
Breaking the O(n2) Bit Barrier:
 Scalable Byzantine Agreement

Jared Saia, U. New Mexico

Joint with Valerie King, U. Victoria

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

computers

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

computers

network

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer
network

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

people

Sunday, October 17, 2010

Unreliable
Components

Imagine have a collection of chips, some of
which are unreliable

Goal: build a reliable computer

people

system

Sunday, October 17, 2010

Components Fail,
Group Functions

Sunday, October 17, 2010

Group
Synchronization

Periodically, all components must unite in action

How? Idea: components vote on correct action

Problem: How to count the votes?

Sunday, October 17, 2010

Idea: Majority Voting
Start End

1

1

1

1

1

1

0 1

Sunday, October 17, 2010

A Problem
Start End

1

1

0

1

0

0

0 0

1

0

0

0

Sunday, October 17, 2010

Byzantine Agreement

Each processor starts with a bit

Goal: All good processors output a bit, that is the
same as one of their initial bits

t = # bad processors controlled by an adversary

Sunday, October 17, 2010

Problem Solved
Start

1

1

0

0

1

1

0 1

0

1

1

1

Byzantine
Agreement

0

0

0

0

End

Sunday, October 17, 2010

Importance

BA is synchronization in complex systems

How do fireflies, economic markets, ants,
computer networks, bees, brains, immune
systems function without a leader?

Sine qua non of robust computation

Sunday, October 17, 2010

1982: FLP show that 1 fault makes
deterministic BA impossible in asynch
model

2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all of Computer Science”

Impossibility Result

Sunday, October 17, 2010

2,800 Cites Later
Deterministic, Randomized

Cryptography, No cryptography

Synchronous, Asynchronous

Adaptive, non-adaptive adversary

Quantum, Shared Memory, Fault-Detectors,
Sparse Network, Leader Election, Global Coin
Toss, Etc., Etc,

Sunday, October 17, 2010

Large-Scale BA
Peer-to-peer networks (Oceanstore, Farsite)
“These replicas cooperate with one another in a Byzantine
agreement protocol to choose the final commit order for updates.”
Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol”
Game Theory (Mediators)
“The proofs of the impossibility results bring out deep connections
between implementing mediators and various agreement problems,
such as Byzantine agreement”

Sunday, October 17, 2010

Scalability

“Unfortunately, Byzantine agreement requires a number of
messages quadratic in the number of participants, so it is
infeasible for use in synchronizing a large number of
replicas” [REGZK ’03]

“Eventually batching cannot compensate for the quadratic
number of messages [of Practical Byzantine Fault Tolerance
(PBFT)]” [CMLRS ’05]

“The communication overhead of Byzantine Agreement is
inherently large” [CWL ’09]

Sunday, October 17, 2010

Our Model
Synchronous w/ rushing adversary

Private channels

Resilience: t < n(1/3-ε)

Unlimited messages for bad procs

Adaptive adversary

Sunday, October 17, 2010

 Our Goal: Scalable BA

Polylog bits sent per processor

Polylog rounds

Sunday, October 17, 2010

Impossibility

Any BA (randomized) protocol which
always uses o(n2) messages will fail with
probability > 0

Implication of [Dolev, Reischuk ’85]

Sunday, October 17, 2010

Our results

Theorem 1 (BA): For any constants c, ε, there is a
constant d and a (1/3- ε)n resilient protocol
which solves BA with prob. 1-1/nc using

Õ(n1/2) bits per processor in O(logd n) rounds

Sunday, October 17, 2010

Also

Theorem 2: (a.e.BA) For any constants. c, ε, there is a
constant d and a (1/3- ε)-resilient protocol which
brings

1-O(1/log n) fraction of good procs to agreement
with prob. 1-1/nc using

 Õ(1) bits per proc in O(logd n) rounds

Sunday, October 17, 2010

Previous work

An expected constant number of rounds suffice.
(Feldman and Micali 1988)

However, all previously known protocols use all-
to-all communication

Sunday, October 17, 2010

KEY IDEA:
Short somewhat
random stream S

S= s1 s2 … sk is a short stream of numbers.

