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Abstract. In the ANTS (Ants Nearby Treasure Search) problem, mul-
tiple searchers, starting from a central location, search for a treasure.
The searchers cannot communicate and have few bits of initial knowl-
edge, called advice, when they begin the search. In this paper, we initiate
the study of ANTS in the geometric plane.
Our main result is an algorithm, GoldenFA, that tolerates arbitrarily
many crash failures caused by an adaptive adversary, and requires no

bits of advice. GoldenFA takes O
!!

L+ L2(t+1)
ND

"
logL

"
expected time

to find the shape, for a shape of diameter D, at distance L from the
central location, with N searchers, t < N of which suffer adversarial
crash-failures.
We complement our algorithm with a lower bound, showing that it is
within logarithmic factors of optimal. Additionally, we empirically test
GoldenFA, and a related heuristic, and find that the heuristic is consis-
tently faster than the state-of-the-art. Our algorithms and analysis make
critical use of the Golden Ratio.

Keywords: Golden Ratio, Reliability, Computational Geometry, Natu-
ral Algorithms

1 Introduction

How can multiple simple searchers best find a target? Feinerman, Korman and
others formalized this question by defining the ANTS (Ants Nearby Treasure
Search) problem, where many searchers, all starting at a central location, seek a
hidden target [10, 11, 9]. In this paper, we extend results on the ANTS problem in
two key directions. Our first extension is to consider search on a 2-dimensional
plane, rather than on a grid graph. This has two advantages for applications
involving geometric search.1 First, it allows us to more easily design search algo-
rithms for targets of different sizes and shapes. Second, it avoids the problem of
choosing the correct granularity for the grid graph. In particular, if the granular-
ity is too low, then the target may not overlap any node. But if the granularity
is too high, it places a high computational burden on the searchers.

! With apologies to the cast and crew of the Hollywood classic Snakes on a Plane.
This work is supported by the National Science Foundation grant CNS 1816250.

1 Our own motivating application is drones searching for gas plumes [30, 1].
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Our second extension is ensuring provable robustness to adversarial failures,
without requiring communication among searchers. Importantly, our algorithm
can tolerate all but 1 searcher crashing, and the efficiency of our algorithm
decreases only linearly with the actual number of faults, even when that number
is not known in advance.

Our Model. N searchers start at a central location, called the nest. We define
a treasure to be a convex shape with ratio of diameter to width equal to a fixed
constant. Recall that the diameter of a convex shape is the largest distance
between two parallel lines that are both tangent to the boundary of the shape,
and that the width is the smallest such distance.2

A treasure of diameter D is placed adversarially at a distance L from the
nest, where L is measured from the nest to the geometric center of the treasure.
The searchers are synchronous in the sense that they all move at the same speed,
and that local computation is instantaneous. The searchers cannot communicate
with each other, and have zero bits of initial knowledge, including no knowledge
of L or D. We measure the time it takes for some searcher to first locate the
treasure. We refer to this as the search time of our algorithm. Our failure model
is based on an adaptive adversary considered in [23]. In particular, an omniscient
adversary chooses t < N searchers that suffer crash failures at times chosen by
the adversary.

We assume that every searcher has the ability to turn at angles of both π

and 2π/φ, where φ = 1+
√
5

2 is the Golden Ratio. When turning at an angle of α,
let β = 2π−α, be the remaining angle in the circle. Then to turn at an angle of
π, requires that the searcher has the ability to turn until α = β. To turn at an
angle of 2π/φ, requires that the searcher have the ability to turn until 2π

α = α
β .

1.1 Our Results

Our upper bound, summarized in the theorem below, considers N searchers
looking for a treasure of diameter D at distance L, with t < N crash failures.

Theorem 1. There exists an algorithm, GoldenFA, that in the presence of up
to t < N crash failures, is able to locate a treasure of unknown diameter D,
placed adversarially at an unknown distance L from the nest, in expected search

time O
!!

L+ L2(t+1)
ND

"
logL

"
.

Additionally, GoldenFA requires zero bits of initial knowledge, called ad-
vice; it is uniform in that the searchers know nothing about N , and have no
unique identifiers.

