
Cooperative Computing for Autonomous Data Centers

Jonathan Berry ∗, Michael Collins‡, Aaron Kearns†, Cynthia A. Phillips∗, Jared Saia† and Randy Smith∗
∗Sandia National Laboratories, Albuquerque, NM

Email: jberry@sandia.gov; caphill@sandia.gov; ransmit@sandia.gov
†Computer Science Department, University of New Mexico,
Farris Engineering Building, Albuquerque, NM 87131-1386

Email: aaron.kearns.username@gmail.com; saia@cs.unm.edu
‡Christopher Newport University, Newport News, VA, michael.collins@cnu.edu

Abstract—We present a new distributed model for graph
computations motivated by limited information sharing.
Two or more independent entities have collected large
social graphs. They wish to compute the result of running
graph algorithms on the entire set of relationships. Because
the information is sensitive or economically valuable, they
do not wish to simply combine the information in a
single location. We consider two models for computing
the solution to graph algorithms in this setting: 1) limited-
sharing: the two entities can share only a polylogarithmic
size subgraph; 2) low-trust: the entities must not reveal
any information beyond the query answer, assuming they
are all honest but curious. We believe this model captures
realistic constraints on cooperating autonomous data cen-
ters.

We have results for both models for s-t connectivity, one
of the simplest graph problems that requires global infor-
mation in the worst case. In the limited-sharing model,
our results exploit social network structure. Standard
communication complexity gives polynomial lower bounds
on s-t connectivity for general graphs. However, if the
graph for each data center has a giant component and
these giant components intersect, then we can overcome
this lower bound, computing s-t connectivity while ex-
changing O(log2 n) bits for a constant number of data
centers. We can also test the assumption that the giant
components overlap using O(log2 n) bits provided the
(unknown) overlap is sufficiently large.

The second result is in the low trust model. We give
a secure multi-party computation (MPC) algorithm that
1) does not make cryptographic assumptions when there
are 3 or more entities; and 2) is efficient, especially
when compared to the usual garbled circuit approach.
The entities learn only the yes/no answer. No party
learns anything about the others’ graph, not even node
names. This algorithm does not require any special graph
structure. This secure MPC result for s-t connectivity is
one of the first that involves a few parties computing on
large inputs, instead of many parties computing on a few
local values.

Keywords-graph algorithms; privacy; s-t connectivity;
distributed computing models; social networks;

I. INTRODUCTION

Consider two entities, Alice and Bob, who au-
tonomously observe the world, collecting information
on social relationships, which each represents as a social

graph. Alice would like to combine her information
with Bob’s to answer a query about the full set of
relationships. It is in Bob’s best interest to cooperate,
since he may need Alice’s help in the future. But
there are barriers to total information sharing, which we
model in two ways: 1) limited-sharing: Alice and Bob
can share only a polylogarithmic size subgraph; 2) low-
trust: Alice and Bob must not reveal any information
beyond the query answer, assuming they are both honest
but curious.

We are motivated by recent trends in data collection
over large social networks. Specifically, we consider
a small number of autonomous data centers that are
collecting data about a social network. Periodically,
these centers may want to collaborate to solve a com-
putational query. However, data is a critical resource, so
the centers want to answer the query while sharing as
little data as possible.1

Brickell and Shmatikov [1] were similarly motivated
when they conducted related work using a different
model. They provide several compelling examples in-
volving commercial entities that must evaluate the con-
sequences of a potential merger, or coordinate in some
useful way without revealing private details. Network-
ing companies would be interested in measuring the
efficiency of joint infrastructure before committing to
a merger, shipping companies would similarly need
to know the effects of merged capacities on efficient
routing, and social networking websites may wish to
collaborate to compute more accurate statistical mea-
sures of their users’ behavior without revealing private
information.

Our cooperative computing problem has overlap with
two mature research areas that deal with privacy: secure
multiparty computation and differential privacy. In se-
cure multiparty computation (MPC), a set of m parties,
each of whom has a private input, want to compute an
m-variate function over their inputs, without revealing

1We imagine that user data may be valued more by data centers
than it is valued by individuals, since the data centers can monetize
that data.

any information about their inputs (see e.g. [2] for
a survey of MPC). A novelty of our problem when
compared to most results in MPC is that the size of the
inputs held by the parties are very large. In differential
privacy, a single entity holds all the data, and the goal
is to answer queries as accurately as possible, while
minimizing the chance of leaking information about
individual records in that data (see e.g. [3]). By contrast,
in our problem, multiple entities hold the data. The
entities seek to minimize not the chance of identifying
individual records in the data, but rather the total amount
of information revealed about their own data set. Also,
they require that the query is answered exactly.

The term “data center” frequently refers to a dis-
tributed set of resources owned by a single entity
such as Google, cloud systems, or providers of web
services. Cooperation in such settings is a given, with
research focusing on providing quality of service while
minimizing energy or other costs. See for example these
surveys [4], [5]. In our setting, the data centers are
owned by autonomous, potentially competing parties
who nevertheless wish to compute cooperatively in
some cases while minimizing the loss of proprietary
information.

