
Algorithms for Managing Data in Distributed Systems

Jared Saia

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

University of Washington

2002

Program Authorized to Offer Degree: Computer Science and Engineering

University of Washington

Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Jared Saia

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Chair of Supervisory Committee:

Anna R. Karlin

Reading Committee:

Anna Karlin

Richard Ladner

Steve Gribble

Date:

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation is

allowable only for scholarly purposes, consistent with ”fair use” as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of thisdissertation may be referred to

Bell Howell Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, to

whom the author has granted ”the right to reproduce and sell (a) copies of the manuscript

in microform and/or (b) printed copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Algorithms for Managing Data in Distributed Systems

by Jared Saia

Chair of Supervisory Committee:

Professor Anna R. Karlin
Computer Science and Engineering

This dissertation describes provably good algorithms for two fundamental problems in

the area of data management for distributed systems: attack-resistance and data migration.

The first major problem addressed is that of attack-resistance. We describe the first fully

distributed, scalable, attack-resistant peer-to-peer network. The network is attack-resistant

in the sense that even when a constant fraction of the nodes in the network are deleted or

controlled by an adversary, an arbitrarily large fraction of the remaining nodes can access an

arbitrarily large fraction of the data items. Furthermore, the network is scalable in the sense

that time and space resource bounds grow poly-logarithmically with the number of nodes

in the network. We also describe a scalable peer-to-peer network that is attack-resistant in

a highly dynamic environment: the network remains robust even after all of the original

nodes in the network have been deleted by the adversary, provided that a larger number of

new nodes have joined the network.

The second major problem addressed in this dissertation is that of data migration. The

data migration problem is the problem of computing an efficient plan for moving data

stored on devices in a network from one configuration to another. We first consider the

case where the network topology is complete and all devices have the same transfer speeds.

For this case, we describe polynomial time algorithms for finding a near-optimal migration

plan when a certain number of additional nodes is available as temporary storage. We also

describe a 3/2-approximation algorithm for the case where such nodes are not available.

We empirically evaluate our algorithms for this problem and find they perform much better

in practice than the theoretical bounds suggest. Finally, we describe several provably good

algorithms for the more difficult case where the network topology is not complete and where

device speeds are variable.

TABLE OF CONTENTS

List of Figures iv

List of Tables vii

Chapter 1: Introduction 1

1.1 Characteristics of Distributed Systems . 2

1.2 Motivation for Attack-Resistance . 4

1.3 Motivation for Data Migration . 8

1.4 Contributions . 8

1.5 Thesis Map . 9

Chapter 2: Introduction to Attack-Resistant Peer-to-peer systems 11

2.1 Our Results . 11

2.2 Related Work . 16

Chapter 3: The Deletion Resistant and Control Resistant Networks 21

3.1 The Deletion Resistant Network . 21

3.2 Proofs . 26

3.3 Modifications for the Control Resistant Network 36

3.4 Technical Lemmata . 38

Chapter 4: The Dynamically Attack-Resistant Network 42

4.1 Dynamic Attack Resistance . 42

4.2 A Dynamically Attack-Resistant Network . 44

4.3 Proofs . 49

4.4 Conclusion . 53

i

Chapter 5: Introduction to Data Migration 55

5.1 High Level Description of the Data Migration Problem 55

5.2 Data Migration Variants . 56

5.3 Our Results . 60

5.4 Related Work . 63

Chapter 6: Data Migration with Identical Devices Connected in Com-

plete Networks 66

6.1 Indirect Migration without Space Constraint 66

6.2 Migration with space constraints . 67

6.3 Obtaining a Regular Graph and Decomposing a Graph 84

Chapter 7: Experimental Study of Data Migration Algorithms for Iden-

tical Devices and Complete Topologies 86

7.1 Indirect Migration without Space Constraints 86

7.2 Migration with Space Constraints . 89

7.3 Experimental Setup . 91

7.4 Results on the Load-Balancing Graphs . 93

7.5 Results on General, Regular and Zipf Graphs 94

7.6 Analysis . 97

Chapter 8: Data Migration with Heterogeneous Device Speeds and Link

Capacities 101

8.1 Flow Routing Problem Definition . 101

8.2 Edge-Coloring with Speeds . 104

8.3 Migration on Trees . 107

8.4 Migration with Splitting . 113

Chapter 9: Conclusion and Future Work 120

9.1 Future Work . 120

ii

9.2 Conclusion . 124

Bibliography 127

iii

LIST OF FIGURES

1.1 An example overlay network for Gnutella . 5

1.2 Vulnerability of Gnutella to Attack by Peer Deletion 7

3.1 The butterfly network of supernodes. 22

3.2 The expander graphs between supernodes. 22

3.3 Traversal of a path through the butterfly. 27

4.1 The butterfly network of supernodes. 44

5.1 An example demand graph. v1,v2,v3,v4 are devices in the network and the

edges in the first two graphs represent links between devices. a,b,c,d are the

data objects which must be moved from the initial configuration to the goal

configuration. 57

5.2 Example of how to use a bypass node. In the graph on the left, each edge

is duplicated k times and clearly χ′ = 3k. However, using only one bypass

node, we can perform the migration in ∆ = 2k stages as shown on the right.

(The bypass node is shown as ◦.) . 59

6.1 Classification of degree 4 vertices . 68

6.2 Illustration of steps 1 through 6 of Algorithm 2. In step 6 of the the algorithm,

a single bypass node is used to get the final 4-coloring. In particular, a bypass

node is added to the odd cycle induced by the A-labelled edges to ensure that

it can be colored with colors 1 and 2; this same bypass node is used for the

odd cycle induced by the B-labelled edges to ensure that it can be colored

with colors 3 and 4. The final coloring is shown in figure (e). 70

iv

6.3 An example of what the graph might look like after Step 4. 73

6.4 Choosing which edge to bypass. 78

7.1 Bypass nodes and time steps needed for the algorithms. The top plot gives the

number of bypass nodes required for the algorithms 2-factoring, 4-factoring

indirect and Max-Degree-Matching on each of the Load-Balancing Graphs.

The bottom plot gives the ratio of time steps required to ∆ for Greedy-

Matching on each of the Load-Balancing Graphs. The three solid lines in

both plots divide the four sets of Load-Balancing Graphs 95

7.2 Six plots giving the number of bypass nodes needed for 2-factoring, 4-factoring

direct and Max-Degree-Matching for the General, Regular and Zipf Graphs.

The three plots in the left column give the number of bypass nodes needed as

the number of nodes in the random graphs increase. The three plots in the

right column give the number of bypass nodes needed as the density of the

random graphs increase. The plots in the first row are for General Graphs,

plots in the second row are for Regular Graphs and plots in the third row are

for Zipf Graphs. 98

7.3 Number of steps above Delta needed for Greedy-Matching on Zipf Graphs. . . 99

8.1 The graph G is a demand graph with speeds given in parenthesis. The graph

G′ is the graph constructed by Theorem 35 106

8.2 Example flow coloring problem, labelled as F and the corresponding graph

G′ created by Algorithm 9. In this example, s(v3) = 3 while all other speeds

of nodes in F are 1 and c(e3) = 2 while all other capacities of edges in F are

1. The 4 objects in F are represented by dashed arrows from the source of the

object to the sink. In the graph G′ = (V ′, E′) created for F by Algorithm 9,

s ′(v′3) = 2 while all other speeds of nodes in V ′ are 1. The coloring with

speeds of G′ which uses two colors gives a flow coloring of F using 2 colors. . 109

v

8.3 A flow coloring problem F and Local(F, v1) and Sub(F, v2) (dashed arrows

represent objects) . 111

8.4 An example flow problem F and MCF (F, 3). In this example, F is a flow rout-

ing problem on a network with nodes x, y, z, w and edges {(x, y), (y, w), (w, z), (z, x)).

There are two objects o1 which has source x and sink w and o2 which has

source x and sink z. In the figure, s-edges and c-edges are shown as solid

lines while m-edges are shown as dashed lines. Edge capacities are omitted. . 115

vi

LIST OF TABLES

2.1 Resource bounds for the Deletion Resistant Network, Control Resistant Net-

work, Chord, CAN and Tapestry . 12

2.2 Sample Equations for Computing Resource Bounds for the Deletion Resistant

and Control Resistant Networks. These are the required resource bounds to

ensure that after the adversary attacks (i.e. deletes or controls) 1/2 the

peers that 90% of the remaining peers can access 90% of the content. The

values plugged into the proof of Theorem 1 to get these equations are δ = .5,

α = .25, α′ = .125, β = 1.000000001, γ = .5. 13

5.1 Theoretical Bounds for Algorithms on Indentical Devices and Complete Topolo-

gies . 61

7.1 Theoretical Bounds for Tested Migration Algorithms 91

vii

ACKNOWLEDGMENTS

Portions of this dissertation were previously published at SODA 2001 [HHK+01], SODA

2002 [FS02], WAE 2001 [AHH+01] and IPTPS 2002 [SFG+02]. The main overlaps are with

Chapter 3 (SODA 2002), Chapter 4 (IPTPS 2002), Chapter 6 (SODA 2001), and Chapter 7

(WAE 2001).

Many people have contributed to the research presented in this dissertation. First of all,

I would like to thank Anna Karlin and Amos Fiat for their encouragement, support and

mentoring in the past several years. Both Anna and Amos have taught me more than I can

say about the ins-and-outs of doing research in algorithms. Anna has patiently advised and

informed my taste in algorithmic problems, provided me with many wonderful problems

to work on, and given me the encouragement and advice I needed to succeed in solving

them. Amos has taught me how to define exciting algorithmic problems, how to maintain

a tenacity and flexibility when attacking problems, and how to write exciting and clear

theory papers. He has infected me with his incredible enthusiasm for practical algorithmic

problems.

Amos Fiat, Stefan Sariou, Steve Gribble, Anna Karlin and Prabhakar Raghavan con-

tributed greatly to the attack-resistance results presented in this thesis. All of the work on

attack-resistance is joint with Amos Fiat, who proposed the original idea of designing an

attack-resistant peer-to-peer network and provided constant encouragement and support.

His vision and contributions in this area were invaluable, these results would never have

been obtained without his collaboration. Stefan Sariou and Steve Gribble provided help-

ful information on the systems’ side of peer-to-peer networks and patiently answered our

simplistic questions. Anna Karlin provided useful feedback and Prabhakar Raghavan first

introduced me to the area of peer-to-peer networks.

Anna Karlin, Jason Hartline, Joe Hall, John Wilkes, Eric Anderson and Ram Swaminithan

viii

contributed to the data migration results discussed in this thesis. John Wilkes first pro-

posed the theoretical problems in data migration that are solved in this thesis. Anna and

Jason played a major role in obtaining the theoretical results discussed in Chapter 6. Joe

Hall, John Wilkes, Eric Anderson and Ram Swaminithan were instrumental in obtaining

the experimental results discussed in Chapter 7. Joe wrote the code used to do the experi-

ments, and John, Eric and Ram helped us in obtaining test cases, running experiments and

analyzing the results.

Finally, I would like to thank my partner, Julia Fitzsimmons, for her patience and

support throughout my graduate career. I hope to return the favor someday.

ix

1

Chapter 1

INTRODUCTION

The explosive growth of the Internet has created a high demand for access to vast

amounts of data. How to manage all of this data is an increasingly complicated problem.

Traditionally, management of data has been done in a centralized manner, but the last few

decades have witnessed a growing trend towards managing data in distributed systems.

Distributed systems are characterized by two main features. First they consist of mul-

tiple machines connected in a network. These machines may or may not all belong to the

same person or organization. Second, they present a unified user interface. In other words,

the users of the system are presented with the illusion that they are using a single, unified

computing facility. The first feature leads to many of the benefits of distributed systems in-

cluding: resource sharing, extensibility and fault-tolerance. These benefits make distributed

systems particularly adept at managing large amounts of data.

While distributed systems have characteristics which make them ideal for managing

large amounts of data, they also introduce many new problems when compared to central-

ized systems. In this thesis, we give algorithms for solving two important and essentially

independent problems related to distributed systems, the problems of attack-resistance and

data migration.

The rest of this chapter is organized as follows. In Section 1.1, we describe some of the

positive and negative characteristics of distributed systems and discuss the need for tradeoffs

when designing algorithms for such systems. In Section 1.2 , we provide motivation for the

problem of attack-resistance and in Section 1.3, we provide motivation for the problem of

data migration. In Section 1.4, we present the major contributions of this thesis. Finally in

Section 1.5, we outline the rest of the thesis.

2

1.1 Characteristics of Distributed Systems

The increasing popularity of distributed systems is due to many unique benefits they enjoy

over traditional centralized systems. These benefits include:

• Resource Sharing: The distributed system has access to all of the physical resources

of all the machines in the network. For example, all of the CPU power, disk space,

and network bandwidth of each machine is available to the system. Additionally, if

the machines in the system belong to different entities, then we can share all of the

content stored on the machines by the different entities.

• Extensibility: As the demand for service grows, we can simply add more machines

to the network. Each new machine brings more resources to the system. Thus the

performance of the entire distributed system can be much better than the performance

of a single centralized system.

• Fault Tolerance: There is no single point of failure for the distributed system, so

even if some machines go down, we may still be able to provide service. For example,

if we store copies of a data item on multiple machines, even if one machine fails, we

can still provide access to that data item.

• Anonymity: Since multiple machines participate in the system, it is possible to

access a data item without knowing exactly which machine stores that item.

Unfortunately, the benefits of distributed systems come at a cost. Following are some of

the problems faced by distributed systems when compared to centralized systems:

• Individual Machine Vulnerability: Multiple points of potential failure implies

greater likelihood of having at least one failure. Also, each machine in a distributed

system has limited resources to defend itself against an attack from outside. Finally,

the machines in the distributed system may not all be trustworthy.

3

• Load Balancing: In a distributed system, the responsibility for providing a service

is shared among multiple machines. How do we ensure that the tasks assigned to one

machine do not overwhelm the resources of that machine? For example, how do we

ensure that no single machine has responsibility for servicing requests for all of the

more popular data items?