We prove lower-bounds, showing that the expected run time of GoldenFA is
within logarithmic factors of optimal among a class of spoke-based algorithms. A
spoke-based algorithm is one where the searchers only search along line segments,
where each line-segment has an end-point in the nest, the central location where
the searchers all start. See Section 6 for details.
2 For example, a treasure can be a circle, regular polygon, or rectangle with constant
aspect ratio.
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Algorithm Advice (bits) Robustness Runtime

F&K (advice) O(log logN) Not Robust O
!
L+ L2

N

"
for D = Θ(1)

F&K (no advice) 0 Not Robust O
!!

L+ L2

N

"
log1+ε N

"
for fixed

ε > 0 and D = Θ(1)

GoldenFA 0 t < N O
!!

L+ L2(t+1)
ND

"
logL

"

Table 1. A comparison of GoldenFA and the algorithms by Feinerman and Ko-
rman [10] (abbreviated as F&K). While the latter are not provably robust against
adversarial crash failures, GoldenFA can efficiently handle all but one searchers to
fail, even when these failures are scheduled by an adaptive adversary.

Our algorithm makes use of the Golden Ratio, both to ensure robustness and
to ensure good coverage during the search. To the best of our knowledge, our
algorithm is the first for the ANTS problem that makes use of this value.

1.2 Novelty and Technical Challenges

Our upper bound makes critical use of the Golden Ratio, and the difficultly to
approximate it rationally. In particular, we can write any number as a (possibly
infinite) continued fraction [18] of the form x1 +

1
x2+

1
x3+...

, where the xi values

are all integers for i ≥ 1. The degree to which the original number is well-
approximated by a finite continued fraction depends on how large the xi values
are. For example, if x2 is large, then the absolute difference between x1 and
the original number is small; if x3 is large, then the absolute difference between
x1 + 1/x2 and the original number is small, and so forth.

When xi = 1 for all i ≥ 1, we obtain an irrational number that is most
difficult to approximate. To find this most difficult to approximate irrational
number, we set y = 1 + 1

y , and solve the resulting quadratic equation to obtain

a solution y = 1+
√
5

2 , which is the celebrated Golden Ratio φ.

Using φ to spread-out spokes. In our algorithm, searchers proceed from the
nest in line segments that we call spokes. Each new spoke is oriented at arc
length φ, along the unit circle, from the previous one. The fact that φ is difficult
to approximate with a rational number has useful implications in ensuring the
angles between spokes are “well-spread”. For example, if we start at the point 0
on a unit circle, and iteratively add points by moving clockwise by arc distance
φ, then we will end up with near uniform distance between points (See Lemma 3
and [20, 29]). In particular, if x spokes are added this way, then the maximum
arc length on a unit circle between neighboring spokes is O (1/x) by the Three
Gap Theorem (see Lemma 3). This allows us to locate the treasure efficiently,
when D is unknown. Interestingly, this has connections to how plants add leaves
as they grow. In particular, if the next leaf is added by moving arc length φ
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along a unit circle, this ensures that leaves are well-spread, which increases their
exposure to sunlight [27].

Using φ to handle failures. In our algorithm, each searcher creates the first
spoke at a random heading and then iteratively proceeds to the next spoke by
moving an arc distance φ along the unit circle (see Figure 1). Thus, even in the
presence of t = N − 1 failures, the gaps between the spokes generated by the
single remaining searcher decrease linearly and the treasure is found. This way,
our algorithm eventually succeeds even when all but one searcher crashes.

Unknown L. Since L is unknown, we must carefully balance increasing spoke
lengths and decreasing arc lengths between spokes over time. Simple doubling of
spoke lengths over time is inefficient. Instead, our algorithm proceeds in epochs,
where in epoch i, we search along spokes of length 20, 21, . . . , 2i−1. In each epoch,
we ensure that the amount of time spent searching along spokes of length 2j is
the same for all 0 ≤ j < i. We do this by having 2i−1 spokes of length 20, 2i−2

spokes of length 21, and so on up to 20 spokes of length 2i−1 (see Figure 2).
Additionally, the angles between these spokes is determined using the Golden
Ratio so that the angular gaps decrease linearly with the number of spokes.

1.3 Paper Organization

The rest of the paper is organized as follows. We discuss related work in Sec-
tion 2 and some technical preliminaries in Section 3. We describe GoldenFA in
Section 4 and analyze it in Section 5. We then give our lower bounds in Section 6.
We provide empirical results on GoldenFA, comparing it with existing work,
in Section 7. Finally, we conclude and discuss areas for future work in Section 8.