A. Our Model
Our model assumes a small number of autonomous

data centers. For simplicity of discussion here, we will
assume two centers, but our results generalize to any
small constant number of centers. Let Ga be Alice’s
graph and Gb be Bob’s graph. Alice and Bob wish to
perform computations on the graph GU = Ga∪Gb. Let
n be the number of nodes in GU . Alice and Bob build
their graphs by observing a common world graph G.
The fundamental observation is an edge representing a
relationship between two people. Alice and Bob know
nothing about each other’s graphs. However, the nodes
come from a shared namespace, so if Alice gives Bob
an edge (or vice versa), he will recognize the nodes if
he has seen them before, and therefore he knows where
that edge fits into his graph.

The world graph G is a social network, and therefore
has topological properties of a social network. In gen-
eral, Alice and Bob can each sample from this graph
according to arbitrary distributions. Thus Ga, Gb, and
GU do not necessarily inherit social network topological
properties in the worst case. However, for the algorithms
in Section III, we do assume that Ga and Gb both have a
giant component, a “standard” social network property.
See Section III-A for a more detailed discussion of this
assumption.

B. s-t Connectivity
In this paper, as a first approach to cooperative

computing, we focus only on the problem of s-t con-

nectivity. In particular, we assume that Alice and Bob
want to know if there is a path between node s and
node t in GU . Our motivation for focusing on this
problem is two-fold. First, s-t connectivity is one of
the simplest graph theoretic problems that can require
non-trivial communication in the case where the edges
of the graph are partitioned between Alice and Bob.
Second, we believe that s-t connectivity is a problem
of interest for autonomous data centers, both for direct
queries and as a building block for more sophisticated
graph theoretic problems such as clustering.

C. Our Results

Our primary contributions are the model of Sec-
tion I-A, and algorithms for s-t connectivity in two
variants of the model. First, a limited-sharing algorithm
that exploits social network properties, such as a giant
component, to achieve polylogarithmic communication
complexity under certain conditions (thereby circum-
venting a communication lower bound of Ω(n log n) for
general networks). Second, two versions of a low-trust
MPC algorithm that do not depend on cryptographic
assumptions if there are at least three data centers. These
MPC algorithms do not use heavy-weight techniques
like oblivious RAM. We also avoid compiling either
MPC algorithm into a single large circuit. We believe
that the correctness of the limited-sharing algorithm is
clear enough that prose descriptions are more appropri-
ate than a sequence of lemmas.

II. RELATED WORK

A. Communication Complexity

In a classical lower-bound result, Hajnal, Maass, and
Turàn [6] show that the communication complexity of
graph s-t connectivity, connectivity and bipartiteness all
are Ω(n log n) in a model that partitions the edges of
a graph among two data centers with no intersection.
These results had fundamental implications for VLSI
design. In contrast, our model is inspired by human
activity. We exploit the expected properties of social
networks to circumvent this lower bound and to obtain
polylogarithmic communication for s-t connectivity in
social networks.

B. Cloud Computing

Modern cloud computing offers additional motivation
for our model. Either of the entities represented by
Alice and Bob might have large amounts of data stored
in the same platform-as-a-service cloud resource (for
example the Amazon EC2 cloud [7]). Alice and Bob
still have the same concerns and will not share too much
of their data. Their portions of the cloud are simply
abstractions for geographically-distributed data centers,
whether they reside on racks in the same building or

not. Furthermore, their co-location on the same virtual
resource may encourage the actual implementation of
algorithms developed using our limited-sharing and/or
low-trust models.

C. Secure Multiparty Computation (MPC)

Brickell and Shmatikov [1] consider protocols for
secure two-party computation of all-pairs shortest paths
and single-source shortest distance. These protocols of
course reveal much more than the existence of an s-t
path. In addition, their protocols assume that each graph
is defined on the same set of nodes. That is, they assume
that both parties know all the nodes. If the node sets
were different to begin with, then this means that each
party must tell the other parties its nodes. This might
be equivalent to giving your customer list away to a
competitor. Thus, in our work, we seek to avoid this
assumption.

D. Giant component structure in social networks

Many real-world graphs including the Internet and
many social networks have a giant component that
contains almost all the nodes, and a small second-
largest component. Easley and Kleinberg [8] describe
informally why this is true for real human relationships.
Researchers have found a giant component in networks
representing social relationships. For example, Aiello
et al. [9] looked at call graphs from long-distance
phone calls in 1998 and showed they have a giant
component with the next smallest component O(log n).
Kang et al. [10] show empirically that the size of the
second smallest component for LinkedIn and Wikipedia
is bounded by the Dunbar number, which is roughly
150.