Some a.e. globally known random numbers, some
numbers fixed by an adversary which can see the
preceding stream when choosing.

S can be generated w.h.p.

Sunday, October 17, 2010

Algorithm Outline

I: Using S to get a.e. BA

II: Using S to go from a.e. BA to BA

III: Generating S

Sunday, October 17, 2010

 Rabin’s BA with Global Coin, GC

vote ← bi; Repeat c log n rounds:

1. Send vote to all procs;

2. maj ← majority bit from others;

3. fraction ← fraction of votes for maj;

4. If fraction ≥ 2/3 then vote ← maj;

5. Else vote ← GC;

Sunday, October 17, 2010

Scalable a.e.BA w/ GC
Use sampler to assign
neighbors to procs

Ensures almost all
neighbor sets contain a
representative fraction of
good procs

Thus almost all procs
have correct maj when
“frac with majority bit” >
2/3 +ε/2 and t < n/3 - ε

Sampler: Almost all nodes on right
have majority good neighbors no

matter how bad distributed

Sunday, October 17, 2010

I: Using S to get a.e. BA

Use S instead of GC --> a.e.BA whp

For i=1,…,k, generate bit si

Run a.e. BA using si for a.e.global coin

It suffices that clogn bits of S are known
a.e. and random

Sunday, October 17, 2010

II: Using S to go from
a.e. BA to BA

Idea: Query random set of procs to ask
bit. Since almost all good procs agree,
majority should give correct answer.

Problem: In our model, the adversary
can flood all procs with queries!!

Use s to decide which queries to answer.

Sunday, October 17, 2010

II: Using S to go from
a.e. BA to BA

Labels= {1,..,n1/2 }

FOR each number s of S=Labelsk :

Each proc. p picks Õ(n1/2) random queries

<proc,label> and sends label to proc.

q answers only if label= s (and not overloaded)

if 2/3 majority of p’s queries with the same label are
returned and agree on v, then p decides v.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with a
RANDOM subsequence!

Sunday, October 17, 2010

II: Using S to go from
a.e. BA to BA

Labels= {1,..,n1/2 }

FOR each number s of S=Labelsk :

Each proc. p picks Õ(n1/2) random queries

<proc,label> and sends label to proc.

q answers only if label= s (and not overloaded)

if 2/3 majority of p’s queries with the same label are
returned and agree on v, then p decides v.

IT SUFFICES TO HAVE AN a.e. AGREED upon S with a
RANDOM subsequence!

Sunday, October 17, 2010

III Generating S

Sparse Network

Arrays of Random Numbers

Lightest Bin Algorithm

Secret Sharing

Sunday, October 17, 2010

Sparse Network
Tree of supernodes of increasing size

Linked: 1) child & parent; 2) parent & subtree leaves

Links and Supernodes generated via samplers

1,2,3,4,5,6,7,8,9

3,5 4,7 1,5 6,9 5,8 1,9 3,4 2,8 6,7

2,4,7,8,9 1,3,5,8,91,2,3,6,8

Sunday, October 17, 2010

Elections

1,5,9

1,2,3,4,5,6,7,8,9

3,5
1

4,7
2

1,5
3

6,9
4

5,8
5

1,9
6

3,4
7

2,8
8

6,7
9

2,4,7,8,9

1,2,3

1,3,5,8,9

7,8,9

1,2,3,6,8

4,5,6

Each proc p generates array A_p of random numbers and
secret shares it with its leaf node

Numbers are revealed as needed to elect which parts of arrays
will be passed on to parent node

Sunday, October 17, 2010

Election at a node
Feige’s algorithm:

1. Each candidate picks a bin uniformly at random;

2. Winners are candidates in lightest bin

Requires Agreement on all bin choices

1 2 3 4 5 6

Sunday, October 17, 2010

How to run Feige?
We use scalable a.e. BA
Bin numbers and S given by winning arrays of
children supernodes.