• Time and Space Overhead: Data is frequently stored multiple times in the network

which increases space overhead. Also, commonly searching and updating data takes

more time than for a centralized system.

• Complexity: The problems of managing data in distributed systems are generally

much more complex than the problems of managing data in a centralized system.

This makes it harder to develop provably good algorithms for these problems, and the

algorithms developed tend to be more complex and thus harder to implement.

• Consistency: Distributed systems have the additional problem of maintaining the

consistency of data. In particular, if there are multiple copies of a data item in the

system, and one copy is changed, how should those changes be propogated to the

other copies?

1.1.1 Tradeoffs

Much of the work done in distributed systems involves tradeoffs, generally improving one

area is done at the expense of another. For example, one of the more important theoretical

results in distributed systems is the Byzantine generals algorithm [LSP82]. This algorithm

ensures consistency of state in the system (all non-faulty machines eventually store the

same value) at the cost of time overhead (the algorithm takes many stages to converge).

Another example is the work on weakly consistent replication done in the systems commu-

nity [PST+97, Sai]. This work improves the performance of the distributed systems at the

cost of weakening the consistency guarantees.

In this thesis, we address the problems of attack-resistance and data migration. To

do so, we will also be making similar tradeoffs. In our work on attack-resistance, we will

4

increase the fault-tolerance of the distributed system and the price we pay for this will be an

increase in the time and space overhead for the system: increased space for storing copies

of data items and increased time for operations like searching for data items. In our work

on data migration, we will give algorithms for solving load-balancing issues. The price we

pay for this will be increased time overhead for periodically moving data items around in

the network.

While our results do make necessary tradeoffs, we note that in many cases they do so in

the optimal or near optimal way. We further note that the tradeoffs made by our algorithms

generally increase the overall utility of the system. In the next two sections, we will motivate

the problems of attack-resistance and data migration. In Section 1.4, we will describe some

of the tradeoffs we make to solve these problems.

1.2 Motivation for Attack-Resistance

In this section, we motivate the problem of designing attack-resistant peer-to-peer networks.

A peer-to-peer (p2p) network is simply a distributed system for sharing data (e.g. music,

video, software, etc.) where each machine acts as both a server and a client. Peer-to-

peer(p2p) systems have enjoyed explosive growth recently, currently generating up to 70

percent of all traffic on the Internet [Gri02]. Perhaps the biggest reason for the popularity

of such systems is that they allow for the pooling of vast resources such as disk space, com-

putational power and bandwidth. Other reasons for their popularity include the potential

for anonymous storage of content and their robustness to random faults.

1.2.1 The Gnutella Network

To better illustrate the nature of peer-to-peer systems, we will now describe the Gnutella [weba]

network, which is a simple but popular peer-to-peer system. Like all peer-to-peer systems,

Gnutella peers are connected in an overlay network. An overlay network is simply a vir-

tual network where a link from peer x to peer y means that x knows the IP-address of y

(Figure 1.2.1 gives an example overlay network for 9 peers).

The protocols for joining Gnutella and searching for content are very simple. When a

5

Figure 1.1: An example overlay network for Gnutella

new peer joins the network, it decides on its own which other peers to link to in the overlay

network. This means that it’s responsible for somehow obtaining the IP-addresses of some

other peers in the network and then notifying those peers that it wants to connect to them

(in practice, there are web sites that provide IP-addresses of peers in the Gnutella network

for new peers which want to connect). The joining peer also decides on its own exactly

what content it will store and make available to the network. Whenever a peer wants to

search for some content, it simply broadcasts the request for that content to all other peers

which are some fixed number of hops away in the overlay network.

The join and search protocols for Gnutella, while having the benefit of being very simple,

have a definite negative impact on the performance and the fault-tolerance of the network.

One main focus in p2p systems is providing efficient access to content across the network.

For this reason, the following properties of the system are critically important:

• The Topology of the overlay network

• Where content is stored in the network

• The Protocol for searching for content in the network

Gnutella’s design decisions give both poor performance and poor fault-tolerance. The

performance in Gnutella is poor since each search initiated potentially sends a messages

6

to every other peer in the network. This traffic overhead means that the network will not

scale well. The fault-tolerance of Gnutella is poor due to the ad hoc nature of the overlay

network and the content storage. For Gnutella in particular and for any p2p system in

general, design decisions have big implications for performance and fault-tolerance.

Many currently deployed peer-to-peer systems have poor performance, which impacts

the efficiency and scalability of the system. No currently deployed systems have both good

performance and attack-resistance. In this thesis, we give the first p2p system which has

both attack resistance and good performance.

1.2.2 Why is Attack-Resistance Important?

Web content is under attack by states, corporations, and malicious agents. States and corpo-

rations have repeatedly censored content for political and economic reasons [Fou, oC, Mar].

This censorship has been both for copyright infringement (e.g. Napster) and for political

reasons (e.g. China’s net censorship). Additionally, denial-of-service attacks launched by

malicious agents are highly prevalent on the web, targeting a wide-range of victims [Dav01].

Peer-to-peer systems are particular vulnerable to attack since a single peer lacks the tech-

nical and legal resources with which to defend itself against attack.

Current p2p systems are not attack-resistant. The most famous evidence for this is

Napster [webb] which has been effectively dismembered by legal attacks on the central server.

Additionally, Gnutella ([weba]), while was specifically designed to avoid the vulnerability

of a central server, is highly vulnerable to attack by removing a very small number of

carefully chosen nodes. The vulnerability of Gnutella is illustrated in Figure 1.2.2 taken

from [SGG02]. The left part of this figure is a snapshot of an overlay network in Gnutella

taken in February, 2001 [SGG02] consisting of 1771 peers. The right part of the figure

shows the same network after deleting 63 of the most highly connected peers. Effectively

the overlay network has been shattered into a large number of small connected components

by removing a very small number of carefully chosen peers. In addition to vulnerability to

attack by peer deletion, Gnutella is also vulnerable to attack by peers trying to “spam” the

network. Malicious peers “spam” the network by responding to queries on the network with

7

Pre-Attack Post-Attack

Figure 1.2: Vulnerability of Gnutella to Attack by Peer Deletion

unsolicited content. A company known as Flatplanet.net has successfully hijacked Gnutella

searches online and replaced content with ads for its own software – software which allows

the user to also spam the Gnutella network with their own ads [Bor00].

We note again that while attack-resistance is important for peer-to-peer systems, it

should not come at the expence of huge increases in time and space overheads. Typically,

large numbers of peers (tens or hundreds of thousands) participate in a peer-to-peer system

so scalability is critical.

1.2.3 Dynamic Attack-Resistance

In addition to being vulnerable to attacks, we can expect peer-to-peer systems to be con-

fronted with a highly dynamic peer turnover rate [SGG02]. For example, in both Napster

and Gnutella, half of the peers participating in the system will be replaced by new peers

within one hour. Thus, maintaining fault-tolerance in the face of massive targeted attacks

and in a highly dynamic environment is critical to the success of a peer-to-peer system.

8

1.3 Motivation for Data Migration

In this section, we motivate the second major problem addressed in this thesis: data mi-

gration. While distributed systems have many benefits over centralized systems, they also

introduce new problems. As we have suggested, the performance of these systems depends

critically on load-balancing: we must have an assignment of data to machines that balances

the load across machines as evenly as possible. Unfortunately, the optimal data layout is

likely to change over time, for example, when either the user workloads change, when new

machines are added to the system, or when existing machines go down. Consequently, it is

common to periodically compute a new optimal (or at least very good) assignment of data

to devices based on newly predicted workloads and machine specifications (such as speed

and storage capacity) [BGM+97, GS90, GSKTZ00, Wol89]. Once the new assignment is

computed, the data must be migrated from its old configuration to its new configuration.

For many modern distributed distributed systems, the administration typically follows

an iterative loop consisting of the following three tasks [AHK+01]:

• Analyzing the data request patterns to determine the load on each of the storage

devices;

• Computing a new configuration of data on the devices which better balances the loads;

• Migrating the data from the current configuration to the new configuration.

The last task in this loop is the data migration problem. In this thesis, we will focus solely

on this step of the loop as the first two steps have been addressed in previous work[AHK+01]

. It’s critically important to perform the data migration as quickly as possible, since during

the time the migration is being performed, the system is running suboptimally.

1.4 Contributions

In this thesis, we show that we can design provably good algorithms for the real-world

problems of attack-resistance and data migration. In particular, our contributions are as

follows:

9

• Attack Resistance: We describe the first fully distributed, scalable, attack-resistant

peer-to-peer network. The network is attack-resistant in the sense that even when a

constant fraction of the nodes in the network are deleted or controlled by an adversary,

an arbitrarily large fraction of the remaining nodes can access an arbitrarily large

fraction of the data items. Furthermore, the network is scalable in the sense that time

and space resource bounds grow poly-logarithmically with the number of nodes in

the network. We also describe a scalable peer-to-peer network that is attack-resistant

in a highly dynamic environment: the network remains robust even after all of the

original nodes in the network have been deleted by the adversary, provided that a

larger number of new nodes have joined the network.

• Data Migration: The data migration problem is the problem of computing an effi-

cient plan for moving data stored on machines in a network from one configuration to

another. We first consider the case where the network topology is complete and all

machines have the same transfer speeds. For this case, we describe polynomial time

algorithms for finding a near-optimal migration plan when a certain number of addi-

tional nodes is available as temporary storage (the plan is near-optimal in the sense

that it is essentially the fastest plan possible). We also describe a 3/2-approximation

algorithm for the case where such nodes are not available. We empirically evaluate our

algorithms for this problem and find they perform much better in practice than the

theoretical bounds suggest. Finally, we describe several provably good algorithms for

the more difficult case where the network topology is not complete and where machine

speeds are variable.

1.5 Thesis Map

The rest of this thesis is structured as follows. Chapter 2 describes our theoretical results

on attack-resistant peer-to-peer networks along with related work. Chapters 3 and 4 gives

the algorithms which achieve these results along with proofs of correctness. Chapter 5 de-

scribes our problem formulations and theoretical and empirical results on the data migration

problem along with related work. Chapters 6 and 8 give the algorithms which achieve the

10

theoretical results along with proofs of correctness while Chapter 7 gives the detailed em-

pirical results. Chapter 9 outlines directions for future work and concludes with a summary

of our major contributions.

11

Chapter 2

INTRODUCTION TO ATTACK-RESISTANT PEER-TO-PEER

SYSTEMS

In this chapter, we describe our results for attack-resistant peer-to-peer networks. In

Section 2.1 we describe the results for the Deletion Resistant Network, the Control Resistant

Network and the Dynamically Attack-Resistant Network. In Section 2.2, we describe related

work.

2.1 Our Results

2.1.1 Our Assumptions

In all of our results on attack-resistant networks, we assume a synchronous model of com-

munication. In other words, we assume that there is some fixed amount of time that it takes

to send a message from one peer in the network to another peer and that all peers know

this time bound. In practice, all peers can assume a time bound which is say ten times the

average link latency. The number of neighboring peers which have latencies greater than

this will be a very small fraction of all peers and, in our analysis, these peers can be included

among the peers successfully attacked by the adversary.

In all of our results, we will assume that faults are adversarial. In contrast to independent

faults, adversarial faults can be targetted at certain important peers. Thus, adversarial

faults are strictly worse than independent faults. Finally, we note that our attack-resistant

networks, in addition to tolerating node failures, can also tolerate communication failures

like network partitions.

12

Table 2.1: Resource bounds for the Deletion Resistant Network, Control Resistant Network,
Chord, CAN and Tapestry

Network Storage Search Search Deletion Control

Per Peer Time Messages Resistant? Resistant?

Deletion Resistant Network O(log n) O(log n) O(log2 n) Yes No

Control Resistant Network O(log2 n) O(log n) O(log3 n) Yes Yes

Dynamically Resistant Network O(log3 n) O(log n) O(log3 n) Yes Yes

Chord [SMK+01] O(log n) O(log n) O(log n) No No

CAN [RFH+01] O(log n) O(log n) O(log n) No No

Tapestry [ZKJ01] O(log n) O(log n) O(log n) No No

2.1.2 Theoretical Results

Below we give the technical results for our attack-resistant networks. The technical descrip-

tion of the the deletion resistant and control resistant networks are found in Chapter 3.

Chapter 4 describes the dynamically attack-resistant network. Summaries of our results for

the deletion and control resistant networks are given in Table 2.1. These results assume

a network of n peers storing O(n) data items. For comparison, we have included in this

table results for other peer-to-peer networks in the literature. (These other networks are

described in Section 2.2).

2.1.3 The Constants

Some exact equations for resource bounds for the Deletion Resistant Network and the Con-

trol Resistant Network are given in Table 2.2. These resource bounds are for the case where

we guarantee that after the adversary attacks (deletes or controls) half the peers, 90% of

the remaining peers can access 90% of the content. Solving for the optimal constants in

these equations is NP-Hard so the equations reported have non-optimal constants.

The constants in these equations show that the results for the Deletion Resistant and

Control Resistant Networks are still far from being practical for any reasonably small values

13

Table 2.2: Sample Equations for Computing Resource Bounds for the Deletion Resistant
and Control Resistant Networks. These are the required resource bounds to ensure that
after the adversary attacks (i.e. deletes or controls) 1/2 the peers that 90% of the remaining
peers can access 90% of the content. The values plugged into the proof of Theorem 1 to get
these equations are δ = .5, α = .25, α′ = .125, β = 1.000000001, γ = .5.

Deletion Resistant Network Control Resistant Network

Space Per Peer 19, 246 ∗ lnn + 18, 060 32, 620 ∗ ln2 n + 7

Hops Per Search 7 log n 7 log n

Messages Per Search 394, 000 ∗ ln2 n 1, 425, 115 ∗ ln3 n

of n. In particular, the number of peers in Gnutella now is around 100, 000 and the number of

users of the internet is about 100, 000, 000. Unfortunately, even for a network of 100, 000, 000

peers, the number of messages sent per search in both the Deletion Resistant and Control

Resistant Networks would exceed the total number of peers in the network (and thus our

search algorithms would compare unfavorably with a naive broadcast algorithm). Hence

our results are primarily of theoretical interest.