Many randomized graph generators also have a small
second-largest component. For example, the simplest
random graphs, Erdös-Rényi graphs [11], where each
edge appears with probability p, has a giant component
with a second-largest component of size O(log n) when
p = c/n for a constant c > 1. When p ≥ log n/n
the graph is almost certainly fully connected. We are
interested primarily in the case where the average degree
is bounded, which happens when p = c/n. Since the
average degree of such a graph is approximately c, then
c > 1 is the interesting case. Of course, real-world
graphs look nothing like Erdös-Rényi graphs, but this
is an interesting initial case theoretically.

Chung-Lu graphs, where each node vi has a desired
degree di, and edge (vi, vj) is included with proba-
bility proportional to didj , also have second largest
components of size O(log n) when the desired degree
distribution has a power law. Specifically, Aiello et
al. [9] consider distributions where the number of
nodes with degree d is eα/dβ for parameters α and

β. The parameter β is the power-law coefficient. Many
graphs obey or approximately obey a power-law degree
distribution (where the number of nodes of degree d
is proportional to d−β). Boginski et al. [12] argue
that graphs that represent correlations among financial
instruments (“market graphs”) have power law degree
distributions. Siganos et al. [13] argue that the AS-
level Internet graph has power law structure. Aiello et
al. [9] prove that for Chung-Lu graphs with power-law
degree distributions with β < 1, the graph is almost
surely connected. If 1 < β < 2, there is a giant
component and the second largest component is O(1).
For 2 < β < β0 ≈ 3.4785, there is a giant component
with smaller components O(log n). The special case of
β = 2 has smaller small components. If β > β0, there
is almost surely no giant component. Chung and Lu
also show (among other results) that when the average
desired degree is at least 1.5, a Chung-Lu graph has a
unique giant component where the total degree of nodes
in the giant component is Ω(n). Furthermore, the next
largest component has O(log n) nodes [14].

III. A LIMITED-SHARING s-t CONNECTIVITY
ALGORITHM

In this section we give a low-communication algo-
rithm for s-t connectivity for graphs GU in which the
second-largest connected component, called Cs, is small
compared to the number of nodes in GU . Although in
some cases, the algorithm could be modified to return
a path between nodes s and t, in general it only returns
the boolean answer to the question “Are nodes s and t
connected?”

The algorithm requires the following assumptions.
We assume GU has a single giant component and
|Cs| = O(log n), where n is the number of nodes
in GU . The algorithm also works in our low-sharing
model for |Cs| polylogarithmic in n, that is where
|Cs| = O(logh n) for a constant h. We assume Alice
and Bob have agreed to an upper bound γ on the number
of shared node names. This algorithm is correct if and
only if γ ≥ |Cs|.

We discuss how GU might inherit the giant compo-
nent property property from G. We give an algorithm
that exchanges a polylogarithmic number of bits. We
discuss one randomized way that Bob and Alice can
prove GU has a giant component provided the giant
component in Ga and the giant component in Gb
overlap by a constant fraction.

A. Inheriting Giant Component Structure

In section II-D, we discussed evidence that social
networks have a single giant component containing a
large fraction of the graph, where the size of the second-
largest component is polylogarithmic in the number

of nodes. We assume the base “world” graph G has
this property. Depending on the way each data center
samples graph G, it’s possible that |Ga|+ |Gb| � |G|.
However, we assume, since each represents the contents
of a data center, that |Ga| and |Gb| are large. It is always
possible for an adversary to select edges for Ga and Gb
that do not reflect the overall component structure of
the underlying graph G.

It is an interesting open problem to characterize the
sampling distributions for Alice and Bob that preserve a
giant component and a small second-largest component
in subgraphs like Ga ⊆ G. For the simplest case, the
subgraphs inherit these properties. Consider an Erdös-
Rényi (ER) graph created with a probability p = c/n
for a constant c > 1. These are values for p that give
the desired property in G. Create Gi ⊆ G with ni nodes
by sampling the edges of G with probability pi. This is
equivalent to generating an ER graph with initial proba-
bility p∗pi, since an edge survives with that probability.
If p∗pi > c′/n for some new constant c′ > 1, then each
of the subgraphs has a giant component and the second
largest component is be of size O(log ni).

For our s-t connectivity algorithm, we assume that
both Alice’s graph Ga and Bob’s graph Gb have giant
components called Ga` and Gb` respectively. Since
the graphs are social graphs, one could imagine them
evolving the way other social networks do, and having a
giant component based on the evidence in section II-D.
If Alice and Bob are companies and the nodes are cus-
tomers, one could imagine the customer base growing
in part by word of mouth to friends and acquaintances,
thus creating components that evolve as human social
networks do.

The graph GU ≡ Ga ∪ Gb is likely to have a
giant component as well. If Ga` ∩ Gb` 6= ∅, then it
does, because the giant components of Ga and Gb,
each containing most of Ga and Gb respectively join
to contain most of GU . If Ga` ∩ Gb` = ∅, then the
giant components may still be joined by a path through
smaller components to form a giant component in GU .

B. Shell Expansion

The base algorithm is a straightforward distributed
generalization of breadth-first search (BFS). This pro-
cess could have high communication complexity if
always run to completion, but our algorithms truncates
the search before violating the communication budget.