2 Related Work

Search is a fundamental problem in biology, where survival depends on search
for mates, prey and other resources. It is also a common problem in robotics
and mobile computing. Collective search, where multiple searchers must coordi-
nate, is a key problem in computer science, robotics and in social insects. Ant-
and bee-inspired algorithms have been particularly influential in swarm robotics
research [28, 22, 16].

ANTS. Feinerman, Korman et al. [11, 9, 10] introduced the ANTS problem
where multiple searchers starting from the same central location search for a
treasure. Searchers are simple in that they cannot communicate and have few
bits of initial knowledge, called advice, when they first leave the nest. Research
on this problem now extends in multiple directions including: tradeoffs between
computational resources and knowledge of searchers and the search time [9, 24, 7];
tradeoffs between communication and search time [25, 23, 3]; fault-tolerance [23];
handling asynchronous searchers [25, 8]; and game theoretic analysis of rational
searchers [4]. As stated previously, our model is equivalent to that of [11, 9, 10],
except that we search for a convex treasure in the infinite plane, rather than
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a single vertex on an infinite grid. We note that the paper [11], while alluding
to search on the plane, actually performs search on a two dimensional grid, by
assuming each agent has a “bounded field of view of say ε” (Section 2 of [11]).

There are two potential benefits to avoiding this type of discretization. First,
in some search applications, such as gas plume detection [30], there may be no
clear analogue to a bounded “field of view”. In this case, choosing ε too large
risks missing the treasure, but choosing ε too small increases computational load
on the searchers, since coordinate storage space seems to grow as Ω(log(1/ε)).
Second, searching in the geometric plane more naturally allows for consideration
of different shapes and sizes for the treasure. In many search applications, this
seems important since targets are likely to be large or to be co-located, in both
biological [13, 2] and engineering systems [14, 30].

Golden Ratio. Our algorithms make critical use of the celebrated Golden Ra-
tio. This ratio is the limit of the ratio of consecutive numbers in the Fibonacci
sequence. Fibonacci generated the sequence as an idealized model of a reproduc-
ing rabbit population assuming overlapping generations [6]. It was documented
in India many centuries earlier, and has been observed in numerous biological
systems including the arrangement of pine cones, unfurling of fern leaves, and
the arrangement of sunflower seeds that optimally fills the circular area of the
flower [27]. The Golden Ratio and Fibonacci numbers have been used in com-
puter science for various applications like obtaining optimal schedules for security
games [17], Fibonacci hashing [20], bandwidth sharing [15], data structures [12]
and game theoretic models for blocking-resistant communication [19]. See [26]
for a fascinating discussion of the history and applications of the Golden Ratio.

Crash Faults. To the best of our knowledge, work by Langner et al. [23] is
the only other result that tolerates adversarial crash failures for a problem sim-
ilar to ANTS. However, their model significantly deviates from ANTS in that
they allow communication. In particular, constant-sized messages can be ex-
changed between searchers when they are both at the same location. Addition-
ally, their searchers are much more restricted than ours in that they are modeled
by finite-state automata. They describe an algorithm that locates a single tar-
get in O

#
L+ L2/N + Lt

$
time, while tolerating t ≤ cN crash failures for some

constant c < 1. In contrast, our algorithm can handle any t < N − 1, and does
not require communication.

3 Technical Preliminaries

Let φ = (1 +
√
5)/2 denote the Golden ratio. For m ≥ 1, let Fm denote the mth

Fibonacci number, so that F1 = F2 = 1 and Fm = Fm−1 + Fm−2 for all m ≥ 3.
Given integer n, let m(n) denote the index of the largest Fibonacci number not
greater than n.

Lemma 1. For all x ≥ 1, the following properties hold:

1. ⌊logφ x+ 1⌋ ≤ m(x) ≤
%
logφ x+ 2

&
.
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Fig. 1. A schematic of the gaps induced by points placed on the unit circle, following
Lemma 3. When the arc distance between successive points is φ ≡ φ−1 mod 1, then
the gaps decrease as the number of points increase.

2. 1
φ3x ≤ φ−m(x) ≤ 1

x .