To be fair, we note that our bias in constructing these networks and proofs was towards

simplifing the mathematical analysis rather than minimizing the constants. It is possible

that the constants could be significantly reduced with somewhat different algorithms and

proof techniques.

2.1.4 Deletion Resistant Network

In Chapter 3, we present a peer-to-peer network with n nodes used to store n distinct data

items1. As far as we know this is the first such scheme of its kind. The scheme is robust

to adversarial deletion of up to2 half of the nodes in the network and has the following

properties:

1For simplicity, we’ve assumed that the number of items and the number of nodes is equal. However, for
any n nodes and m ≥ n data items, our scheme will work, where the search time remains O(log n), the
number of messages remains O(log2 n), and the storage requirements are O((m/n) log n) per node.

2For simplicity, we give the proofs with this constant equal to 1/2. However we can easily modify the
scheme to work for any constant less than 1. This would change the constants involved in storage, search
time, and messages sent, by a constant factor.

14

1. With high probability, all but an arbitrarily small fraction of the nodes can find all

but an arbitrarily small fraction of the data items.

2. Search takes (parallel) time O(log n).

3. Search requires O(log2 n) messages in total.

4. Every node requires O(log n) storage.

For reasons enumerated in the Introduction, in the context of peer-to-peer systems, it

seems important to consider adversarial attacks rather than random deletion. Our scheme

is robust against adversarial deletion.

We remark that such a network is clearly resilient to having up to 1/2 of the nodes

removed at random, (in actuality, its random removal resiliency is much better). We further

remark that if nodes come up and down over time, our network will continue to operate as

required so long as at least n/2 of the nodes are alive.

2.1.5 Control Resistant Network

In Chapter 3, we also present our control resistant network. This is a variant of the deletion

resistant network which is resistant to an adversary which controls the peers it attacks

rather than deletes them. To the best of our knowledge this is the first such scheme of its

kind. As before, assume n nodes used to store n distinct data items. The adversary may

choose up to some constant c < 1/2 fraction of the nodes in the network. These nodes

under adversary control may be deleted, or they may collude and transmit arbitrary false

versions of the data item, nonetheless:

1. With high probability, all but an arbitrarily small fraction of the nodes will be able

to obtain all but an arbitrarily small fraction of the true data items. To clarify this

point, the search will not result in multiple items, one of which is the correct item.

The search will result in one unequivocal true item.

2. Search takes (parallel) time O(log n).

15

3. Search requires O(log3 n) messages in total.

4. Every node requires O(log2 n) storage.

2.1.6 Dynamically Attack-Resistant Network

In Chapter 4, we describe the dynamically attack-resistant network. This network is robust

even when all of the original peers in the network are deleted provided that enough new

peers join the network. For this result, we assume that we start with a network of n peers

for some fixed n, that the number of data items stored is always O(n), and that each joining

peer knows one random peer.

We say an adversary is (γ, δ)-limited if for some γ > 0, δ > γ, at least δn peers join the

network in any time interval when adversary deletes γn peers.

We say a peer-to-peer network is ε-robust at some particular time if all but an ε fraction

of the peers can access all but an ε fraction of the content.

Finally we say a peer-to-peer network is ε-dynamically attack-resistant if, with high

probability, the network is always ε-robust during any period when a limited adversary

deletes a number of peers polynomial in n.

Our main result is the following: For any ε > 0, γ < 1 and δ > γ + ε, we give a

ε-dynamically attack-resistant network such that:

• the network is ε-robust assuming δn peers added whenever γn peers deleted.

• Search takes O(log n) time and O(log3 n) messages

• Every peer maintains pointers to O(log3 n) other peers

• Every peer stores O(log n) data items

• Peer insertion takes O(log n) time

16

2.2 Related Work

2.2.1 Peer-to-peer Networks (not Content Addressable)

Peer-to-peer networks are a relatively recent and quickly growing phenomena. The average

number of Gnutella users in any given day is no less than 10, 000 and may range as high as

30, 000 [Cli]. Napster software has been downloaded by 50 million users [RFH+01]. There

are a wide range of popular deployed peer-to-peer systems including: Napster, Gnutella,

Morpheus, Kazaa, Audiogalaxy, iMesh, Madster, FreeNet, Publius, Freehaven, NetBatch,

MBone, Groove, NextPage, Reptile and Yaga. Due to naive algorithms for searching for con-

tent, many of these deployed peer-to-peer systems are not scalable. For example, Gnutella

requires up to O(n) messages for a search (search is performed via a general broadcast),

this has effectively limited the size of Gnutella networks to about 1000 nodes [Cli].

Pandurangam, Raghavan, and Upfal [PRU01] address the problem of maintaining a

connected network under a probabilistic model of node arrival and departure. They do

not deal with the question of searching within the network. They give a protocol which

maintains a network on n nodes with diameter O(log n). The protocol requires constant

memory per node and a central hub with constant memory with which all nodes can connect.

Experimental measurements of a connected component of the real Gnutella network have

been studied [SGG02], and it has been found to still contain a large connected component

even with a 1/3 fraction of random node deletions.

2.2.2 Content Addressable Networks — Random Faults

A more principled approach than the naive approach taken by many deployed systems is

the use of a content addressable network (CAN) [RFH+01]. A content addressable network

is defined as a distributed, scalable, indexing scheme for peer-to-peer networks.

There are several papers that address the problem of creating a content addressable

network. Plaxton, Rajaram and Richa [PRR97] give a context addressable network for web

caching. Search time and the total number of messages is O(log n), and storage requirements

are O(log n) per node.

Tapestry [ZKJ01] is an extension to the [PRR97] mechanism, designed to be robust

17

against faults. It is used in the Oceanstore [KBC+00] system. Experimental evidence is

supplied that Tapestry is robust against random faults.

Ratnasamy et. al. [RFH+01] describe a system called CAN which has the topology of a

d-dimensional torus. As a function of d, storage requirements are O(d) per node, whereas

search time and the total number of messages is O(dn1/d). There is experimental evidence

that CAN is robust to random faults.

Finally, Stoica et. al. introduce yet another content addressable network, Chord

[SMK+01], which, like [PRU01] and [ZKJ01], requires O(log n) memory per node and

O(log n) search time. Chord is provably robust to a constant fraction of random node

failures.

It is unclear whether it is possible to extend any of these systems to remain robust

under orchestrated attacks. In addition, many known network topologies are known to be

vulnerable to adversarial deletions. For example, with a linear number of node deletions,

the hypercube can be fragmented into components all of which have size no more than

O(n/
√

log n) ([HLN89]).

2.2.3 Faults on Networks

Random Faults

There is a large body of work on node and edge faults that occur independently at random

in a general network. H̊astad, Leighton and Newman [HLN89] address the problem of

routing when there are node and edge faults on the hypercube which occur independently

at random with some probability p < 1. They give a O(log n) step routing algorithm that

ensures the delivery of messages with high probability even when a constant fraction of

the nodes and edges have failed. They also show that a faulty hypercube can emulate a

fault-free hypercube with only constant slowdown.

Karlin, Nelson and Tamaki [KNT94] explore the fault tolerance of the butterfly network

against edge faults that occur independently at random with probability p. They show

that there is a critical probability p∗ such that if p is less than p∗, the faulted butterfly

almost surely contains a linear-sized component and that if p is greater than p∗, the faulted

18

butterfly does not contain a linear sized component.

Leighton, Maggs and Sitamaran [LMS98] show that a butterfly network whose nodes

fail with some constant probability p can emulate a fault-free network of the same size with

a slowdown of 2O(log∗ n).

Adversarial Faults

It is well known that many common network topologies are not resistant to a linear number

of adversarial faults. With a linear number of faults, the hypercube can be fragmented into

components all of which have size no more than O(n/
√

log n) [HLN89]. The best known

lower bound on the number of adversarial faults a hypercube can tolerate and still be able

to emulate a fault free hypercube of the same size is O(log n) [HLN89].

Leighton, Maggs and Sitamaran [LMS98] analyze the fault tolerance of several bounded

degree networks. One of their results is that any n node butterfly network containing n1−ε

(for any constant ε > 0) faults can emulate a fault free butterfly network of the same size

with only constant slowdown. The same result is given for the shuffle-exchange network.

2.2.4 Other Theoretical Related Work

One attempt at censorship resistant web publishing is the Publius system [MWC00], while

this system has many desirable properties, it is not a peer-to-peer network. Publius makes

use of many cryptographic elements and uses Shamir’s threshold secret sharing scheme

[Sha79] to split the shares amongst many servers. When viewed as a peer-to-peer network,

with n nodes and n data items, to be resistant to n/2 adversarial node removals, Publius

requires Ω(n) storage per node and Ω(n) search time per query.

Alon et al. [AKK+00] give a method which safely stores a document in a decentralized

storage setting where up to half the storage devices may be faulty. The application context

of their work is a storage system consisting of a set of servers and a set of clients where each

client can communicate with all the servers. Their scheme involves distributing specially

encoded pieces of the document to all the servers in the network.

Aumann and Bender [AB96] consider tolerance of pointer-based data structures to worse

19

case memory failures. They present fault tolerant variants of stacks, lists and trees. They

give a fault tolerant tree with the property that if r adversarial faults occur, no more than

O(r) of the data in the tree is lost. This fault tolerant tree is based on the use of expander

graphs.

Quorum systems [Gif79, MRW00, MRWW98] are an efficient, robust way to read and

write to a variable which is shared among n servers. Many of these systems are resistant

up to some number b < n/4 of Byzantine faults. The key idea in such systems is to create

subsets of the servers called quorums in such a way that any two quorums contain at least

2b+1 servers in common. A client that wants to write to the shared variable will broadcast

the new value to all servers in some quorum. A client that wants to read the variable will

get values from all members in some quorum and will keep only that value which has the

most recent time stamp and is returned by at least b + 1 servers. For quorum systems that

are resistant to θ(n) faults the load on the servers can be high. In particular, θ(n) servers

will be involved in a constant fraction of the queries.

Recently Malkhi et. al. [MRWW98] have introduced a probabilistic quorum system.

This new system relaxes the constraint that there must be 2b + 1 servers shared between

any two quorums and remains resistant to Byzantine faults only with high probability. The

load on servers in the probabilistic system is less than the load in the deterministic system.

Nonetheless, for a probabilistic quorum system which is resistant to θ(n) faults, there still

will be at least one server involved in a constant fraction of the queries.

2.2.5 Other Empirical Related Work

There are several major systems projects which address the problem of maintaining avail-

ability of published files in the face of attacks. In this section, we explore two of these

systems: Eternity and Farsite. Eternity [And96] is a file sharing system designed to be

resistant to both denial-of-service and legal attacks. The system seeks to ensure that a

file, once published in the system, always remains available to all users. In other words,

the file can not be removed or changed even by the publisher of that file. Replication is

used to ensure availability of files and cryptographic tools are used to ensure that file lo-

20

cation information is inacessible. The system achieves resistance to attack primarily by

this inacessibility of file location information. Search for a file in the worst case is done

by broadcasting to all users in the network. In contrast to the Eternity system, in our

attack-resistant networks, the locations of all files are known to all peers and search is not

done by broadcast.

Farsite [BDET00] is an architecture for a serverless distributed file system in an envi-

ronment where not all clients are trusted. Farsite also uses replication and cryptographic

techniques to achieve reliability and data integrity in an untrusted environment. Signifi-

cant empirical evidence is provided to show that Farsite has good time and space resource

bounds. However, while empirical evidence is provided to suggest that Farsite provides good

reliability in the face of typical machine faults, there is no empirical or theoretical evidence

that the system is robust to adversarial faults.

21

Chapter 3

THE DELETION RESISTANT AND CONTROL RESISTANT

NETWORKS

In this chapter, we describe the deletion and content resistant networks in detail and

provide proofs of their attack-resistance and good performance. We give the algorithm for

creation of our deletion resistant network, the search mechanism, and the attack-resistant

properties in Section 3.1. The proof of our main theorem for the deletion resistant network,

Theorem 1, is given in Section 3.2. In Section 3.3 we sketch the modifications required in

the algorithms and the proofs to obtain the control resistant network. The main theorem

with regard to the control resistant network is Theorem 19.

3.1 The Deletion Resistant Network

In this section, we state our mechanism for providing indexing of n data items by n nodes

in a network that is robust to adversarial removal of half of the nodes. We make use of a

n-node butterfly network of depth log n − log log n.

We call the nodes of the butterfly network supernodes (see Figure 1). Every supernode

is associated with a set of O(log n)peers and every peer is in O(log n) supernodes. We call

a supernode at the topmost level of the butterfly a top supernode, one at the bottommost

level of the network a bottom supernode and one at neither the topmost or bottommost

level a middle supernode.

To construct the network we do the following:

• We choose an error parameter ε > 0, and as a function of ε we determine constants

C, B, T , D, α and β. (See Theorem 1).

• Every peer chooses at random C top supernodes, C bottom supernodes and C log n

middle supernodes to which it will belong.

22

Figure 3.1: The butterfly network of supernodes.

Figure 3.2: The expander graphs between supernodes.

23

• Between two sets of peers associated with two supernodes connected in the butterfly

network, we choose a random bipartite graph of degree D (see Figure 2). (We do this

only if both sets of peers are of size at least αC lnn and no more than βC lnn.)

• We also map the n data items to the n/ log n bottom supernodes in the butterfly.

Every one of the n data items is hashed to B random bottom supernodes. (Typically,

we would not hash the entire data item but only its title, e.g., “Singing in the Rain”).
1

• The data item is stored in all the component peers of all the (bottom) supernodes to

which it has been hashed (if any bottom supernode has more than βB lnn data items

hashed to it, it drops out of the network.)