Alice, WLOG, begins a shell expansion from s by
computing all nodes in the component of Ga that
contains s. This is the first shell S1. If this shell is
disjoint from Ga`, she sends all of the nodes in S1 to
Bob. Bob finds all the nodes in S1 that are also in Gb,
contracts them to a single node V1, and does a BFS
from V1 to find all the nodes in graph Gb connected

to any node in S1. These nodes are the second shell,
S2. If S2 is disjoint from Gb`, Bob sends the nodes in
S2 − S1 to Alice, who repeats the process to form the
third shell and so on.

The process stops when Si = Si+1 for some i (no
new nodes are found) or when sending the newly dis-
covered nodes would violate the communication/sharing
budget.

C. The Algorithm

As described in section III-A, we assume that graphs
Ga and Gb have giant components Ga` and Gb` re-
spectively. We assume that components Ga` and Gb`
intersect so that graph GU ≡ Ga ∪Gb also has a giant
component. We denote the second largest connected
component by Cs. Recall Alice and Bob have agreed
to an upper bound γ on the number of shared names.
This algorithm is correct if and only if γ > |Cs|.

The algorithm does a shell expansion starting from
both s and t. The expansion for each component stops
when it reaches any of these stopping conditions:

1) The shell containing node s merges with the shell
containing node t.

2) The component stops growing. That is, no new
nodes are added during an iteration.

3) The component falls into local giant components
Ga` (which Alice determines) or Gb` (which Bob
determines).

4) The data center currently growing the component
determines that the number of nodes in the com-
ponent exceeds γ. In this case, the center stops
before sending new elements to ensure the number
of shared names is at most γ.

The connectivity answer depends upon the stopping
condition for the shell expansions from nodes s and t.
There are the following cases:
A) For stopping condition 1, the nodes are connected

and the algorithm returns “yes.”
B) If either shell, say the search from s, stops because

it is completely found (stopping condition 2) and it
does not contain the other node (t in this case), then
the algorithm terminates the other shell expansion,
if necessary, and returns “no.”

C) Otherwise, both shells terminate with stopping con-
ditions 3 or 4. In stopping condition 4, the shell has
exceeded the size of the second-largest component,
and therefore must be in the giant component of
GU . For stopping condition 3, the shell is also in
the giant component of GU since both Ga` are Gb`
are in this giant component. Therefore the algorithm
returns “yes.”

The communication complexity of the algorithm is
O(γ log n) = O(|Cs| log n), assuming O(log n)-bit
vertex names and a good guess γ = O(|Cs|).

The above discussion informally argues the follow-
ing:

Claim III.1. If Alice and Bob’s social graphs both have
giant components, these giant components intersect, and
they know a γ > |Cs|, such that γ = O(|Cs|), where
Cs is the second largest component of GU , then simple
BFS-like shell expansion can answer the s-t connectiv-
ity decision problem with O(γ log n) communication.
When |Cs| = O(log n), as is typical for social networks,
the communication is O(log2 n).

Alice and Bob could also send the edges within the
shells, which gives shortest paths when the algorithm
says “yes” in case A. This is likely a rare case. Alice
and Bob can agree to send the edges if and when this
happens. This requires communication O(|Cs|2 log n),
which is still polylogarithmic.

If Alice and Bob know that Ga` are Gb` do not
intersect, they can alter the algorithm. In this case, when
a shell expansion is stopped for size without dropping
into a Ga` or Gb`, the algorithm cannot give an answer.
Also, if one component drops into Ga` and the other
drops into Gb`, then the answer is “no.”

This algorithm extends to r > 2 data centers by run-
ning the protocol through each data center in sequence.
The requester sends its s component and t component
to the next data center in order (with wraparound). If the
requester has not seen s and/or t, these components may
be just s and/or just t respectively. The next data center
grows the component and passes the full set of nodes to
the next center and so on. Thus if the requester is center
i, one round of communication passes around the ring of
centers in the order i, i+1, . . . , r−1, r, 1, 2, . . . , i−1, i.
Each data center follows the protocol above, with the
growing components passed around the ring of centers
until the growth terminates with one of the above condi-
tions. The center that detects the termination condition
then sends a message to the requester. From the point
of view of a single center, it is running the two-center
protocol with a merged version of the other r−1 centers.

Each node is tagged with the ID of the center that
added it to the component. For example, if center j adds
node u to the component, it tags node u. Then center
j removes node u from the circulating list of names
when it comes back in the next round. Thus each node
in the component is communicated to each center at
most once. Therefore, the communication complexity
is O(rγ log n) = O(γ log n) for constant r.

D. Verifying GU Has a Giant Component

Alice and Bob may wish to verify that GU has
a giant component. If they can determine that Ga`
and Gb` intersect, then the answer is a clear “yes.”
Alice and Bob can use a randomized set intersection

algorithm. Given two sets of objects, we wish to find
an element in their intersection or determine that the
intersection is empty. These are sets of vertex names
for us, subsets of the vertices in GU . We describe a
randomized algorithm that finds a node in common with
polylogarithmic communication provided the two sets
intersect in a constant fraction of nodes.