Proof. For (1), using the fact that Fr ≤ φr−1 for all r, it holds that F⌊logφ x+1⌋ ≤
φ⌊logφ x+1⌋−1 ≤ x. Similarly, since Fr ≥ φr−2 for all r, it holds that F⌈logφ x+2⌉ ≥

φ⌈logφ x+2⌉−2 ≥ x. For (2), using the result obtained in (1), we obtain φ−m(x) ≤
φ−⌊logφ x+1⌋ ≤ 1

x . Similarly, φ−m(x) ≥ φ−⌈logφ x+2⌉ ≥ 1
φ3x . ⊓⊔

We define a unit circle as a circle around the nest with circumference one.

Lemma 2. Let the treasure be oriented so that its diameter is perpendicular to
the spoke ending at the diameter midpoint. Let α be the arc length on the unit
circle made by the two spokes that are tangent to the diameter. Then,

1. α = 1
π sin−1

#
D
2L

$
; and

2. α ≥ D
2πL .

Proof. Part (1) follows by definition. Part (2) follows from the Maclaurin expan-
sion [21] of sin−1 x, from which it follows that sin−1 x ≥ x. ⊓⊔

Our analysis makes use of the following lemma regarding the Three Gap
Theorem by Swierczkowski [29] (also known as the Steinhaus Conjecture) for
Golden-ratio based gaps between successive points on the circumference of a
unit circle (see Figure 1). In this lemma, the set of points on the unit circle
is equivalent to the set of points generated by our algorithm. This holds since
φ−1 ≡ φ mod 1, because φ−1 = φ − 1. The last sentence of the lemma follows
immediately from Lemma 1(2).

Lemma 3 (Restatement of Corollary 2 from [29]). Let C be a circle of
circumference 1 and p0 be a fixed starting point on C. For k ≥ 0, let pk be the
point which makes an arc of length kφ from p0, measured clockwise. Let n ≥ 1
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Algorithm 1: The GoldenFA Algorithm.

/* Each searcher independently performs the following steps. */

1 i ← 1;
2 while treasure not found do
3 direction ← uniformly random heading on the unit circle;
4 for j ∈ {0, . . . , i− 1} do
5 Traverse 2i−j spokes of length 2j . The first spoke is at heading

direction. Each subsequent spoke has heading that increases
clockwise by arc distance of φ, along the unit circle, from the heading
of the previous spoke.;

6 end
7 i ← i+ 1;

8 end

and Fm be the largest Fibonacci number no more than n. Then, the set of points
Pn = {p0, p1, . . . , pn} partition C into disjoint arcs, each of which has length
φ−m,φ−m+1 or φ−m+2. In particular, this implies that every disjoint arc has

length between 1
φ3n and φ2

n .

In the rest of the paper, we will assume circular treasures but our results
hold for all convex shapes where the ratio of the diameter to the width is a fixed
constant. We assume that L is the distance from the nest to the center of the
circular treasure.

Our algorithm is designed to search in the real plane, R2. We note, however,
that it can be adapted to search in the infinite two-dimensional grid as follows.
For every spoke generated by our algorithm, create a walk on the grid that visits
every edge incident to every face in the grid that is intersected by the spoke. This
ensures that we will find any treasure that overlaps a grid vertex. Additionally,
it increases total search time by at most a constant factor.

4 GoldenFA

Algorithm 1 describes our main algorithm, GoldenFA. The algorithm proceeds
in epochs numbered iteratively starting at i = 1. In epoch number, i, each
searcher initially chooses a random initial heading direction. Then for all j,
1 ≤ j ≤ (i − 1), the searcher traverses along 2i−j spokes of length 2j . Each
spoke starts and ends at the nest. For each value of j, the first of these spokes
is at heading direction, and each subsequent spoke has heading that increases
clockwise along the unit circle at arc length of φ from the previous spoke. Thus
in epoch i, a total of

'i−1
j=0 2

i−j = 2i+1 − 1 spokes are traversed. If the treasure
is not found after these traversals, epoch i ends and epoch i+ 1 begins.

Figure 2 illustrates two epochs of GoldenFA when N = 2.
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NEST

Epoch 2
2 spokes of length 1
1 spoke of length 2

12 1

2
4

Epoch 3
4 spokes of length 1
2 spokes of length 2
1 spoke of length 4

Fig. 2. A schematic of GoldenFA is shown for the spokes made by two searchers in
epochs 2 and 3 (red solid lines for searcher 1 and green dotted lines for searcher 2).
Both searchers choose a random initial heading at the beginning of every epoch.