1,5,9

1,2,3,4,5,6,7,8,9

3,5
1

4,7
2

1,5
3

6,9
4

5,8
5

1,9
6

3,4
7

2,8
8

6,7
9

2,4,7,8,9

1,2,3

1,3,5,8,9

7,8,9

1,2,3,6,8

4,5,6

S, Bin Numbers

S, Bin Numbers

Sunday, October 17, 2010

Splitting Secrets
As winning array moves up, secret shares are split up
among more and more procs on higher levels and
erased from children
Thus, adversary can’t learn array by taking over small
number of procs at lower levels

v

s1 s2

s1,1 s1,2 s2,1 s2,2

Sunday, October 17, 2010

Revealing Secrets
Secrets revealed as needed: by reversing communication
downward, reassembling shares at subtrees and leaves
Thus, adversary can’t prevent secret from being exposed
by blocking a single path

v

s1 s2

s1,1 s1,2 s2,1 s2,2

s2s1s1 s2

Sunday, October 17, 2010

Revealing Secrets
Leaves are sampled deterministically by procs in
subtree root in order to learn the secret value

v

s1 s2

s1,1 s1,2 s2,1 s2,2

s2s1s1 s2

Sunday, October 17, 2010

Generation of short S

Only a polylog number of arrays are left
at each of the polylog children of the
root. These form S.
When agreement on all of S is needed,
a.e. BA can be run using supplemental

bits.

Sunday, October 17, 2010

Uses of S

 Easier to generate than a single random
coinflip:

– S can be generated w.h.p scalably in the full
information nonadaptive adversary model

A polylog size S has sufficient randomness
to specify a set of n small quorums which
are all good w.h.p

Asynch alg w/nonadaptive adv

Sunday, October 17, 2010

Past Scalable BA
Results

No crypto; Asynch communication; Non-
adaptive Adv; o(1) prob. failure:

Algorithm for BA that requires
bits per proc and polylog latency

Algorithm for almost-everywhere BA
(all but o(n) procs) that requires
bits per proc and polylog latency

Õ(
√
n)

Õ(1)

Sunday, October 17, 2010

Past Scalable Results
(Same Assumptions)

Can solve following with bits per proc and
polylog latency

1. Leader Election: Leader good with constant prob

2. Quorum Selection

A good quorum has a majority of good procs

Can reach agreement on n good quorums

Balanced: No proc in more than O(log n) quorums

Õ(
√
n)

Sunday, October 17, 2010

Future work
Scalable asynchronous BA with
adaptive adversary?

 bandwidth is fundamental?

Practical scalable BA

Reducing constant factors and
polylog terms; Relaxing fault model:
e.g. bad procs have limited
bandwidth

Õ(
√
n)

Sunday, October 17, 2010

FW (Cont’d)
Robust & Scalable for other problems

Done: global coin toss, leader
election, frequency counts

Todo: SMPC type result

Handle churn

Idea: Robust & Scalable mapping of
n procs to distinct id in [1, (1 + �)n]

Sunday, October 17, 2010

FW: HP/Cloud Computing

Want: Many local error-corrections
instead of one big one

Idea: Error Correcting Algorithms

ECA:Computation as ECC:Data

Sunday, October 17, 2010

Related Work

Practical BA

Amortized Robustness

Scalable, Rational Secret Sharing

Scalable, Rational Data Dissemination

Sunday, October 17, 2010

Practical BA

Olumuyiwa (M)
Oluwasanmi

Figure 8: Top: Log of number of nodes vs. average number of

bits sent; Bottom: Log of number of nodes vs log of average

number of bits sent

other node in the network, so the asymptotic number

of messages sent per node is O(n). This is in contrast

to Õ(
√
n) for the same metric for our algorithm. The

latency for the CKS algorithm is a constant in contrast

to the latency for our algorithm which is O(log n). The

CKS algorithm can tolerate a 1/3 fraction of faulty

processors. We emphasize that this is larger than the

fraction of bad processors that can be tolerated by our

algorithm as simulated here. However, our interest in

scalable communication costs inclines us to consider

tradeoffs of fault tolerance for scalability.