In the worst case, with no extra information, if both
centers have a subset of vertices drawn from the set
{1, . . . , n}, where n is the number of nodes in GU , then
determining if the sets are disjoint (i. e. the intersection
is empty) requires Ω(n) bits of communication for
a deterministic algorithm [15]. This is also true for
randomized set intersection [16]. Håstad and Wigderson
showed the complexity can depend on the set sizes
rather than the size of the universe [17], but we use
set intersection to determine intersections of giant com-
ponents, which have size asymptotically equal to the
universe size n. However, if the set intersection is not
only non-empty but also large, a randomized algorithm
can find an element in the intersection efficiently. The
following analysis arguments are standard, but included
for completeness.

Suppose that we know the intersection has size I,
where I is a function that grows with n. Consider
the following randomized algorithm: Alice chooses
(cn log n)/I elements uniformly at random from her
giant component, where c is a constant greater than 0.
She sends these elements to Bob, who determines if any
of these elements are in his giant component. With high
probability, this algorithm successfully finds an element
in the intersection.

To see this, notice that for a single draw, the probabil-
ity of successfully picking an element in the intersection
is I/n. If the drawing is done without replacement, then
the probability for picking an element in the intersection
increases for subsequent draws. Thus we have

Prob[no point in intersection selected]

≤
(

1− I
n

) cn log n
I

=

(
1− 1

n
I

)(n
I)c logn

≤ e−c logn

=
1

nc
,

where log n is the natural logarithm. Line (1) follows
from the standard inequality:(

1− 1

n

)n
≤ 1

e
,

in turn derivable from the definition of e. By increasing
the constant c or by multiplying by more than log n, one

can further decrease the probability of failing to find an
element in the intersection, given that the intersection
has I elements. If I is Ω(n), then the algorithm requires
communication of only O(log n) names, or O(log2 n)
bits. The intersection can be a poly-logarithmic factor
smaller than n asymptotically and the algorithm still
succeeds with high probability using polylog n bits.

If we don’t know the value of I, we can find it by
recursive doubling: start with a guess of n/I = log(n)
or some other small value. It’s even fine to start with a
guess that is a constant. Run the randomized algorithm.
If it fails, double the guess, and send only new elements
in the next round. Because the communication is c log n
times a function that is growing geometrically, the
communication complexity of the entire procedure is
bounded asymptotically by the size of the last, longest
run. Thus the communication is O(n log n)/I even if
we don’t know I a priori.

IV. A LOW-TRUST s-t CONNECTIVITY ALGORITHM

In this section, we describe our low-trust algorithm
for s-t connectivity. This algorithm reveals no informa-
tion about the graphs held by Alice and Bob, except
whether or not there is a path between s and t in the
union of the two graphs. For ease of exposition, we
first describe an algorithm that assumes shared (known)
vertex names. We then extend this algorithm to our final
algorithm, which assumes private vertex names and does
not reveal names during the algorithm.

A. The Problem

As in section III, Alice and Bob have graphs Ga and
Gb on the same universe of node names. They want to
determine if there exists an s-t path in the graph GU ,
where GU has node set equal to the union of the nodes
sets of Ga and Gb and has edge set equal to the union
of edges of Ga and Gb.

We now do not restrict the amount of communica-
tion, but we require that the two parties learn nothing
about each other’s graphs, other than the existence or
nonexistence of an s-t path in GU .

We note that all the results in this section make no
assumptions about the graph GU . Thus, in contrast to
our previous results, we now do not require GU to have
any special, social-network properties. However, some
properties of social networks make the algorithm run
provably faster. Although the model does not place an
upper bound on computational complexity, in practice
a faster correct algorithm is better.

B. Preliminaries

Our algorithm makes critical use of two tools: Secret
Sharing and Secure Multiparty Computation of the
MUX function.

Secret Sharing Let z be an arbitrary value in a finite
field. Under secret sharing, it is possible to create k
shares of z, such that 1) z can be constructed from all
the shares; and 2) any subset of fewer than k shares
reveals no information about z. For any such z, let [z]i
denote the share of z held by party i in a secret sharing
scheme. A simple example (from [18]) of secret sharing
when s = 2 is to create a line with y-intercept equal to
z and random slope, and to let [z]i be the y-value of
the line when x = i. Under this scheme it is possible
for parties to compute shares of x+y from their shares
of x and y without leaking any information; [x + y]i
is just [x]i + [y]i. Thus we can view addition of shares
as having essentially zero cost: it is an operation which
each party can perform with a small amount of local
computation and no communication.

Secure Multiparty Computation of MUX The par-
ties also need a way to securely compute shares of
MUX(c, a, b) from shares of c, a and b, where

MUX(c, a, b) =

{
a, c 6= 0,

b, otherwise.