5 Analysis

We next analyze GoldenFA and compute its runtime as a function of the
unknown parameters: treasure diameter, its distance from the nest, the number
of searchers and the number of crash failures. In the following, all log terms are
base 2.

Lemma 4. In epoch i ≥ logL, the probability that a single searcher finds the

treasure is at least α2i−(logL)−5, where α ≥ D
2πL . In any epoch i ≥ logL+log φ2

α +
1, a searcher finds the treasure with probability 1.

Proof. When i ≥ logL, there will be 2i−⌈logL⌉ spokes of length at least L, where
the first of these spokes has a uniformly random orientation, and the remainder
are spread out at successive clockwise arc distances of φ. By Lemma 3, the
maximum arc length between any neighboring pair of these 2i−⌈logL⌉ spokes is
φ22−i+⌈logL⌉. By Lemma 2, if any of these spokes intersect an arc of length α,
where α ≥ D

2πL , then the searcher will find the treasure. Thus, for i ≥ logL +

log φ2

α + 1, a searcher is guaranteed to find the treasure.
By Lemma 3, the minimum arc length between any neighboring pair of x

spokes is 1
φ3x . Thus, when x ≤ 1

αφ3 , all spokes are arc distance at least α apart.
If there are x such spokes of length at least L, the probability that one of these
spokes intersects the treasure is xα. To see this, imagine fixing the x spokes, and
then letting the α length arc associated with the treasure move uniformly at
random on the circumference of the unit circle. The total measure of locations
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where the treasure may fall so that it intersects a spoke is then xα. Hence, when
logL ≤ i ≤ ⌈logL⌉ + log 1

φ3α , the probability that a single searcher finds the

treasure is at least α2i−⌈logL⌉ ≥ α2i−(logL)−1.

Finally, note that for ⌈logL⌉+log 1
φ3α < i < logL+log φ2

α +1, the probability

that a single searcher finds the treasure is at least 1/φ3. Thus, in this range, the
probability of finding the treasure is at least α 1

φ5 2
i−⌈logL⌉ ≥ α2i−(⌈logL⌉+4) ≥

α2i−(logL)−5. ⊓⊔

Theorem 2. In the presence of up to t < N crash failures, GoldenFA takes

an expected number of times steps that is O
!!

L+ L2(t+1)
ND

"
logL

"
.

Proof. First, we consider the case where 2(t + 1) > N . By Lemma 4, when

i ≥ logL+ log φ2

α +1, all searchers will find the treasure. Thus, in this case, the
total time of GoldenFA is no more than

logL+log φ2

α +1(

i=1

i2i = O

)
Lφ2

α
log

Lφ2

α

*
.

This is the claimed number of time steps when t = Θ(N), since α = Θ(D/L).

Next, assume that 2(t + 1) ≤ N . We first compute the expected number of
searchers that find the treasure in each epoch, and then use this expectation to
bound, for each epoch, the probability that the total number of searchers that
find the treasure is no more than the total number of faults.

For any epoch i, let Si be a random variable giving the number of searchers
that find the treasure in epoch i. By Lemma 4, and linearity of expectation, we

have that for logL ≤ i ≤ logL+ log φ2

α + 1,

E(Si) ≥ Nα2i−(logL)−5,

where α ≥ D
2πL . Since each searcher finds the treasure independently, we can

use Chernoff bounds on Si (See [5], Exercise 1.1). These show that Pr(Si <
(1/2)µL) ≤ e−µL/8, where µL = Nα2i−(logL)−5 is a lower bound on the expected
value. Let

i∗ = (logL) + 5 +max

)
0, log

2(t+ 1)

Nα

*
.

Then E(Si) ≥ 2(t+ 1), when i ≥ i∗ and 2(t+ 1) ≤ N . Thus, for i ≥ i∗,

Pr(Si < t+ 1) ≤ e−Nα2i−(log L)−8

.

This bound holds even for i ≥ logL + log φ2

α + 1, since for i in that range,
Pr(Si < t+ 1) = 0, since each searcher finds the treasure with probability 1.

Let X be a random variable giving the number of epochs until more than
t searchers find the treasure. Note that Pr(X ≥ i) ≤ Pr(Si−1 < t + 1), where
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Pr(S0 < t + 1) = 1. Then, we can bound the expected search time of our
algorithm as follows.