B. Experimental Results
The outcomes of our experiments are shown in Fig-

ures 7, 8 and 9. We note that, in our experiments, the

measured message complexity for the CKS algorithm

varies predictably for different network sizes. This is

true since the CKS algorithm requires every node to

send messages to every other node in the network a fixed

number of times and then always stops. In contrast, the

number of messages that a given node sends in our

algorithm is less predictable. All data points shown in

all of our plots are the average over at least 5 trials.

Figure 7 (top) shows the log of the network size

vs. average number of messages sent. This plot shows

Figure 9: Top: Proportion of bandwidth used by the almost

everywhere part of our algorithm. Bottom: Latency vs. the

logarithm of the number of nodes

that our algorithm begins to display better performance

at about 65,000 processors on this metric, and for

networks much larger than this size, exhibits significant

improvement over the CKS algorithm. Figure 7 (bottom)

shows the log of the network size vs. log of the average

number of messages sent. Since this is a log-log plot, the

slopes of the two lines fitting the data points give a good

approximation to the exponents of n in the function

giving the average message cost. Thus, as expected, in

this plot the slope for the line for the CKS algorithm is

approximately 1. Moreover, as expected, the slope for

our algorithm is about 1/2, since the almost everywhere

to everywhere part of the algorithm requires each node

to send Õ(n1/2) messages.

Figure 8 (top) shows the log of the network size

vs the average number of bits sent. For this metric, our

algorithm performs better than the CKS algorithm for all

networks of size greater than about 1, 000. This is due to

the larger message sizes of the CKS algorithm because

of its extensive use of cryptography. The bit complexity

barely registers on the graph because of the resolution

and since it is at most of the order of 108 bits. Figure

7 (bottom) shows the log of the network size vs. log of

the average number of messages sent. Again the CKS

algorithm displays linear slope for this plot. However,

11

Helix

Sunday, October 17, 2010

Amortized
Robustness

Fool me once, shame on you. Fool me
times, shame on me.

Goal: Limit adversarial corruption of
messages in a communication network where
a majority of nodes are good

Problem: assigning fault when communication
involves multiple processors

ω(log n)

Jeffrey
Knockel

Sunday, October 17, 2010

Scalable Rational
Secret Sharing

Q: How to enable secret sharing when every
player is selfish: wanting to learn the secret, but
preferring for others not to learn it?

Known: Achieve with O(n) bits per proc

Goal: Achieve with O(log n) bits per proc

Application: Mediation in game theory

Yamel Torres-
Rodriguez

Sunday, October 17, 2010

Rational Gossiping
Want to disseminate a large file to large set of
players

File is broken into pieces, sent by a seeder

Each player is selfish

Only shares pieces if in best interest

Leaves when it receives all the pieces

Nathan
Hjelmn

Sunday, October 17, 2010

Collaborators
Current Students: Olumuyiwa Oluwasanmi, Jeffrey
Knockel, Yamel Torres-Rodriguez, Nathan Hjelmn

Former Students

PhD: Vishal Sanwalani (Waterloo/MSR),
Amitabh Trehan (Technion), Navin Rustagi (Rice)

Masters: Maxwell Young (Waterloo), Bo Wu
(Microsoft)

Non-students: Valerie King (U. Victoria), Varsha
Dasani (UNM), Jim Aspnes (Yale), David Kempe
(USC), Erik Vee (Yahoo Research)

Sunday, October 17, 2010

Questions?

Sunday, October 17, 2010