That is, each party i should learn [MUX(c, a, b)]i, where
at the start of the computation, each party i knows
[a]i, [b]i and [c]i. In addition, party i should gain no
additional information about a, b or c. There exist
information-theoretically secure protocols to solve this
problem when the number of parties is three or larger,
see for example the algorithm of Ben-Or, Goldwasser
and Wigderson [19]; for 2 parties, Yao’s garbled circuit
construction provides cryptographic security. Unlike ad-
dition, secure computation of shares of MUX is an
expensive operation, requiring communication between
the participants, so we seek to minimize the number of
times it occurs.

C. An Algorithm for Public Vertex Names

We now describe our secure algorithm for the case
where all vertex names are public knowledge. We
assume that Alice and Bob first agree on the value of
a prime N that is larger than the number of vertices
squared. The algorithm performs all arithmetic in the
finite field ZN , the integers modulo N . Recall that a
finite field is required for the secret sharing implemen-
tation.

Alice first determines the connected components of
her graph and assigns a different number (modulo N)
to label each component. For each node v let xv be the
label assigned by Alice to the component that contains
node v. Alice generates shares [xv]a, [xv]b of each xv
(using linear secret sharing as described above) and
gives all [xv]b to Bob. Bob does similarly on his graph.
Call Bob’s labels yv .

The general idea of the algorithm is that the parties
iteratively update these vertex labels, marking a node v
as reachable from s whenever v’s connected component
in either Ga or Gb intersects the set of nodes already
marked as reachable from s. We mark v as reachable
from s by relabeling xv ← xs or yv ← ys (or both), so
any node v which is reachable (in GU) from s eventually
has either xv = xs or yv = ys (or both). All the updates
are done on the shares, so the players do not know the
updated labels; all that is revealed at the end is whether
or not t has been relabeled as reachable from s.

To begin each player, for each node v, computes a
share of Pv , a binary variable which is 0 if and only if
there exists a node u such that xu = xs and yu = yv .
Algorithm 1 shows how to compute Pv .

Algorithm 1 OddStep
1: Pv = 1
2: for node u do
3: Pv ← MUX((xs − xu + yu − yv), Pv, 0)
4: end for

The iteration at node u sets Pv = 0 if xu = xs and
yu = yv . If such a node exists then node v is reachable
from s in GU , by traveling along Alice’s edges from s
to u and then along Bob’s edges from u to v. We also
need to guarantee the converse: Pv 6= 0 if no such u
exists. To achieve that we must place some restrictions
on Alice’s and Bob’s component labels. They must
be drawn respectively from sets X,Y such that the
difference of two elements of X is never equal to the
difference of two elements of Y . We can accomplish
this by having each 1 < xu < M while each yu is of
the form tM for some 1 < t < M , where M2 < N but
M is larger than the number of nodes. By restricting
the labels in this way, we avoid having to explicitly
compute a logical AND (which would require another
expensive secure computation), at the cost of making
the vertex labels twice as large.

The next step is to update the values of the yv to
encode information about what is reachable from s;
players modify their shares so that

yv ← MUX(Pv, yv, ys) (1)

The idea (see Figure 1) is to iterate this process,
alternating between updating xv and yv , at each stage
expanding the set of nodes that are labeled as reachable
from s. At each iteration we interchange the roles of x
and y, so for instance in the second iteration we perform
Algorithm 2 to update xv instead of yv . After iterating
“enough” times, the players combine their shares to
reveal Pt. Pt = 0 if and only if there is an s− t path.
In the worst case, 2n iterations are required. If Alice
and Bob each possess nothing but alternating edges on

Algorithm 2 EvenStep
1: Pv = 1
2: for node u do
3: Pv ← MUX((ys − yu + xu − xv), Pv, 0)
4: end for

a Hamiltonian path from s to t, the algorithm builds
this path one edge at a time (this is in fact the situation
illustrated in Figure 1). But if the diameter of GU is
known to be at most d, then 2d iterations suffices. For
social networks, the maximum diameter is effectively a
constant [8], [20].

If Alice and Bob are not particularly interested in
connectivity once the shortest path is longer than a
threshold dt, they can stop the protocol after 2dt iter-
ations. The algorithm may also correctly answer “yes”
even if the path is longer than dt. This is because con-
secutive pieces of the path that lie completely in Alice’s
graph or Bob’s graph do not require communication
proportional to their length. For example, if the entire
path is inside Alice’s graph, she recognizes this after
the initial connected components algorithm.

D. Correctness of the Algorithm

Correctness follows from the following two lemmas
(applying them to the case v = t).

Lemma 1. If any iteration of the algorithm sets yv = ys
or xv = xs, then there is a path in GU from s to v

Proof: Proof is by induction on number of it-
erations. By assumption the arrays are initialized so
that xv = xs only if there is a s-v path in Ga,
hence in GU . By observations noted above and the
induction hypothesis, at each iteration Pv = 0 (and
hence yv ← ys) only if there is a path in GU from
s to some node u and a path in Gb from u to v. An
identical argument applies to yv .

Lemma 2. If there is a path of length d in GU from s
to v, then after 2d− 1 iterations, yv = ys and after 2d
iterations, xv = xs.