• In addition, every one of the peers chooses T top supernodes of the butterfly and

points to all component peers of these supernodes.

To perform a search for a data item, starting from peer v, we do the following:

1. Take the hash of the data item and interpret it as a sequence of indices i1, i2, . . . , iB,

0 ≤ i� ≤ n/ log n.

2. Let t1, t2, . . . , tT be the top supernodes to which v points.

3. Repeat in parallel for all values of k between 1 and T :

(a) Let � = 1.

(b) Repeat until successful or until � > B:

i. Follow the path from tk to the supernode at the bottom level whose index is

i�:

• Transmit the query to all of the peers in tk. Let W be the set of all such

peers.

1We use the random oracle model [BR93] for this hash function, it would have sufficed to have a weaker
assumption such as that the hash function is expansive.

24

• Repeat until a bottom supernode is reached:

– The peers in W transmit the query to all of their neighbors along the

(unique) butterfly path to i�, Let W be this new set of peers.

• When the bottom supernode is reached, fetch the content from whatever

peer has been reached.

• The content, if found, is transmitted back along the same path as the

query was transmitted downwards.

ii. Increment �.

3.1.1 Properties of the Deletion Resistant Network

Following is the main theorem which we will prove in Section 3.2.

Theorem 1 For all ε > 0, there exist constants k1(ε), k2(ε), k3(ε) which depend only on ε

such that

• Every peer requires k1(ε) log n memory.

• Search for a data item takes no more than k2(ε) log n time.

• Search for a data item requires no more than k3(ε) log2 n messages.

• All but εn peers can reach all but εn data items after deletion of any half of the peers.

3.1.2 Some Comments

1. Distributed creation of the content addressable network

We note that our Content Addressable Memory can be created in a fully distributed

fashion with n broadcasts or transmission of n2 messages in total and assuming

O(log n) memory per peer. We briefly sketch the protocol that a particular peer

will follow to do this. The peer first randomly chooses the supernodes to which it

belongs. Let S be the set of supernodes which neighbor supernodes to which the peer

belongs. For each s ∈ S, the peer chooses a set Ns of D random numbers between 1

25

and βC lnn. The peer then broadcasts a message to all other peers which contains

the identifiers of the supernodes to which the peer belongs.

Next, the peer will receive messages from all other peers giving the supernodes to

which they belong. For every s ∈ S, the peer will link to the i-th peer that belongs

to s from which it receives a message if and only if i ∈ Ns.

If for some supernode to which the peer belongs, the peer receives less than αC lnn or

greater than βC lnn messages from other peers in that supernode, the peer removes all

out-going connections associated with that supernode. Similarly, if for some supernode

in S, the peer receives less than αC lnn or greater than βC lnn messages from other

peers in that supernode, the peer removes all out-going connections to that neighboring

supernode. Connections to the top supernodes and storage of data items can be

handled in a similar manner.

2. Insertion of a New Data Item

One can insert a new data item simply by performing a search, and sending the

data item along with the search. The data item will be stored at the peers of the

bottommost supernodes in the search. We remark that such an insertion may fail

with some small constant probability.

3. Insertion of a New Peer

Our network does not have an explicit mechanism for peer insertion. It does seem

that one could insert the peer by having the peer choose at random appropriate

supernodes and then forge the required random connections with the peers that belong

to neighboring supernodes. The technical difficulty with proving results about this

insertion process is that not all live peers in these neighboring supernodes may be

reachable and thus the probability distributions become skewed.

We note though that a new peer can simply copy the links to top supernodes of some

other peer already in the network and will thus very likely be able to access almost

all of the data items. This insertion takes O(log n) time. Of course the new peer will

26

not increase the resiliency of the network if it inserts itself in this way. We assume

that a full reorganization of the network is scheduled whenever sufficiently many new

peers have been added in this way.

4. Load Balancing Properties

Because the data items are searched for along a path from a random top supernode

to the bottom supernodes containing the item, and because these bottom supernodes

are chosen at random, the load will be well balanced as long as the number of requests

for different data items is itself balanced. This follows because a uniform distribution

on the search for data items translates to a uniform distribution on top to bottom

paths through the butterfly.

3.2 Proofs

In this section, we present the proof of Theorem 1 which is the main result of this chapter.

3.2.1 Proof Overview

Technically, the proof makes extensive use of random constructions and the Probabilistic

Method [AS00].

We first show that with high probability, all but an arbitrarily small constant times

n/ log n of the supernodes are good, where good means that (a) they have O(log n) peers

associated with them, and, (b) they have Ω(log n) live peers after adversarial deletion. We

note that the first property gives an upper bound on the number of pointers any peer must

store. The second property implies that after attack, all but a small constant fraction of

the paths through the butterfly contain only good supernodes.

Search is preformed by broadcasting the search to all the peers in (a constant number

of) top supernodes, followed by a sequence of broadcasts between every successive pair of

supernodes along the paths between one of these top supernodes and a constant number of

bottom supernodes. Fix one such path. The broadcast between two successive supernodes

along the path makes use of the expander graph connecting these two supernodes. When

27

Supernode� Supernode� Supernode�

Live�
Nodes�

Dead�
Nodes�

Live�
Nodes�

Dead�
Nodes�

Figure 3.3: Traversal of a path through the butterfly.

we broadcast from the live peers in a supernode to the following supernode, the peers that

we reach may be both live and dead(see Figure 3).

Assume that we broadcast along a path, all of whose supernodes are good. One problem

is that we are not guaranteed to reach all the live peers in the next supernode along the

path. Instead, we reduce our requirements to ensure that at every stage, we reach at least

δ log n live peers, for some constant δ. The crucial observation is that if we broadcast from

δ log n live peers in one supernode, we are guaranteed to reach at least δ log n live peers

in the subsequent supernode, with high probability. This follows by using the expansion

properties of the bipartite expander connection between two successive supernodes.

Recall that the peers are connected to a constant number of random top supernodes,

and that the data items are stored in a constant number of random bottom supernodes.

The fact that we can broadcast along all but an arbitrarily small fraction of the paths in

the butterfly implies that most of the peers can reach most of the content.

In several statements of the lemmata and theorems in this section, we require that n,

the number of peers in the network, be sufficiently large to get our result. We note that,

technically, this requirement is not necessary since if it fails then n is a constant and our

claims trivially hold.

28

3.2.2 Technical Lemmata

Following are three technical lemmata about bipartite expanders that we will use in our

proofs. The proof of the first lemma is well known [Pin73] (see also [MR95]) and the proof

of the next two lemmata are slight variants on the proof of the first. The proofs of all three

lemmata are included in Section 3.4 for completeness.

Lemma 2 Let l, r, l′, r′, d and n be any positive values where l′ ≤ l and r′ ≤ r and

d ≥ r

r′l′

(
l′ ln

(
le

l′

)
+ r′ ln

(re

r′

)
+ 2 lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and

|R| = r and each peer in L has edges to d random neighbors in R. Then with probability at

least 1 − 1/n2, any subset of L of size l′ shares an edge with any subset of R of size r′ .

Lemma 3 Let l, r, l′, r′, d, λ and n be any positive values where l′ ≤ l, r′ ≤ r, 0 < λ < 1

and

d ≥ 2r

r′l′(1 − λ)2

(
l′ ln

(
le

l′

)
+ r′ ln

(re

r′

)
+ 2 lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and

|R| = r and each peer in L has edges to d random neighbors in R. Then with probability at

least 1 − 1/n2, for any set L′ ⊂ L where |L′| = l′, there is no set R′ ⊂ R, where |R′| = r′

such that all peers in R′ share less than λl′d/r edges with L′.

Lemma 4 Let l, r, r′, d, β′ and n be any positive values where l′ ≤ l, β′ > 1 and

d ≥ 4r

r′l(β′ − 1)2
(
r′ ln

(re

r′

)
+ 2 lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and

|R| = r and each peer in L has edges to d random neighbors in R. Then with probability at

least 1 − 1/n2, there is no set R′ ⊂ R, where |R′| = r′ such that all peers in R′ have degree

greater than β′ld/r.

29

3.2.3 Definitions

Definition 5 A top or middle supernode is said to be (α, β)-good if it has at most β log n

peers mapped to it and at least α log n peers which are not under control of the adversary.

Definition 6 A bottom supernode is said to be (α, β)-good if it has at most β log n peers

mapped to it and at least α log n peers which are not under control of the adversary and if

there are no more than βB lnn data items that map to the peer.

Definition 7 An (α, β)-good path is a path through the butterfly network from a top su-

pernode to a bottom supernode all of whose supernodes are (α, β)-good supernodes.

Definition 8 A top supernode is called (γ, α, β)-expansive if there exist γn/ log n (α, β)-

good paths that start at this supernode.

3.2.4 (α, β)-good Supernodes

Lemma 9 Let α, δ′, n be values where α < 1/2 and δ′ > 0 and let k(δ′, α) be a value

that depends only on α, δ′ and assume n is sufficiently large. Let each peer participate in

k(δ′, α) ln n random middle supernodes. Then removing any set of n/2 peers still leaves all

but δ′n/ lnn middle supernodes with at least αk(δ′, α) ln n live peers.

Proof: For simplicity, we will assume there are n middle supernodes (we can throw out

any excess supernodes).

Let l = n, l′ = n/2, r = n, r′ = δ′n/ lnn, λ = 2α and d = k(δ′, α) ln n in Lemma 3.

We want probability less than 1/n2 of being able to remove n/2 peers and having a set of

δ′n/ lnn supernodes all with less than αk(δ′, α) ln n live peers. This happens provided that

the number of connections from each supernode is bounded as in Lemma 3:

k(δ′, α) ln n ≥ 4 lnn

δ′n(1 − 2α)2

(
n ln(2e)

2
+

δ′n

ln n
· ln

(
lnn

δ′

)
+ 2 lnn

)
=

2 ln(2e) · ln n

δ′(1 − 2α)2
+ o(1);

⇐⇒ k(δ′, α) ≥ 2 ln(2e)
δ′(1 − 2α)2

+ o(1).

30

Hence, we have the following result. Assume each peer is in a number of supernodes

given by the right hand side of the above equation. Then with probability 1 − 1/n2 there

is no set of n/2 peers whose deletion will cause δ′n/ lnn supernodes to all have less than

αk(δ′, α) ln n live peers.

Lemma 10 Let β, δ′, n, k be values such that β > 1, δ′ > 0 and assume n is sufficiently

large. Let each peer participate in k ln n of the middle supernodes, chosen uniformly at

random. Then all but δ′n/ lnn middle supernodes have less than βk lnn participating peers

with probability at least 1 − 1/n2.

Proof: For simplicity, we will assume there are n middle supernodes (we can throw out any

excess supernodes and the lemma will still hold). Let l = n, r = n, r′ = δ′n/ lnn, d = k lnn

and β′ = β in Lemma 4. Then the statement in this lemma holds provided that:

k lnn ≥ 4 lnn

δ′n(β − 1)2

(
δ′n

lnn
· ln

(
lnn

δ′

)
+ 2 lnn

)
;

⇐⇒ k ≥ 4
(β − 1)2 lnn

· ln
(

lnn

δ′
+

2
δ′n

)
.

The right hand side of this equation goes to 0 as n goes to infinity.

Lemma 11 Let α, δ′, n be values such that α < 1/2, δ′ > 0 and let k(δ′, α) be a value that

depends only on δ′ and α and assume n is sufficiently large. Let each peer participate in

k(δ′, α) top (bottom) supernodes. Then removing any set of n/2 peers still leaves all but

δ′n/ lnn top (bottom) supernodes with at least αk(δ′, α) ln n live peers.

Proof: Let l = n, l′ = n/2, r = n/ lnn, r′ = δ′n/ lnn, λ = 2α and d = k(δ′, α) in Lemma 3.

We want probability less than 1/n2 of being able to remove n/2 peers and having a set of

δ′n/ lnn supernodes all with less than αk(δ′, α) ln n live peers. We get this provided that

the number of connections from each supernode is bounded as in Lemma 3:

31

k(δ′, α) ≥ 4
δ′n(1 − 2α)2

(
n ln(2e)

2
+

δ′n

lnn
· ln(1/δ′) + 2 lnn

)
=

2 ln(2e)
δ′(1 − 2α)2

+ o(1).

Lemma 12 Let β, δ′, n, k be values such that β > 1, δ′ > 0 and n is sufficiently large.

Let each peer participate in k of the top (bottom) supernodes (chosen uniformly at ran-

dom). Then all but δ′n/ lnn top (bottom) supernodes consist of less than βk lnn peers with

probability at least 1 − 1/n2.

Proof: Let l = n, r = n/ lnn, r′ = δ′n/ lnn, d = k and β′ = β in Lemma 4. Then the

statement in this lemma holds provided that:

k ≥ 4
δ′n(β − 1)2

(
δ′n

lnn
· ln

(e

δ′

)
+ 2 lnn

)
=

4
lnn(β − 1)2

·
(

ln
(e

δ′

)
+

2 lnn

δ′n

)
.

The right hand side of this equation goes to 0 as n goes to infinity.

Corollary 13 Let β, δ′, n, k be values such that β > 1, δ′ > 0 and n is sufficiently large.

Let each data item be stored in k of the bottom supernodes (chosen uniformly at random).

Then all but δ′n/ lnn bottom supernodes have less than βk lnn data items stored on them

with probability at least 1 − 1/n2.

Proof: Let the data items be the left side of a bipartite graph and the bottom supernodes

be the right side. The proof is then the same as Lemma 12.

32

Corollary 14 Let δ′ > 0, α < 1/2, β > 1. Let k(δ′, α), be a value depending only on δ′

and assume n is sufficiently large. Let each peer appear in k(δ′, α) top supernodes, k(δ′, α)

bottom supernodes and k(δ′, α) ln n middle supernodes. Then all but δ′n of the supernodes

are (αk(δ′, α), βk(δ′, α))-good with probability 1 − O(1/n2).