(

i≥1

i2iPr(X ≥ i) =
(

i≥1

i2iPr(Si−1 < t+ 1)

≤
(

1≤i<i∗

i2i +
(

i≥i∗

i2ie−Nα2i−(log L)−8

Let S1 be the value of the first sum. Note that:

S1 =
(

1≤i<i∗

i2i

= O

)
L logL+

)
L(t+ 1)

αN

*
log

+
L(t+ 1)

αN

,*

Let S2 be the value of the second sum. Note that:

S2 =
(

i≥i∗

i2ie−Nα2i−(log L)−8

≤ 2i∗2i
∗ (

j≥1

j2je−Nα2j+i∗−(log L)−9

≤ 2i∗2i
∗ (

j≥1

exp
!
ln j + j ln 2− 2j+i∗−(log L

Nα )−9
"

In the above, the second line holds by noting that for all j ≥ 1 and x ≥ 1,
(x+ j)2x+j ≤ 2(x2x)(j2j), and letting x = i∗. Next, we bound the exponent:

ln j + j ln 2− 2j+i∗−(log L
Nα )−9 ≤ ln j + j ln 2− 2j−3

≤ −j

In the above, the first line holds since i∗ = (logL) + 5 + max
!
0, log 2(t+1)

Nα

"
≥

5 + log 2L(t+1)
Nα ≥ 6 + log L

Nα . The second line holds when j ≥ 7, since then
ln j + j ln 2− 2j−3 ≤ −j. Hence, the infinite summation is O(1). Thus, we have
that

S2 ≤ 2i∗2i
∗ (

j≥1

exp
!
ln j + j ln 2− 2j+i∗−(log L

Nα )−9
"

= O

)
L logL+

)
L(t+ 1)

αN

*
log

+
L(t+ 1)

αN

,*

By Lemma 2, α ≥ D
2πL , so the total expected cost of GoldenFA is:

O

)
L logL+

)
L2(t+ 1)

ND

*
log

+
L2(t+ 1)

ND

,*
.
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Finally, note that log
-
L2(t+1)

ND

.
= O(logL + log(t + 1) − logN − logD) =

O(logL), since N ≥ t+ 1.
Thus, we can simplify the above to:

O

))
L+

L2(t+ 1)

ND

*
logL

*
.

Note that this is tight since if the log term on the right is less than logL, it

means that L2(t+1)
ND ≤ L, in which case the first summand dominates. ⊓⊔

6 Lower Bound for Spoke-Based Algorithms

We now prove a lower bound on the number of time steps that any spoke-based
algorithm must take to locate the treasure in the presence of adversarial crash
failures.

Theorem 3. In the presence of up to t < N crash failures, any spoke-based

algorithm requires Ω
!
L+

!
L2(t+1)

ND

"
logL

"
time steps to locate the treasure.

Proof. By Yao’s lemma [31], the search time of the best randomized algorithm
equals the search time of the best deterministic algorithm against a known ran-
domized adversary. Thus, we compute the search time for the best deterministic
algorithm against a known but randomized adversarial placement of the treasure.
Adversarial Strategy. Let x be a positive integer and y be an integer chosen
uniformly at random in [0, x]. Let L = 2y and L/D = 2x−y. Choose an integer z
uniformly at random in [0, L/D]. Let the treasure be an ellipse with diameter D
and an arbitrary small width. Place this ellipse so that its center is at distance
L from the nest, in the direction from the nest that is oriented at arc distance
zD
L along the unit circle. Rotate the ellipse so that its diameter is perpendicular
to the ray connecting the nest and the center of the ellipse.

Lower Bound Against This Strategy. Assume the algorithm knows the value
x; the randomized adversarial strategy above; and t, the number of faults that
will occur. The algorithm can be represented as a sequence, σ, of tuples. Each
tuple corresponds to some searcher’s first visit to a region that is a possible
treasure location. In particular, tuple (ℓ, a) corresponds to a visit to any point
in the ellipse with center at distance ℓ from the nest, and orientation that is arc
length a along the unit circle centered at the nest. The tuples in σ are all sorted
by time of visit to first point in the ellipse, with ties broken arbitrarily.