Proof: Proof is by induction on d. At iteration 0,
before any communication, the arrays are initialized so
that xv = xs if and only if there is a path in graph
Ga. Also, yv = ys if and only if there is a path from
s to v in graph Gb. Suppose node v has an edge (a
path of length 1) to s in graph Ga. Then xv = xs after
the initialization. In step 1, line 3 of algorithm 1 will
set Pv = 0, for instance when u = v. This then sets
yv = ys in the following update shown in (1). By a
similar argument, if node v is connected to node s in
graph Gb, then yv = ys after initialization and step 2
sets xv = xs.

In any iteration, if yv is set to ys then yw for all nodes
w in v’s current connected component (in Gb) are set
to ys. This is because the node u that sets Pv = 0, also
sets Pw = 0 for each w known to be in v’s component
in Gb.

Suppose there is a path of length d between node
s and node v in GU . Let su1u2 · · ·ud−1v be such a
path. By the induction hypothesis yud−1

= ys after
step 2d − 3 and xud−1

= xs after step 2d − 2. If
edge ud−1v is in graph Gb, then yud−1

= yv after
the algorithm initialization. Then, but the argument in
the previous paragraph, yv was set to ys when yud−1

was set to ys, no later than step 2d − 3. Otherwise,
if edge ud−1v is in graph Ga, we have xud−1

= xv
after the algorithm initialization. By the argument in
the previous paragraph, we know xv is set to xs when
xud−1

is, no later than step 2d − 2 by the induction
hypothesis. Consider step 2d−1. Line 3 of algorithm 1
will set Pv = 0. Plugging in v for u in this line gives
xs − xv + yv − yv = 0. This is because xs = xv as
we just argued. Therefore, yv = ys after step 2d− 1. A
similar argument shows xv = xs after step 2d.

Each iteration of the algorithm requires O(n2) MUX
operations; however, for each u, all updates Pv ←
MUX((xs−xu+yu−yv), Pv, 0) can be done in parallel,
so only O(n) rounds of communication are required,
with O(n) communication in each round. Security fol-
lows from the security and composability of the secure
circuit evaluation protocol. Thus we have

Theorem IV.1. Given Ga, Gb, s, t as above, if the di-
ameter of Ga∪Gb is at most d, two parties can securely
compute the existence of an s-t path in Ga ∪ Gb with
O(dn) communication rounds, O(n2) communication,
and O(dn2) secure circuit evaluations.

E. Hiding Vertex Names

We now extend our algorithm to the case where the
two parties do not have a shared, publicly known vertex
set, and neither party should reveal anything about its
vertex set (except for the common source/destination
vertices s, t).

Instead of having variables xu indexed by vertex
names, we have two secret-shared arrays xi, x̂i where
i is just an array index that goes from 0 to n − 1
(where n is a reasonable upper bound on the maximum
number of nodes in GU ; x̂i is the name of the ith

vertex and xi is the label of its connected component
in Alice’s graph. The other party (Bob) similarly has
yi, ŷi. A node u might exist in both graphs, but at
unrelated positions; then x̂i = ŷj = u with no particular
relationship between i and j. Another node v might exist
in only one graph; x̂i = v while no ŷj is equal to v.
The parties do not want to reveal any information about
which (or even how many) nodes are in their graphs.

They pad their arrays with dummy nodes which are not
adjacent to anything, making each array size exactly n.
The special nodes s, t must be put at known positions
in the array, which might as well be 0 and 1.

As stated before, we assume that the participants
agree on some normalized naming convention, so that
the same “individual” has exactly the same name for
Alice and Bob if it does appear in both graphs. This
might be a genuine practical difficulty in some situa-
tions, but would not be a problem if each node is tagged
from some commonly used set of identifiers. The parties
must also agree on some standard way to represent such
names as elements of a finite field of integers modulo
N .

Assuming this, we compute another secret-shared
array y′, which effectively permutes y to be aligned with
x. If yi refers to the same vertex as xj , then y′j = yi;
if x̂j does not exist in Alice’s graph, then y′j = 0. This
array is computed as follows:

for j do
y′j ← 0
for i do
y′j ← y′j + MUX(x̂j − ŷi, 0, yi)

end for
end for

Then the parties compute shares of Pk
as
Pk ← 1
for j do
Pk ← MUX(xs − xj + y′j − yk, Pk, 0)

end for

We restrict the vertex labels as before and note that 0
is never used as a label, i.e. all xi and yi are non-zero.
Thus if node u = x̂j is in both graphs, y′j is nonzero. It
is the label of u in Bob’s graph. Then we have xs = xj
if there is a path from s to u in Alice’s graph, and
y′j = yk if (and only if) there is a path from u to ŷk
in Bob’s graph, giving Pk = 0 as required. We have
again guaranteed that xs − xj and y′j − yk cannot be
additive inverses mod N unless they are both zero. Now
Alice uses each Pk to update each yk just as before;
Alice does not need to know which (if any) of her
vertices corresponds to Bob’s yk. Finally Alice has to
recompute y′, since y has changed. The parties compute
an analogous x′ array for the iterations in which the
roles of x, y are reversed.