Proof: Use

k(δ′, α) =
10
3

· 2 ln(2e)
δ′(1 − 2α)2

in Lemma 11. Then we know that no more than 3δ′n/(10 lnn) top supernodes and no

more than 3δ′n/(10 lnn) bottom supernodes have less than αk(δ′, α) ln n live peers. Next

plugging k(δ′, α) into Lemma 9 gives that no more than 3δ′n/(10 lnn) middle supernodes

have less than αk(δ′, α) ln n live peers.

Next using k(δ′, α) in Lemma 12 and Lemma 10 gives that no more than δ′n/(20 lnn)

of the supernodes can have more than βk(δ′, α) ln n peers in them. Finally, using k(δ′, α)

in Lemma 13 gives that no more than δ′n/(20 lnn) of the bottom supernodes can have

more than βk(δ′, α) ln n data items stored at them. If we put these results together, we get

that no more than δn/ lnn supernodes are not (αk(δ′, α), βk(δ′, α))-good with probability

1 − O(1/n2)

3.2.5 (γ, α, β)-expansive Supernodes

Theorem 15 Let δ > 0, α < 1/2, 0 < γ < 1, β > 1. Let k(δ, α, γ) be a value depending

only on δ, α, γ and assume n is sufficiently large. Let each node participate in k(δ, α, γ) top

supernodes, k(δ, α, γ) bottom supernodes and k(δ, α, γ) ln n middle supernodes. Then all but

δn/ lnn top supernodes are (γ, αk(δ, α), βk(δ, α))-expansive with probability 1 − O(1/n2).

Proof: Assume that for some particular k(δ, α, γ) that more than δn/ lnn top supernodes

are not (γ, αk(δ, α, γ), βk(δ, α, γ)-expansive. Then each of these bad top supernodes has

(1 − γn)/ lnn paths that are not (αk(δ, α, γ), βk(δ, α, γ))-good. So the total number of

paths that are not (αk(δ, α, γ), βk(δ, α, γ))-good is more than

33

δ(1 − γ)n2

ln2 n
.

We will show there is a k(δ, α, γ) such that this event will not occur with high probability.

Let δ′ = δ(1 − γ) and let

k(δ, α, γ) =
10
3

· 2 ln(2e)
δ(1 − γ)(1 − 2α)2

.

Then we know by Lemma 14 that with high probability, there are no more than δ(1 −

γ)n/ lnn supernodes that are not (αk(δ, α, γ), βk(δ, α, γ))good. We also note that each su-

pernode is in exactly n/ lnn paths in the butterfly network. So each of these supernodes

which are not good cause at most n/ lnn paths in the butterfly to be not (αk(δ, α, γ), βk(δ, α, γ))-

good. Hence the number of paths that are not (αk(δ, α, γ), βk(δ, α, γ))-good is no more than

δ(1 − γ)n2/(ln2 n) which is what we wanted to show.

3.2.6 (α, β)-good Paths to Data Items

We will use the following lemma to show that almost all the peers are connected to some

appropriately expansive top supernode.

Lemma 16 Let δ > 0, ε > 0 and n be sufficiently large. Then exists a constant k(δ, ε)

depending only on ε and δ such that if each peer connects to k(δ, ε) random top supernodes

then with high probability, any subset of the top supernodes of size (1 − δ)n/ lnn can be

reached by at least (1 − ε)n peers.

Proof: We imagine the n peers as the left side of a bipartite graph and the n/ lnn top

supernodes as the right side and an edge between a peer and a top supernode in this graph

if and only if the peer and supernode are connected.

For the statement in the lemma to be false, there must be some set of εn peers on the left

side of the graph and some set of (1−δ)n/ lnn top supernodes on the right side of the graph

that share no edge. We can find k(δ, ε) large enough that this event occurs with probability

34

no more than 1/n2 by plugging in l = n, l′ = εn, r = n/ lnn and r′ = (1 − δ)(n/ ln n) into

Lemma 2. The bound found is:

k(δ, ε) ≥ 1
(1 − δ)εn

(
εn · ln

(e

ε

)
+

(1 − δ)n
lnn

· ln
(

e

(1 − δ)

)
+ 2 lnn

)
,

=
ln

(
e
ε

)
1 − δ

+ o(1).

We will use the following lemma to show that if we can reach γ bottom supernodes that

have some live peers in them that we can reach most of the data items.

Lemma 17 Let γ, n, ε be any positive values such that ε > 0, γ > 0. There exists a k(ε, γ)

which depends only on ε, γ such that if each bottom supernode holds k(ε, γ) ln n random data

items, then any subset of bottom supernodes of size γn/ lnn holds (1−ε)n unique data items.

Proof: We imagine the n data items as the left side of a bipartite graph and the n/ lnn

bottom supernodes as the right side and an edge between a data item and a bottom su-

pernode in this graph if and only if the supernode contains the data item. The bad event is

that there is some set of γn/ lnn supernodes on the right that share no edge with some set

of εn data items on the right. We can find k(ε, γ) large enough that this event occurs with

probability no more than 1/n2 by plugging in l = n, l′ = εn into r = n/ lnn, r′ = γn/ lnn

into Lemma 2. We get:

k(ε, γ) ln n ≥ lnn

εγn

(
γn

lnn
· ln e

γ
+ εn · ln e

ε
+ 2 ln n

)
;

⇐⇒ k(ε, γ) ≥ 1
γ
· ln e

ε
+ o(1).

3.2.7 Connections between (α, β)-good supernodes

Lemma 18 Let α, β, α′, n be any positive values where α′ < α, α > 0 and let C be the

number of supernodes to which each peer connects. Let X and Y be two supernodes that are

35

both (αC, βC)-good. Let each peer in X have edges to k(α, β, α′) random peers in Y where

k(α, β, α′) is a value depending only on α, β and α′. Then with probability at least 1−1/n2,

any set of α′C lnn peers in X has at least α′C lnn live neighbors in Y

Proof: Consider the event where there is some set of α′C lnn nodes in X which do not

have α′C lnn live neighbors in Y . There are αC lnn live peers in Y so for this event to

happen, there must be some set of (α − α′)C lnn live peers in Y that share no edge with

some set of α′d lnn peers in X. We note that the probability that there are two such sets

which share no edge is largest when X and Y have the most possible peers. Hence we will

find a k(α, β, α′) large enough to make this bad event occur with probability less than 1/n2

if in Lemma 2 we set l = βC lnn, r = βC lnn, l′ = α′C lnn and r′ = (α − α′)C lnn. When

we do this, we get that k(α, β, α′) must be greater than or equal to:

(
β

α′(α − α′)

)
·
(

α′ ln
(

βe

α′

)
+ (α − α′) ln

(
βe

α − α′

)
+

2
C

)
.

3.2.8 Putting it All Together

We are now ready to give the proof of Theorem 1.

Proof: Let δ, α, γ, α′, β be any values such that 0 < δ < 1, 0 < α < 1/2, 0 < α′ < α , β > 1

and 0 < γ < 1. Let

C = 10
3 · 2 ln(2e)

δ(1−γ)(1−2α)2
;

T =
ln(e

ε)
1−δ ;

B = 1
γ ln

(
e
ε

)
;

D =
(

β
α′(α−α′)

) (
α′ ln

(
βe
α′

)
+ (α − α′) ln

(
βe

α−α′

)
+ 2

C

)
Let each peer connect to C top, C bottom and C ln n middle supernodes. Then by

Theorem 15, at least (1−δ)n/ lnn top supernodes are (γ, αC, βC)-expansive. Let each peer

36

connect to T top supernodes. Then by Lemma 16, at least (1−ε)n peers can connect to some

(γ, αC, βC)-expansive top supernode. Let each data item map to B bottom supernodes.

Then by Lemma 17, at least (1 − ε)n peers have (αC, βC)-good paths to at least (1 − ε)n

data items.

Finally, let each peer in a middle supernode have D random connections to peers in

neighboring supernodes in the butterfly network. Then by Lemma 18, at least (1 − ε)n

nodes can broadcast to enough bottom supernodes so that they can reach at least (1 − ε)n

data items.

Each peer requires T links to connect to the top supernodes; 2D links for each of the C

top supernodes it plays a role in; 2D links for each of the C lnn middle supernodes it plays

a role in and Bβ lnn storage for each of the C bottom supernodes it plays a role in. The

total amount of memory required is thus

T + 2DC + (C lnn)(2D + Bβ),

which is less than k1(ε) log n for some k1(ε) dependent only on ε.

Our search algorithm will find paths to at most B bottom supernodes for a given data

item and each of these paths has less than log n hops in it so the search time is no more

than

k2(ε) log n = B log n.

Each supernode contains no more that βC lnn peers and in a hop to the next supernode,

each peer sends exactly D messages. Further, exactly T top supernodes send no more than

B messages down the butterfly so the total number of messages transmitted during a search

is no more than

k3(ε) log2 n = (TBDβC) log2 n.

3.3 Modifications for the Control Resistant Network

In this section, we present results for the control resistant network which is robust to

Byzantine faults [LSP82] (i.e. arbitrarily bad behavior for faulty peers). We only sketch the

37

changes in the network and the proofs to allow a control resistant network. The arguments

are based on slight modifications to the proofs of section 3.2.

The first modification is that rather than have a constant degree expander between two

supernodes connected in the butterfly, we will have a full bipartite graph between the peers

of these two supernodes. Since we’ve insisted that the total number of adversary controlled

nodes be strictly less than n/2, we can guarantee that a 1 − ε fraction of the paths in the

butterfly have all supernodes with a majority of good (non-adversary controlled) peers. In

particular, by substituting appropriate values in Lemma 3 and Lemma 4 we can guarantee

that all but εn/ log n of the supernodes have a majority of good peers. This then implies that

no more than an ε fraction of the paths pass through such “adversary-majority” supernodes.

As before, this implies that most of the peers can access most of the content through paths

that don’t contain any “adversary-majority” supernodes.

For a search in the new network, the paths in the butterfly network along which the

search request and data item will be sent are chosen exactly as in the original construction.

However, we modify the protocol so that in the downward flow, every peer passes down a

request only if the majority of requests it received from peers above it are the same. This

means that if there are no “adversary-majority” supernodes on the path, then all good

peers will take a majority value from a set in which good peers are a majority. Thus, along

such a path, only the correct request will be passed downwards by good peers. After the

bottommost supernodes are reached, the data content flows back along the same links as

the search went down. Along this return flow, every peer passes up a data value only if a

majority of the values it received from the peers below it are the same. This again ensures

that along any path where there are no “adversary-majority” supernodes, only the correct

data value will be passed upwards by good peers. At the top, the peer that issued the search

takes the majority value amongst the (O(log n)) values it receives as the final search result.

To summarize, the main theorem for control resistant networks is as follows:

Theorem 19 For any constant c < 1/2 such that the adversary controls no more than cn

peers, and for all ε > 0, there exist constants k1(ε), k2(ε), k3(ε) which depend only on ε such

that

38

• Every peer requires k1(ε) log2 n memory.

• Search for a data item takes no more than k3(ε) log n time. (This is under the as-

sumption that network latency overwhelms processing time for one message, otherwise

the time is O(log2 n).)

• Search for a data item requires no more than k3(ε) log3 n messages.

• All but εn peers can search successfully for all but εn of the true data items.

3.4 Technical Lemmata

Lemma 2: Let l, r, l′, r′, d and n be any positive values where l′ ≤ l and r′ ≤ r and

d ≥ r

r′l′

(
l′ ln

(
le

l′

)
+ r′ ln

(re

r′

)
+ 2 lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and

|R| = r and each peer in L has edges to d random neighbors in R. Then with probability at

least 1 − 1/n2, any subset of L of size l′ shares an edge with any subset of R of size r′ .

Proof: We will use the probabilistic method to show this. We will first fix a set L′ ⊂ L of

size l′ and a set R′ ⊂ R of size r′ and compute the probability that there is no edge between

L′ and R′ and will then bound the probability of this bad event for any such set L′ and R′.

The probability that a single edge does not fall in R′ is 1 − r′/r so the probability that no

edge from L′ falls into R′ is no more than e−r′l′d/r.

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l′

and the number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r′ .

So the probability that no two subsets L of size l′ and R of size r′ have no edge between

them is no more than:

(
le

l′

)l′

·
(re

r′

)r′

· e− r′l′d
r

Below we solve for appropriate d such that this probability is less than 1/n2.

39

(
le

l′

)l′

·
(re

r′

)r′

· e− r′l′d
r ≤ 1/n2 (3.1)

⇐⇒ l′ ln
(

le

l′

)
+ r′ ln

(re

r′

)
− r′l′d

r
≤ −2 lnn (3.2)

⇐⇒ r

r′l′

(
l′ ln

(
le

l′

)
+ r′ ln

(re

r′

)
+ 2 lnn

)
≤ d

We get step (3.2) from step (3.1) in the above by taking the logarithm of both sides.

Lemma 3: Let l, r, l′, r′, d, λ and n be any positive values where l′ ≤ l, r′ ≤ r, 0 < λ < 1 and

d ≥ 2r

r′l′(1 − λ)2

(
l′ ln

(
le

l′

)
+ r′ ln

(re

r′

)
+ 2 lnn

)
Let G be a random bipartite multigraph with left side L and right side R where |L| = l and

|R| = r and each peer in L has edges to d random neighbors in R. Then with probability at

least 1 − 1/n2, for any set L′ ⊂ L where |L′| = l′, there is no set R′ ⊂ R, where |R′| = r′

such that all peers in R′ share less than λl′d/r edges with L′.

Proof: We will use the probabilistic method to show this. We will first fix a set L′ ⊂ L of

size l′ and a set R′ ⊂ R of size r′ and compute the probability that all peers in R′ share

less than λl′d/r edges with L′. If this bad event occurs then the total number of edges

shared between L′ and R′ must be less than λr′l′d/r. Let X be a random variable giving

the number of edges shared between L′ and R′. The probability that a single edge from L′

falls in R′ is r′/r so by linearity of expectation, E(X) = r′l′d/r.