First, note that there is 1 unique tuple of length 2x: (2x, 0); 2 unique tuples of
length 2x−1: (2x−1, 0) and (2x−1, 1/2); 4 unique tuples of length 2x−2: (2x−2, 0),
(2x−2, 1/4), (2x−2, 1/2), (2x−2, 3/4); and so forth. Next, observe that each unique
tuple, (ℓ, a), appears in σ at least t + 1 times. This is necessary since each
possible ellipse must be visited by t + 1 searchers in order for the algorithm to
be robust to t adversarial faults. Finally, note that visiting any point on the
ellipse corresponding to (ℓ, a) requires movement of Ω(ℓ), no matter at what
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tuple, (ℓ′, a′) the searcher visiting (ℓ, a) was previously at. To see this, first note
that if ℓ = ℓ′, then the distance travelled between these two tuples is Ω(ℓ)
since there must be a trip to the nest between the tuples, because the algorithm
is spoke-based. Second, if ℓ ∕= ℓ′, draw two squares centered at the nest, one
enclosing (ℓ, a), and the other enclosing (ℓ′, a′). Then, note that the minimum
distance between the squares is Ω(ℓ).

The expected total distance travelled by all searchers in the algorithm is
then given as follows. Select a tuple in σ uniformly at random, and sum up the
lengths of all tuples preceding, and including, the selected tuple in σ. Let X be
the random variable giving this sum. Note that X stochastically dominates the
following random variable, X ′: Let σ′ be a sequence where each tuple in σ of the
type (ℓ, a) is expanded to ℓ copies. Select a tuple uniformly at random in σ′ and
let X ′ be the index of the selected tuple.

Note that E(X ′) is half the length of σ′, and that the length of σ′ = (t+1)x2x.
Thus, E(X) ≥ E(X ′) ≥ (1/2)(t + 1)x2x. Finally, note that, since there are N
searchers, the expected search time is at least the total distance travelled by all
searchers divided by N . By linearity of expectation, the expected search time is

thus at least (t+1)x2x

2N . Since 2x = L2/D, then (t+1)x2x

2N = Ω
!

(t+1)L2 logL
ND

"
. The

lower bound is this value plus L, since no matter the values of D, N and t, the
total search time is always at least L. ⊓⊔

7 Empirical Evaluation

We implement GoldenFA and algorithms from [10] to empirically evaluate
how search time changes as we increase: the ratio of the diameter of treasure
to distance to treasure (D/L); the number of searchers (N); and the fraction
of random crash failures (t/N). We compare GoldenFA to algorithms from
Feinerman and Korman in [10].

7.1 Setup

We implemented four algorithms. GoldenFA is our algorithm from Section 4.
F&K-Advice is Algorithm 1 from [10]; it requires O(log logN) bits of advice.
F&K-NoAdvice is Algorithm 2 from [10] with ε = .01; it requires zero bits of
advice. Since the value for ε in Algorithm 2 is not specified in [10], we conducted
experiments to determine that the setting ε = .01 performs well empirically.

GoldenFA-Heuristic is the last algorithm. In this algorithm, for epoch
i ≥ 1, there are

%
c(1 + α)i

&
spokes of length (1 + α)i, for parameters c,α > 0.

Similar to the GoldenFA, each spoke in this is at arc distance equal to the
Golden Ratio from the previous. We set c = 1.9 and α = 7, since they perform
well empirically.

In all of our experiments the treasure is a circle with diameter D. For each
data point plotted, 150 trials were run and the average search time was plotted.
The location of the treasure was kept fixed throughout all trials. The search
time reported is time steps, where one time step is the amount of time it takes
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(1) N = 1, L = 500

(2) L = 500, D = 4

(3) L = 500, D = 4, N = 100. Timeout = 108 time steps

1

Fig. 3. Search time versus D/L; L = 500,
N = 1, and D is varied.

(1) N = 1, L = 500

(2) L = 500, D = 4

(3) L = 500, D = 4, N = 100. Timeout = 108 time steps

1

Fig. 4. Search time versus N ; L = 500
and D = 4.

a searcher to travel a distance of 1. All algorithms were implemented in Python
3.6, and all experiments were run on a Macbook Pro with 2.6 GHz Intel Core i7
processor and 16GB RAM.

7.2 Results

Our results show how search time changes as we vary three different values. In
particular, we include three plots giving results of experiments based on varying
(1) the ratio D/L, where D is the treasure diameter and L the distance from
the nest to the center of the treasure; (2) the number of searchers N ; (3) and
the fraction of faults t/N . In each plot, search time is the independent variable,
and it is plotted on a logarithmic scale.