The proof of correctness carries over to the vertex-
hiding version, since all previous properties of xs−xj+
yj − yk now apply to xs − xj + y′j − yk. Asymptotic
communication complexity is the same since the shared
computation of y′ requires the same amount of commu-
nication as the shared computation of P .

(a) (b)

Figure 1. An example of the low-trust s-t connectivity algorithm. Alice’s edges are red, Bob’s edges blue. (a) The first iteration gives P1 = 0
(since xs− x1 + y1− y1 = 0) and P2 = 0 (since xs− x1 + y1− y2 = 0), which sets y1 ← 10, y2 ← 10, marking these nodes as reachable
from s. (b) The second iteration gives P2 = 0 (since ys − y1 + x1 − x2 = 0) and P3 = 0 (since ys − y2 + x2 − x3 = 0), which sets
x2 ← 1, x3 ← 1, marking these nodes as reachable from s.

V. ACKNOWLEDGEMENTS

This work was funded by the Sandia National Labora-
tories LDRD (Laboratory-Directed Research and Devel-
opment) program. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s
National Nuclear Security Administration under con-
tract DE-AC04-94AL85000.

REFERENCES

[1] J. Brickell and V. Shmatikov, “Privacy-preserving graph
algorithms in the semi-honest model,” in Advances in
Cryptology - ASIACRYPT 2005, ser. Lecture Notes in
Computer Science, B. Roy, Ed. Springer Berlin Hei-
delberg, 2005, vol. 3788, pp. 236–252.

[2] M. M. Prabhakaran and A. Sahai, Secure Multi-Party
Computation. IOS press, 2013, vol. 10.

[3] C. Dwork, “Differential privacy: A survey of results,”
in Theory and Applications of Models of Computation.
Springer, 2008, pp. 1–19.

[4] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville,
M. Podlesny, M. G. Rabbani, Q. Zhang, and M. F. Zhani,
“Data center virtualization: a survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 15, no. 2, pp. 909–927,
2013.

[5] A.-C. Orgerie, M. Dias de Assuncao, and L. Lefevre, “A
survey on techniques for improving the energy efficiency
of large scale distributed systems,” ACM Computing
Surveys, vol. 46, no. 4, 2014.

[6] A. Hajnal, W. Maass, and G. Turán, “On the communi-
cation complexity of graph properties,” in Proceedings
of the twentieth annual ACM symposium on Theory of
computing. ACM, 1988, pp. 186–191.

[7] “Amazon elastic compute cloud (ec2) – scalable cloud
hosting,” http://aws.amazon.com/ec2/, accessed October
17, 2014.

[8] E. David and K. Jon, Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. New York,
NY, USA: Cambridge University Press, 2010.

[9] W. Aiello, F. Chung, and L. Lu, “A random graph
model for power law graphs,” Experimental Mathemat-
ics, vol. 10, no. 1, 2001.

[10] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus:
mining peta-scale graphs,” Knowledge and Information
Systems, vol. 27, no. 2, pp. 303–325, May 2011, special
issue: best papers of the fifth international conference on
advanced data mining and applications (ADMA 2009).

[11] P. Erdös and A. Rényi, “On the evolution of random
graphs,” Publications of the Mathematical Institute of
the Hungarian Academy of Sciences, vol. 5, pp. 17–61,
1960.

[12] V. Boginski, S. Butenko, and P. Pardalos, “On structural
properties of the market graph,” in Innovation in Finan-
cial and Economic Networks, A. Nagurney, Ed. London:
Edward Elgar Publishers, 2003, pp. 29–45.

[13] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Falout-
sos, “Power laws and the AS-level internet topology,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4,
pp. 514–524, 2003.

[14] F. Chung and L. Lu, “Connected components in random
graphs with given expected degree sequences,” Annals
of Combinatorics, vol. 6, pp. 135–145, 2002.

[15] E. Kushilevitz and N. Nisan, Communication complexity.
Cambridge University Press, 1997.

[16] B. Kalyanasundaram and G. Schnitger, “The probabilis-
tic communication complexity of set intersection,” SIAM
Journal on Discrete Mathematics, vol. 5, no. 4, pp. 545–
557, November 1992.

[17] J. Håstad and A. Wigderson, “The randomized complex-
ity of set disjointness,” Theory of Computing, vol. 3, pp.
211–219, 2007, online only journal.

[18] A. Shamir, “How to share a secret,” Communications of
the ACM, vol. 22, no. 11, pp. 612–613, 1979.

[19] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computation,” in Proceedings of the twentieth
annual ACM symposium on Theory of computing. ACM,
1988, pp. 1–10.

[20] U. Kang, M. McGlohon, L. Akoglu, and C. Faloutsos,
“Patterns on the connected components of terabyte-scale
graphs,” in ICDM, 2010, pp. 875–880.