We can then say that:

Pr
(

X ≤ λr′l′d

r

)
= Pr(X ≤ (1 − δ)E(X)) ≤ e−E(X)δ2/2.

Where δ = 1− λ and the last equation follows by Chernoff bounds [MR95] if 0 < λ < 1.

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l′

and the number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r′ .

40

So the probability that no two subsets L′ of size l′ and R′ of size r′ have this bad event

occur is

(
le

l′

)l′

·
(re

r′

)r′

· e− r′l′dδ2

2r .

Below we solve for appropriate d such that this probability is less than 1/n2.

(
le

l′

)l′

·
(re

r′

)r′

· e− r′l′dδ2

2r ≤ 1/n2 (3.3)

⇐⇒ l′ ln
(

le

l′

)
+ r′ ln

(re

r′

)
− r′l′dδ2

2r
≤ −2 lnn (3.4)

⇐⇒ 2r

r′l′(1 − λ)2

(
l′ ln

(
le

l′

)
+ r′ ln

(re

r′

)
+ 2 lnn

)
≤ d

We get step (3.4) from step (3.3) in the above by taking the logarithm of both sides.

Lemma 4: Let l, r, r′, d, β′ and n be any positive values where l′ ≤ l, β′ > 1 and

d ≥ 4r

r′l(β′ − 1)2
(
r′ ln

(re

r′

)
+ 2 lnn

)
Let G be a random bipartite multigraph with left side L and right side R where |L| = l and

|R| = r and each peer in L has edges to d random neighbors in R. Then with probability at

least 1 − 1/n2, there is no set R′ ⊂ R, where |R′| = r′ such that all peers in R′ have degree

greater than β′ld/r.

Proof: We will again use the probabilistic method to show this. We will first fix a set

R′ ⊂ R of size r′ and compute the probability that all peers in R′ have degree greater than

β′ld/r. If this bad event occurs then the total number of edges shared between L and R′

must be at least β′r′ld/r. Let X be a random variable giving the number of edges shared

between L and R′. The probability that a single edge from L falls in R′ is r′/r so by linearity

of expectation, E(X) = r′ld/r.

We can then say that:

41

Pr
(

X ≥ β′r′ld

r

)
= Pr(X ≥ (1 + δ)E(X)) ≤ e−E(X)δ2/4.

Where δ = β′ − 1 and the last equation follows by Chernoff bounds [MR95] if 1 < β′ <

2e − 1.

The number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r′ .

So the probability that no subset R′ of size r′ has this bad event occur is

(re

r′

)r′

· e− r′l′dδ2

4r .

Below we solve for appropriate d such that this probability is less than 1/n2.

(re

r′

)r′

· e− r′ldδ2

4r ≤ 1/n2 (3.5)

⇐⇒ r′ ln
(re

r′

)
− r′ldδ2

4r
≤ −2 lnn (3.6)

⇐⇒ 4r

r′l(β′ − 1)2
(
r′ ln

(re

r′

)
+ 2 ln n

)
≤ d

We get step (3.6) from step (3.5) in the above by taking the logarithm of both sides.

42

Chapter 4

THE DYNAMICALLY ATTACK-RESISTANT NETWORK

In this chapter, we describe our Dynamically Attack-Resistant Network. Section 4.1

describes the new “Dynamic Attack Resistant” property, Section 4.2 describes our network,

and Section 4.3 gives the proofs that our network is dynamically attack-resistant and has

good performance.

4.1 Dynamic Attack Resistance

To better address attack-resistance in peer-to-peer networks which are faced with massive

peer turnover, we define a new notion of attack-resistance: dynamic attack-resistance. First,

we assume an adversarial fail-stop model – at any time, the adversary has complete visibility

of the entire state of the system and can choose to ”delete” any peer it wishes. A ”deleted”

peer stops functioning immediately, but is not assumed to be Byzantine. Second, we require

our network to remain “robust” at all times provided that in any time interval during which

the adversary deletes some number of peers, some larger number of new peers join the

network. The network remains “robust” in the sense that an arbitrarily large fraction of

the live peers can access an arbitrarily large fraction of the content.

More formally, we say that an adversary is limited if for some constants γ > 0 and δ > γ,

during any period of time in which the adversary deletes γn peers from the network, at least

δn new peers join the network (where n is the number of peers initially in the network).

Each new peer that is inserted knows only one other random peer currently in the network.

For such a limited adversary, we seek to maintain a robust network for indexing up to n

data items. Although the number of indexed data items remains fixed, the number of peers

in the network will fluctuate as nodes are inserted and deleted by the adversary.

We say that a content addressable network (CAN) is ε-robust at some particular time

if all but an ε fraction of the peers in the CAN can access all but an ε fraction of the data

43

items.

Finally, we say that a CAN (initially containing n peers) is ε-dynamically attack-resistant,

if, with high probability, the CAN is always ε-robust during a period when a limited adver-

sary deletes a number of peers polynomial in n.

In section 4.2, we present an ε-dynamically attack-resistant CAN for any arbitrary ε > 0,

and any constants γ and δ such that γ < 1 and δ > γ + ε. Our CAN stores n data items1,

and has the following characteristics:

1. With high probability, at any time, an arbitrarily large fraction of the nodes can find

an arbitrarily large fraction of the data items.

2. Search takes time O(log n) and requires O(log3 n) messages in total.

3. Every peer maintains pointers to O(log3 n) other peers.

4. Every peer stores O(log n) data items.

5. Peer insertion takes time O(log n).

The constants in these resource bounds are functions of ε, γ and δ. The technical

statement of this result is presented in Theorem 20.

We note that, as we have defined it, an ε-dynamically attack-resistant CAN is ε-robust

for only a polynomial number of peer deletions by the limited adversary. To address this

issue, we imagine that very infrequently, there is an all-to-all broadcast among all live

peers to reconstruct the CAN(details of how to do this are in [FS02]). Even with these

infrequent reconstructions, the amortized cost per insertion will be small. Our main theorem

is provided below.

Theorem 20 Let n be fixed. Then for all ε > 0 and value P which is polynomial in n,

there exist constants k1(ε), k2(ε) and k3(ε) and k4(ε) such that the following holds with high

probability for the CAN for deletion of up to P peers by the limited adversary:

1For simplicity, we’ve assumed that the number of items and the number of initial nodes is equal. However,
for any n nodes and m ≥ n data items, our scheme will work, where the search time remains O(log n),
the number of messages remains O(log3 n), and the storage requirements are O(log3 n × m/n) per node.

44

Figure 4.1: The butterfly network of supernodes.

• At any time, the CAN is ε-robust

• Search takes time no more than k1(ε) log n.

• Peer insertion takes time no more than k2(ε) log n.

• Search requires no more than k3(ε) log3 n messages total.

• Every node stores no more than k4(ε) log3 n pointers to other nodes and k3(ε) log n

data items.

4.2 A Dynamically Attack-Resistant Network

Our scheme is most easily described by imagining a “virtual CAN”. The specification of this

CAN consists of describing the network connections between virtual nodes, the mapping of

data items to virtual nodes, and some additional auxiliary information. In Section 4.2.1,

we describe the virtual CAN. In Section 4.2.2, we go on to describe how the virtual CAN

is implemented by the peers.

4.2.1 The Virtual CAN

The virtual CAN, consisting of n virtual nodes, is closely based on the scheme presented in

the previous chapter. We make use of a butterfly network of depth log n− log log n, we call

45

the nodes of the butterfly network supernodes (see Figure 1). Every supernode is associated

with a set of virtual nodes. We call a supernode at the topmost level of the butterfly a

top supernode, one at the bottommost level of the network a bottom supernode and one at

neither the topmost or bottommost level a middle supernode.

We use a set of hash functions for mapping virtual nodes to supernodes of the butterfly

and for mapping data items to supernodes of the butterfly. We assume these hash functions

are approximately random. 2

The virtual network is constructed as follows:

• We choose an error parameter ε > 0, and as a function of ε we determine constants

C, D, α and β. (This is done in the same way specified in the last chapter).

• Every virtual node v is hashed to C random top supernodes (we denote by T (v) the

set of C top supernodes v hashes to), C random bottom supernodes (denoted B(v))

and C log n random middle supernodes (denoted M(v)) to which the virtual node will

belong.

• All the virtual nodes associated with any given supernode are connected in a clique.

(We do this only if the set of virtual nodes in the supernode is of size at least αC lnn

and no more than βC ln n.)

• Between two sets of virtual nodes associated with two supernodes connected in the

butterfly network, we have a complete bipartite graph. (We do this only if both sets

of virtual nodes are of size at least αC lnn and no more than βC lnn.)

• We map the n data items to the n/ log n bottom supernodes in the butterfly: each

data item, say d, is hashed to D random bottom supernodes; we denote by S(d) the

set of bottom supernodes that data item d is mapped to. (Typically, we would not

hash the entire data item but only it’s title, e.g., “Singing in the Rain”).

2We use the random oracle model ([BR93]) for these hash function, it would have sufficed to have a
weaker assumption such as that the hash functions are expansive.

46

• The data item d is then stored in all the component virtual nodes of S(d) (if any

bottom supernode has more than βB ln n data items hashed to it, it drops out of the

network.)

• Finally, we map the meta-data associated with each of the n virtual nodes in the

network to the n/ log n bottom supernodes in the butterfly. For each virtual node

v, information about v is mapped to D bottom supernodes. We denote by I(v) the

set of bottom supernodes storing information about virtual node v. (if any bottom

supernode has more than βB lnn virtual nodes hashed to it, it drops out of the

network.)

• For each virtual node v in the network, we do the following:

1. We store the id of v on all component virtual nodes of I(v).

2. A complete bipartite graph is maintained between the virtual nodes associated

with supernodes I(v) and the virtual nodes in supernodes T (v), M(v) and B(v).

4.2.2 Implementation of Virtual CAN by Peers

Each peer that is currently live will map to exactly one node in the virtual network and

each node in the virtual network will be associated with at most one live peer. At all times

we will maintain the following two invariants:

1. If peers p1 and p2 map to virtual nodes x and y and x links to y in the virtual network,

then p1 links to p2 in the physical overlay network.

2. If peer p maps to virtual node x, then p stores the same data items that x stores in

the virtual network.

Recall that each virtual node in the network participates in C top, C log n middle and

C bottom supernodes. When a virtual node v participates in a supernode s in this way,

we say that v is a member of s. For a supernode s, we define V (s) to be the set of virtual

47

nodes which are members of s. Further we define P (s) to be the set of live peers which map

to virtual nodes in V (s).

4.2.3 Search for a Data Item

We will now describe the protocol for searching for a data item from some peer p in the

network. We will let v be the virtual node p maps to and let d be the desired data item.

1. Let b1, b2, . . . , bD be the bottom supernodes in the set S(d).

2. Let t1, t2, . . . , tC be the top supernodes in the set T (v).

3. Repeat in parallel for all values of k between 1 and C:

(a) Let � = 1.

(b) Repeat until successful or until � > B:

i. Let s1, s2, . . . sm be the supernodes in the path in the butterfly network from

tk to the bottom supernode b�.

• Transmit the query to all peers in the set P (s1).

• For all values of j from 2 to m do:

– The peers in P (sj−1) transmit the query to all the peers in P (sj).

• When peers in the bottom supernode are reached, fetch the content from

whatever peer has been reached.

• The content, if found, is transmitted back along the same path as the

query was transmitted downwards.

ii. Increment �.

4.2.4 Content and Peer Insertion

An algorithm for inserting new content into the network is presented in the previous chapter.

In this section, we describe the new algorithm for peer insertion. We assume that the new

peer knows one other random live peer in the network. We call the new peer p and the

random, known peer p′.

48

1. p first chooses a random bottom supernode, which we will call b. p then searches

for b in the manner specified in the previous section. The search starts from the top

supernodes in T (p′) and ends when we reach the node b(or fail).

2. If b is successfully found, we let W be the set of all virtual nodes, v , such that meta-

data for v is stored on the peers in P (b). We let W ′ be the set of all virtual nodes in

W which are not currently mapped to some live peer.

3. If b can not be found, or if W ′ is empty, p does not map to any virtual node. Instead

it just performs any desired searches for data items from the top supernodes, T (p′).

4. If there is some virtual node v in W ′, p takes over the role of v as follows:

(a) Let S = T (v)∪M(v)∪B(v). Let F be the set of all supernodes, s in S such that

P (s) is not empty. Let E = S − F .

(b) For each supernode s in F :

i. Let R be the set of supernodes that neighbor s in the butterfly.

ii. p copies the links to all peers in P (r) for each supernode r in R. These links

can all be copied at once from one of the peers in P (s). Note that each peer

in P (b) contains a pointer to some peer in P (s).

iii. p notifies all peers to which it will be linking to also link to it. For each

supernode r in R, p sends a message to one peer in P (r) notifying it of p’s

arrival. The peer receiving the message then relays the message to all peers

in P (r). These peers then all point to p.

iv. If s is a bottom supernode, p copies all the data items that map to s. It

copies these data items from some peer in P (s).

(c) If E is non-empty, we will do one broadcast to all peers that are reachable from

p. We will first broadcast from the peers in all top supernodes in T (p) to the

peers in all reachable bottom supernodes. We will then broadcast from the peers

49

in these bottom supernodes back up the butterfly network to the peers in all

reachable top supernodes: 3

i. p broadcasts the id of v along with the ids of all the supernodes in E. All

peers that receive this message, which are in supernodes neighboring some

supernode in E will connect to p.

ii. In addition to forging these links, we seek to retrieve data items for each

bottom supernode which is in the set E. Hence, we also broadcast the ids

for these data items. We can retrieve these data items if they are still stored

on other peers.4

4.3 Proofs

In this section, we provide the proof of Theorem 20 and proofs of the claimed performance

properties for the network given in the last section.