Search Time versus D/L. Our first experiment tracks search time as the
ratio D/L increases. The value of L is fixed at 500, and D increases from 1 to
500.

Figure 3 shows how search time decreases as D/L increases from .1 to 1. As
the plot shows, search time decreases for all algorithms. GoldenFA-Heuristic
consistently has the best search time across values tested, with performance that
is always between 1 and 2 orders of magnitude better than all other algorithms,
when D/L is greater than about .15. Next, in performance, are GoldenFA
and F&K-NoAdvice. Initially F&K-NoAdvice has worse search time than
GoldenFA, but as D/L increases, they both trend towards roughly similar
performance. Last, in the plot is F&K-Advice, which does not decrease nearly
as much as the other algorithms as D/L increases.

It is surprising that F&K-NoAdvice performs better than F&K-Advice
as D/L increases. We conjecture this holds because (1) F&K-NoAdvice has an
algorithmic parameter (ε), while F&K-Advice has none; and (2) we optimized
this parameter based on empirical feedback.
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(1) N = 1, L = 500

(2) L = 500, D = 4

(3) L = 500, D = 4, N = 100. Timeout = 108 time steps

1

Fig. 5. Search time versus the fraction of fail-
ures (t/N); L = 500, D = 4 and N = 100.

Search Time versus N . Our
second experiment tracks search
time versus the number of searchers,
N . Figure 4 shows the outcome
when L = 500, D = 4, and N
varies from 1 to 200.

In this plot, search time of
all algorithms decreases with N .
GoldenFA-Heuristic performs
about 2 orders of magnitude bet-
ter than any other algorithm,
for all values of N tested. Next
comes F&K-NoAdvice, which
performs up to a factor of about
5 better than the remaining al-
gorithms. Finally, GoldenFA and F&K-Advice are last, with performance
roughly equal for large N .

Search Time versus t/N . Our last experiment tracks search time as the ratio
t/N increases, where t is the number of crash failures and N is the number of
searchers. In these experiments, we hold the following values fixed: L = 500,
D = 4, N = 100; and we vary t from 0 to 99. For each value of t, a random
subset of t searchers are removed after the first 100 time steps of the algorithm.
To prevent any algorithm from running forever, a hard timeout was set at 108

time steps.
The results are given in Figure 5. Again GoldenFA-Heuristic has fastest

search time over the entire range of values tested, with performance a bit less
than an order of magnitude better than then next fastest algorithm, F&K-
NoAdvice. F&K-NoAdvice has search times which increase slowly as t/N
increases. GoldenFA comes next with a search time that increases more rapidly
with t/N . Finally, F&K-Advice comes last, with search time increasing rapidly
with t/N until it times out when t/N is roughly about .20. Our theoretical
analysis suggests that search time forGoldenFA would increase roughly linearly
with t/N . Results from this experiment suggest this is the case with slope of
approximately 10 for search time as a function of t/N .

8 Conclusion and Future Work

We have described an algorithm, GoldenFA that solves the ANTS problem
by finding a treasure that is a convex shape with any diameter D, even in the
presence of t < N crash failures. We have proven that our algorithm takes

O
!!

L+ L2(t+1)
ND

"
logL

"
expected search time, where L is the distance from

the nest to the treasure and N is the number of searchers. Additionally, we
have proven a near-matching lower bound on search time for a class of “spoke-
algorithms”, which search only via line segments emanating from the nest. Our
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algorithm uses the Golden Ratio to spread out search spokes uniformly, even in
the presence of many crash failures.

Several interesting problems remain including the following. Can we develop
a non-spoke-based algorithm that removes the logarithmic terms in our search
time, but is still robust to failures and does not require advice? Fibonacci spirals
are quite commonly used in nature for space-filling applications, so they may be
useful for this open problem.

Another interesting open problem is to extend our results for multiple trea-
sures with different shapes and orientations. It is possible for a treasure to have a
large L but its orientation is such that the nearest point to the nest is only Θ(1)
units away. This treasure can be located in Θ(1) time steps by searching along
a spiral around the nest. However, when rotated, this treasure can be oriented
in a way that now requires O(L2/D) time steps.
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