
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FW (Cont’d) 
Robust & Scalable for other problems

Done: global coin toss, leader 
election, frequency counts

Todo: SMPC type result

Handle churn

Idea: Robust & Scalable mapping of 
n procs to distinct id in  [1, (1 + �)n]
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FW:  HP/Cloud Computing

Want: Many local error-corrections 
instead of one big one

Idea: Error Correcting Algorithms

ECA:Computation as ECC:Data
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Related Work

Practical BA

Amortized Robustness

Scalable, Rational Secret Sharing

Scalable, Rational Data Dissemination
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Practical BA

Olumuyiwa (M) 
Oluwasanmi

Figure 8: Top: Log of number of nodes vs. average number of

bits sent; Bottom: Log of number of nodes vs log of average

number of bits sent

other node in the network, so the asymptotic number

of messages sent per node is O(n). This is in contrast

to Õ(
√
n) for the same metric for our algorithm. The

latency for the CKS algorithm is a constant in contrast

to the latency for our algorithm which is O(log n). The

CKS algorithm can tolerate a 1/3 fraction of faulty

processors. We emphasize that this is larger than the

fraction of bad processors that can be tolerated by our

algorithm as simulated here. However, our interest in

scalable communication costs inclines us to consider

tradeoffs of fault tolerance for scalability.

B. Experimental Results
The outcomes of our experiments are shown in Fig-

ures 7, 8 and 9. We note that, in our experiments, the

measured message complexity for the CKS algorithm

varies predictably for different network sizes. This is

true since the CKS algorithm requires every node to

send messages to every other node in the network a fixed

number of times and then always stops. In contrast, the

number of messages that a given node sends in our

algorithm is less predictable. All data points shown in

all of our plots are the average over at least 5 trials.

Figure 7 (top) shows the log of the network size

vs. average number of messages sent. This plot shows

Figure 9: Top: Proportion of bandwidth used by the almost

everywhere part of our algorithm. Bottom: Latency vs. the

logarithm of the number of nodes

that our algorithm begins to display better performance

at about 65,000 processors on this metric, and for

networks much larger than this size, exhibits significant

improvement over the CKS algorithm. Figure 7 (bottom)

shows the log of the network size vs. log of the average

number of messages sent. Since this is a log-log plot, the

slopes of the two lines fitting the data points give a good

approximation to the exponents of n in the function

giving the average message cost. Thus, as expected, in

this plot the slope for the line for the CKS algorithm is

approximately 1. Moreover, as expected, the slope for

our algorithm is about 1/2, since the almost everywhere

to everywhere part of the algorithm requires each node

to send Õ(n1/2) messages.

Figure 8 (top) shows the log of the network size

vs the average number of bits sent. For this metric, our

algorithm performs better than the CKS algorithm for all

networks of size greater than about 1, 000. This is due to

the larger message sizes of the CKS algorithm because

of its extensive use of cryptography. The bit complexity

barely registers on the graph because of the resolution

and since it is at most of the order of 108 bits. Figure

7 (bottom) shows the log of the network size vs. log of

the average number of messages sent. Again the CKS

algorithm displays linear slope for this plot. However,

11

Helix
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Amortized 
Robustness

Fool me once, shame on you.  Fool me      
times, shame on me.

Goal: Limit adversarial corruption of 
messages in a communication network where 
a majority of nodes are good

Problem: assigning fault when communication 
involves multiple processors

ω(log n)

Jeffrey 
Knockel

Sunday, October 17, 2010



Scalable Rational 
Secret Sharing

Q: How to enable secret sharing when every 
player is selfish: wanting to learn the secret, but 
preferring for others not to learn it?

Known: Achieve with O(n) bits per proc

Goal: Achieve with O(log n) bits per proc

Application: Mediation in game theory

Yamel Torres-
Rodriguez
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Rational Gossiping
Want to disseminate a large file to large set of 
players

File is broken into pieces, sent by a seeder

Each  player is selfish

Only shares pieces if in best interest

Leaves when it receives all the pieces

Nathan 
Hjelmn
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Questions?
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