4.3.1 Dynamic Attack-Resistance

We will be using the following two lemmas which follow from results in the previous chapter.

We first define a peer as ε-good if it is connected to all but 1− ε of the bottom supernodes.

Lemma 21 Assume at any time, at least κn of the virtual nodes map to live peers for some

κ < 1. Then for any ε, we can choose appropriate constants C and D for the virtual network

such that at all times, all but an ε fraction of the top supernodes are connected to all but an

ε fraction of the bottom nodes.

Proof: This lemma follows directly from Theorem 1 in the last chapter by plugging in

appropriate values.

3This broadcast takes O(log n) time but requires a large number of messages. However, we anticipate
that this type of broadcast will occur infrequently. In particular, under the assumption of random failures,
this broadcast will never occur with high probability.

4We note that, using the scheme in [AKK+00], we can retrieve the desired data items, even in the case
where we are connected to no more than n/2 live peers. To use this scheme, we need to store, for each
data item of size s, some extra data of size O(s/n) on each node in the network. Details on how to do
this are ommitted.

50

Lemma 22 Assume at any time, at least κn of the virtual nodes map to live peers for

some κ < 1. Then for any ε < 1/2, we can choose appropriate constants C and D for the

virtual network such that at all times, all ε-good nodes are connected in one component with

diameter O(log n).

Proof: By Lemma 21, we can choose C and D such that all ε-good peers can reach more

than a 1/2 fraction of the bottom supernodes. Then for any two ε-good peers, there must

be some bottom supernode such that both peers are connected to that same supernode.

Hence, any two ε-good peers must be connected. In addition, the path between these two

ε-good peers must be of length O(log n) since the path to any bottom supernode is of length

O(log n)

We now give the proof of Theorem 20 which is restated here.

Theorem 20: For all ε > 0 and value P which is polynomial in n, there exist constants k1(ε),

k2(ε) and k3(ε) and k4(ε) such that the following holds with high probability for the CAN

for deletion of up to P peers by the limited adversary:

• At any time, the CAN is ε-robust

• Search takes time no more than k1(ε) log n.

• Peer insertion takes time no more than k2(ε) log n.

• Search requires no more than k3(ε) log3 n messages total.

• Every node stores no more than k4(ε) log3 n pointers to other nodes and k3(ε) log n

data items.

Proof: We briefly sketch the argument that our CAN is dynamically attack-resistant. The

proofs for the time and space bounds are given in the next two subsections.

51

For concreteness, we will prove dynamic attack-resistance with the assumption that

2n/10 peers are added whenever (1/10 − ε)n peers are deleted by the adversary. The

argument for the general case is similar. Consider the state of the system when exactly

2n/10 virtual nodes map to no live peers. We will focus on what happens for the time

period during which the adversary kills off (1/10 − ε)n more peers. By assumption, during

this time, 2n/10 new peers join the network. In this proof sketch, we will show that with

high probability, the number of virtual nodes which are not live at the end of this period is

no more than 2n/10. The general theorem follows directly.

We know that Lemma 21 applies during the time period under consideration since there

are always at least n/2 live virtual nodes. Let R be the set of virtual nodes that at some

point during this time period are not ε-good. By Lemma 22, peers in virtual nodes that are

not in the set R have been connected in the large component of ε-good nodes throughout the

considered time interval. Thus these peers have received information broadcasted during

successful peer insertions. However, the peers mapping to virtual nodes in R may at some

point have not been connected to all the other ε-good nodes and so may not have have

received information broadcasted by inserted peers. We note that |R| is no more than εn

by Lemma 21 (since even with no insertions in the network, no more than εn virtual nodes

would be not be ε-good at any point in the time period under consideration). Hence we

will just assume that those peers with stale information, i.e. the peers in R, are dead. To

do this, we will assume that the number of adversarial node deletions is n/10. (We further

note that all peers which are not ε-good will actually be considered dead by all peers which

are ε-good. This is true since no bottom supernode reachable from an ε-good node will have

a link to a peer which is not ε-good. Hence, such a virtual node will be fair game for a new

peer to map to.)

We claim that during the time interval, at least n/10 of the inserted peers will map to

virtual nodes. Assume not. Then there is some subset, S, of the 2n/10 peers that were

inserted such that |S| = n/10 and all peers in S did not reach any bottom supernodes with

information on virtual nodes that had no live peers. Let S′ be the set of peers in S that

both 1) had an initial connection to an ε-good peer and 2) reached the bottom supernode

which they searched for after connecting. We note that with high probability, |S′| = θ(n)

52

since each new peer connects to a random peer (of which most are ε-good) and since most

bottom supernodes are reachable from an ε-good peer.

Now let B′ be the set of bottom supernodes that are visited by peers in S′. With high

probability |B′| = θ(n/ log n). Finally let V ′ be the set of virtual nodes that supernodes in

B′ have information on. For D (the constant defined in the virtual network section) chosen

sufficiently large, |V ′| must be greater than 9n/10 (by expansion properties between the

bottom supernodes and the virtual nodes they have information on). But by assumption,

there must be some subset V of virtual node ids which are empty after the insertions where

|V | ≥ n/10. But this is a contradiction since we know that the set of virtual nodes that the

new peers in S′ tried to map to was of size greater than 9n/10

Hence during the time that n/10 peers were deleted from the network, at least n/10

virtual nodes were newly mapped to live peers. This implies that the number of virtual

peers not mapped to live nodes can only have decreased. Thus the number of virtual

peers not mapped to live nodes will not increase above 2n/10 after any interval with high

probability.

Time

That the algorithm for searching for data items takes O(log n) time and O(log2 n) messages

is proven in the last chapter.

The common and fast case for peer insertion is when all supernodes to which the new

peer’s virtual node belongs already have some peer in them. In this case, we spend constant

time processing each one of these supernodes so the total time spent is O(log n).

In the degenerate case where there are supernodes which have no live nodes in them,

a broadcast to all nodes in the network is required. Insertion time will still be O(log n)

since the connected component of ε-good nodes has diameter O(log n). However we will

need to send O(n) messages for the insertion. Unfortunately, the adversary can force this

degenerate case to occur for a small (less than ε) fraction of the node insertions. However

if the node deletions are random instead of adversarial, this case will never occur in the

53

interval in which some polynomial number of nodes are deleted.

Space

Each node participates in C top supernodes. The number of links that need to be stored

to play a role in a particular top supernode is O(log n). This includes links to other nodes

in the supernode and links to the nodes that point to the given top supernode.

Each node participates in C log n middle supernodes. To play a role in a particular

middle supernode takes O(log n) links to point to all the other nodes in the supernode and

O(log n) links to point to nodes in all the neighboring supernodes. In addition, each middle

supernode has O(log n) roles associated with it and each of these roles is stored in D bottom

supernodes. Hence each node in the supernode needs O(log2n) links back to all the nodes

in the bottom supernodes which store roles associated with this middle supernode.

Each node participates in C bottom supernodes. To play a role in a bottom supernode

requires storing O(log n) data items. It also requires storing O(log n) links to other nodes in

the supernode along with nodes in neighboring supernodes. In addition, it requires storing

O(log n) links for each of the O(log n) supernodes for each of the O(log n) roles that are

stored at the node. Hence the total number of links required is O(log3 n).

4.4 Conclusion

In these last three chapters, we have defined a new notion of fault-tolerance called attack-

resistance and have given three types of peer-to-peer networks which are attack-resistant.

We call a network attack-resistant if it’s the case that after an adversary deletes or controls

an arbitrarily large fraction of the peers in the network, an arbitrarily large fraction of the

remaining peers can still access an arbitrarily large fraction of the content in the network.

We emphasize that faults in the network are not assumed to be simply independent but

rather the result of an orchestrated attack by an omniscient adversary.

We have presented three networks that have attack-resistant properties. The Deletion

Resistant Network is resistant to an adversary which can delete peers from the network. The

Control Resistant Network is resistant to an adversary which can cause arbitrary Byzantine

54

faults. This network is strictly more robust than the Deletion Resistant Network in the

sense that the adversary can either kill the peers it controls or make them send arbitrary

messages. Finally, the Dynamically Attack-Resistant Network is robust even in the presence

of repeated, massive adversarial attacks. This network is robust only in the presence of

adversarial deletion and it depends on the fact that enough new peers are added to the

network to replace the peers that are deleted.

To the best of our knowledge, these three networks are the first that have been proposed

which are both scalable and attack-resistant. We note that while these networks have good

asymptotic resource bounds, the constants in the asymptotics are still too large to make

the networks practical. Reducing these constants is an area for future work.

55

Chapter 5

INTRODUCTION TO DATA MIGRATION

In this chapter, we describe our work on the problem of data migration. Section 5.1

gives an overview of the real-world data migration problem, Section 5.2 gives the variants

of this problem for which we will present algorithms, Section 5.3 gives the theoretical and

empirical results for our algorithms for these variants and Section 5.4 gives related work.

5.1 High Level Description of the Data Migration Problem

The input to the migration problem is an initial and final configuration of data objects on

devices, and a description of the storage system (the storage capacity of each device, the

underlying network connecting the devices, etc.) Our goal is to find a migration plan that

uses the existing network connections between storage devices to move the data from the

initial configuration to the final configuration in the minimum amount of time. For obvious

reasons, we require that all intermediate configurations in the plan be valid: they must

obey the capacity constraints of the storage devices as well as usability requirements of the

online system. The motivation for these requirements is that the migration process can be

stopped at any time and the online system should still be able to run and maintain full

functionality.

The time it takes to perform a migration is a function of the sizes of the objects being

transferred, the network link speeds and the degree of parallelism in the plan. A crucial

constraint on the legal parallelism in any plan is that each storage device can be involved

in the transfer (either sending or receiving, but not both) of only one object at a time.

Most variants one can imagine on this problem are NP-complete. The migration problem

for networks of arbitrary topology is NP-complete even if all objects are the same size and

each device has only one object that must be moved off of it. The problem is also NP-

complete when there are just two storage devices connected by a link, if the objects are of

56

arbitrary sizes.1

We will always make the following two assumptions:

• the data objects are all the same size;

• there is at least one free space on each storage device in both the initial and final

configurations of the data.

The first assumption is quite reasonable in practice if we allow ourselves to subdivide

the existing variable sized objects into unit sized pieces, since the time it takes to send the

subdivided object is about the same as the time it takes to send the entire object. The

second assumption is also reasonable in practice, since free space somewhere is required in

order to move any objects, and having only one free space in the entire network would limit

the solution to being sequential. We note that this second assumption allows us to think of

time in discrete intervals or time steps.

5.2 Data Migration Variants

5.2.1 Identical Devices Connected in Complete Networks

In Chapters 6 and 7, we focus on the following challenging special case of the migration

problem. In addition to our two standard assumptions (fixed object size and one extra free

space), in these two Chapters we will make the following two additional assumptions

• there is a direct bidirectional link between each pair of devices and each link has the

same bandwidth.

• every device has the same read and write speed

Both of these assumptions are reasonable if we assume that the storage devices are

connected in a local area network (LAN), (for example in a disk farm). The first assumption

is reasonable since the topologies in LANs are generally very close to being complete. The

1This observation was made by Dushyanth Narayanan.

57

v4

v3v2

v1 v4

v3v2

v1

Initial: Demand Graph:Goal:

a

b,c d

b,c

a

d
v4

v3v2

v1

c b da

Figure 5.1: An example demand graph. v1,v2,v3,v4 are devices in the network and the
edges in the first two graphs represent links between devices. a,b,c,d are the data objects
which must be moved from the initial configuration to the goal configuration.

second assumption is reasonable since an organization building a LAN of storage devices

might tend to buy devices which have equal performance characteristics. For wide area

networks, these assumptions are much less reasonable. In Chapter 8, we will show how to

generalize these results to arbitrary topologies and heterogeneous device speeds.

With these assumptions, we are led to describe the input to our problem as a directed

multigraph G = (V, E) without self-loops that we call the demand graph. Each vertex in the

demand graph corresponds to a storage device, and each directed edge (u, v) ∈ E represents

an object that must be moved from storage device u (in the initial configuration) to storage

device v (in the final configuration). An example of how a demand graph is defined based

on an initial and goal configuration is given in Figure 5.1

Since we are considering fixed-size objects, and each device can be involved in only one

send or receive at a time, our migration plan can be divided into stages where each stage

consists of a number of compatible sends, i.e., each stage is a matching. Thus, we can observe

that the special case of our problem when there are no capacity constraints on the storage

devices, and there are no unused devices, is precisely the multigraph edge coloring problem

(the directionality of the edges becomes irrelevant and the colors of the edges represent the

58

time steps when objects are sent). This problem is of course NP-complete, but there are

very good approximation algorithms for it, as we shall review in Section 5.4. The storage

migration application introduces two very interesting twists on the traditional edge coloring

problem: edge coloring with bypass nodes and edge coloring with space constraints. We

describe these variants in the next two sections.

Bypass Nodes

In the first variant on edge coloring, we consider the question of whether indirect plans can

help us to reduce the time it takes to perform a migration. In an indirect plan, an object

might temporarily be sent to a storage device other than its final destination. Figure 5.2

gives an example of how this can significantly reduce the number of stages in the migration

plan. As a first step towards attacking the problem of constructing near-optimal indirect

plans, we introduce the concept of a bypass node. A bypass node is an extra storage device

that can be used to store objects temporarily in an indirect plan. (In practice, some of the

storage devices in the system will either not be involved or will be only minimally involved

in the migration of objects and these devices can be used as bypass nodes.) A natural

question to then ask is: what is the tradeoff between the number of bypass nodes available

and the time it takes to perform the migration? In particular, how many bypass nodes

are needed in order to perform the migration in ∆(G) steps, where ∆(G) (or ∆ where G

is understood) is the maximum total degree of any node in the demand graph G. (∆ is a

trivial lower bound on the number of steps needed, no matter how many bypass nodes are

available.)

An optimal direct migration takes at least χ′ parallel steps where χ′ is the chromatic

index of the demand graph (the minimum number of colors in any edge coloring). If our

solution is not required to send objects directly from source to destination it is possible

that there is a migration plan that takes less than χ′ stages. In general, our goal will be

to use a small number of bypass nodes, extra storage devices in the network available for

temporarily storing objects, to perform the migration in essentially ∆ stages.

Definition 23 A directed edge (v, w) in a demand graph is bypassed if it is replaced by two

59

•
k

•

k

k
•

• k ◦
k

•

k

k
•

Figure 5.2: Example of how to use a bypass node. In the graph on the left, each edge
is duplicated k times and clearly χ′ = 3k. However, using only one bypass node, we can
perform the migration in ∆ = 2k stages as shown on the right. (The bypass node is shown
as ◦.)

edges, one from v to a bypass node, and one from that bypass node to w.

An extremely important constraint that bypassing an edge imposes is that the object

must be sent to the bypass node before it can be sent from the bypass node. In this sense,

edges to and from bypass nodes are special. Figure 5.2 gives an example of how to bypass

an edge.

By replicating the graph in the left side of Figure 5.2 n/3 times, we see that there exist

graphs of n vertices which require n/3 bypass nodes in order to complete a migration in ∆

steps.

Space Constraints

When capacity constraints are introduced (and we consider here the limiting case where

there is the minimum possible free space at each vertex, including bypass nodes, such that

there is at least one free space in both the initial and final configurations), we obtain our

second, more complex, variant on the edge coloring problem. We can define this problem

more abstractly as the edge coloring with space constraints problem:

The input to the problem is a directed multigraph G, where there are initially F (v) free

spaces on vertex v. By the free space assumption, F (v) is at least max(din(v)−dout(v), 0)+1,

where din(v) (resp. dout(v)) is the in-degree (resp. out-degree) of vertex v. The problem is to

assign a positive integer (a color) to each edge so that the maximum integer assigned to any

edge is minimized (i.e., the number of colors used is minimized) subject to the constraints

that

60

• no two edges incident on the same vertex have the same color, and

• for each i and each vertex v, c
(i)
in (v) − c

(i)
out(v) ≤ F (v), where c

(i)
in (v) (resp. c

(i)
out(v)) is

the number of in-edges (resp. out-edges) incident to v with color at most i.

The second condition, which we refer to as the space constraint condition, captures the

requirement that at all times the space consumed by data items moved onto a storage device

minus the space consumed by data items moved off of that storage device can not exceed

the initial free space on that device.

Obviously, not all edge-colorings of a multigraph (with edge directionality ignored) will

satisfy the conditions of an edge-coloring with space constraints. However, it remains unclear

how much harder this problem is than standard edge coloring.

5.2.2 Heterogeneous Device Speeds and Edge Capacities

In data migration projects over wide area networks, the assumption that topology is com-

plete and that the storage devices all have the same disk speeds become much less reason-

able. Thus the final variant of the data migration problem we consider (in Chapter 8) is

the case where the storage devices have different speeds and the network links have variable

bandwidths.

5.3 Our Results

5.3.1 Algorithmic Results on Identical Devices and Complete Topologies

Table 5.1 gives a summary of the theoretical results for all algorithms presented in this thesis

for the problem of data migration on identical devices and complete topologies. Below we

summarize the results for the algorithms in this table with the best theoretical bounds. The

results are given for a graph with n vertices and maximum degree ∆. (These algorithms

are described in Chapter 6):

• 2-factoring : an algorithm for edge coloring that uses at most n/3 bypass nodes and

at most 2 �∆/2� colors.

61

Table 5.1: Theoretical Bounds for Algorithms on Indentical Devices and Complete Topolo-
gies

Algorithm Type Space Constraints Plan Length Worst Case

Max. Bypass Nodes

Edge-coloring [NK90] direct No 3 �∆/2� 0

2-factoring indirect No 2 �∆/2� n/3

4-factoring direct direct Yes 6 �∆/4� 0

4-factoring indirect indirect Yes 4 �∆/4� n/3

Max-Degree-Matching indirect No ∆ 2n/3

Greedy-Matching direct Yes unknown 0

• 4-factoring direct : an algorithm for edge coloring with space constraints that uses no

bypass nodes and at most 6 �∆/4� colors (presented in Sections 6.2.2 and 6.2.3).

• 4-factoring indirect : an algorithm for edge coloring with space constraints that uses

at most n/3 bypass nodes and at most 4 �∆/4� colors (presented in Sections 6.2.1

and 6.2.3);

Interestingly, the bounds for the algorithms with space constraints are essentially the

same as the worst case bounds for multigraph edge coloring without space constraints.

5.3.2 Experimental Results

While the algorithms presented in chapter 6 have near optimal worst case guarantees, it

still remains to see how well they perform in practice. In chapter 7, we evaluate a set of

data migration algorithms on the types of data migration problems which might typically

occur in practice. In addition to testing the algorithms from chapter 6, we also test two

new migration algorithms.

The first new algorithm is called Max-Degree-Matching. This algorithm provably finds

62

a migration taking ∆ steps while using no more than 2n/3 bypass nodes. We empirically

compare this to 2-factoring. While 2-factoring has better theoretical bounds than Max-

Degree-Matching, we will see that Max-Degree-Matching uses fewer bypass nodes on almost

all tested demand graphs.

For migration with space constraints, we introduce a new algorithm, Greedy-Matching,

which uses no bypass nodes. We know of no good bound on the number of time steps taken

by Greedy-Matching in the worst case; however, in our experiments, Greedy-Matching often

returned plans with very close to ∆ time steps and never took more than 3∆/2 time steps.

This compares favorably with 4-factoring direct, which also never uses bypass nodes but

which always takes essentially 3∆/2 time steps.

Even though these new algorithms have inferior worst case guarantees, we find that, in

practice, they usually outperform the algorithms having better theoretical guarantees. In

addition, we find that for all the algorithms, the theoretical guarantees on performance are

much worse than what actually occurs in practice. For example, even though the worst case

for the number of bypass nodes needed by many of the algorithms is n/3, in our experiments,

we almost never required more than about n/30 bypass nodes.

5.3.3 Algorithmic Results for Heterogeneous Device Speeds and Link Capacities

While the assumptions of equivalent device speeds and complete topologies are likely to

hold for a devices that are connected in a local area network, these assumptions are not

reasonable for storage devices connected in a wide area network. Thus, in Chapter 8, we

consider migration in the more difficult case where the storage devices can have different

read and write speeds and where the capacities of edges between any pair of devices can be

arbitrary.

In Chapter 8, we will consider three special cases of this general problem:

• Edge-Coloring with Speeds: We assume still that there is a bidirectional link between

each pair of devices and all links have the same bandwidth. However, the devices now

can have varying speeds.

63

• Migration on Trees: Here we assume that the network connecting the storage devices

is a tree. The storage devices can have varying speeds and the link bandwidths can

be variable.

• Migration with Splitting : Here we consider both variable link bandwidths and variable

device speeds. However we make the assumption that we can split the data objects

into a certain number of pieces.

For these problems, we present the following results:

• Edge-Coloring with Speeds: We give an algorithm which always finds a migration plan

with length within a factor of 3/2 of the optimal length.

• Migration on Trees: We give an algorithm which always finds a migration plan with

length within a factor of 3/2 of the optimal length.

• Migration with Splitting : We give an algorithm which can find a migration plan with

length within a factor of (1 + ε) of optimal for any ε > 0 provided that the data

objects can be split into a certain number of pieces (the number of pieces required is

a function of ε and the length of the optimal plan).

5.4 Related Work

5.4.1 Identical Devices Connected in Complete Networks

There is much related work for the data migration problem where G is a complete graph,

all objects are the same size and all nodes have speed 1 the basic migration problem. As

noted previously, this basic problem is the well-known edge coloring problem. There are

several other problems which are equivalent to edge coloring including h-relations [GHKS98,

SSO00], file transfer [ECL85], and biprocessor task scheduling on dedicated processors

[Kub96].

There are at least three decades of work on the edge-coloring problem. The minimum

number of colors needed to edge-color a graph G is called the chromatic index of G (χ′(G)).

64

For a given graph G, computing χ′(G) exactly is of course NP-Hard [NK90]. For simple

graphs (i.e. graphs with no multiple edges) Vizing [Viz64] gives a polynomial time (∆ + 1)-

approximation algorithm. For multigraphs, the current best approximation algorithm given

by Nishizeki and Kashigawa [NK90] uses no more than 1.1χ′(G) + .8 colors. As stated

previously, the maximum degree of the graph ∆(G) is a trivial lower bound on χ′(G).

Sanders and Solis-Oba [SSO00] study the problem of edge-coloring with indirection.

The primary motivation for their work is the study of a message passing model for parallel

computing (the function MPI Alltoallv in the Message Passing Interface). This underlying

real world problem of exchanging packets among processing units is called the h-relation

problem. Their main result is an algorithm which splits the data objects into 5 pieces and

uses indirection (but no extra bypass nodes) to do migration in 6/5(∆ + 1) stages if n is

even and (6/5 + O(1/n))(∆ + 1) stages if n is odd. They assume a half-duplex model for

communication when objects are split into pieces.

5.4.2 Heterogeneous Device Speeds and Edge Capacities

We will see that the data migration problem with heterogeneous device speeds and edge

capacities is closely related to integer multicommodity flow. In the multicommodity flow

problem, we are given a network with edge capacities. We are also given a set of commodities

each with its own sink and source and demand. We want to maximize the sum of all the

flows sent from sources to sinks subject to the capacity constraints on the edges and the

constraint that the flow for any given commodity is no more than its demand. In the

integer multicommodity flow problem, we have the additional constraint that all flows must

be integral valued.

There are few results on approximation algorithms for integer multicommodity flow.

Our algorithm for flow routing on general networks uses a result by Raghavan and Thomp-

son [RT87] (see also [Hoc95]) which gives an approximation algorithm for integer multi-

commodity flow under certain assumptions about the capacities of edges in the network.

They assume that all edges in the network have capacity at least 5.2 ln 4m where m is the

total number of edges. They give an algorithm, for such a network, which finds an integral

65

multicommodity flow sending F (1 − ε)2 units of flow with probability 1 − 1/m − 2e−.38ε2F

where F is the optimal flow in an integer solution and ε is any number less than (
√

5−1)/2.

Even for trees, the integer multicommodity flow problem is nontrivial. Garg, Vazirani and

Yannakakis [GVY97] (see also [Vaz01]) give a 1/2 approximation algorithm for integer mul-

ticommodity flow when the network is a tree.

66

Chapter 6

DATA MIGRATION WITH IDENTICAL DEVICES CONNECTED IN

COMPLETE NETWORKS

In this Chapter, we consider algorithms for data migration on complete graphs where

all nodes have the same speeds and all edges have the same capacities. In Section 6.1,

we consider the problem of indirect migration without space constraints and describe the

algorithm 2-factoring. In Section 6.2, we consider the problem of direct migration with space

constraints and the problem of indirect migration with space constraints and present the

algorithms 4-Factoring Direct and 4-Factoring Indirect (Section 6.2.4) respectively to solve

these two problems. In Section 6.3, we wrap up with two algorithms used in Section 6.2.

6.1 Indirect Migration without Space Constraint

As stated in the last chapter, an optimal direct migration takes at least χ′ parallel steps

where χ′ is the chromatic index of the demand graph. If there are bypass nodes available,

it may be possible that there is a migration plan with ∆ stages. However as stated in the

last chapter, it may take up to n/3 bypass nodes to allow for this.

6.1.1 The 2-factoring Algorithm

We now present the algorithm 2-factoring which is a simple algorithm for indirect migration

without space constraints that requires at most 2�∆/2� stages and uses at most n/3 bypass

nodes on any multigraph G. Although this result is essentially subsumed by the analogous

result with space constraints, the simple ideas of this algorithm are important building

blocks as we move on to the more complicated scenarios.

This algorithm uses a total of 2 �∆/2� stages – two for each 2-factor of the graph. The

bypass nodes are in use only after every other stage and can be completely reused. Thus,

67

Algorithm 1 The 2-factoring Algorithm

1. Add dummy self-loops and edges to G to make it regular and even degree (2�∆/2�).

(This is trivial – for completeness it is described in Section 6.3.1.)

2. Compute a 2-factor decomposition of G, viewed as undirected. (This is standard – for

completeness it is described in Section 6.3.2.)

3. Transfer the objects associated with each 2-factor in 2 steps using at most n/3 bypass

nodes. This is done by bypassing one edge in each odd cycle, thus making all cycles

even. Send every other edge in each cycle (including the edge to the bypass node if

there is one) in the first stage and the remaining edges in the second.

no more that n/3 bypass nodes are used total, at most one for every odd cycle.

Notice that we can perform the migration in 3 �∆/2� stages without bypass nodes, if we

use three stages for each 2-factor instead of two (a well-known folk result, see [Sha49]). How-

ever, the best multigraph edge coloring approximation algorithms achieve better bounds.

6.2 Migration with space constraints

We now turn to the problem of migration (or edge coloring) with space constraints. For

this problem, we will describe the algorithm 4-Factoring Direct which computes a 6�∆/4�

stage direct migration plan with no bypass nodes. We will also describe the algorithm

4-Factoring Indirect, which computes a 4�∆/4� stage indirect migration with n/3 bypass

nodes. As mentioned in the previous chapter, these bounds essentially match the worst case

lower bounds for the problem without space constraints.

Our strategy for obtaining these results is to reduce the problem of finding an efficient

migration plan with space constraints in a general multigraph to the problem of finding an

efficient migration plan with space constraints for 4-regular multigraphs. We first present

efficient algorithms for finding migration plans for regular multigraphs of degree four. Specif-

ically, we show how to find a 4-stage indirect migration plan using at most n/3 bypass nodes

68

Degrees 4-in 3-in, 1-out 2-in, 2-out 1-in, 3-out 4-out

• � •

Initial Free Space 5 3 1 1 1

Class easy easy hard easy easy

Parity even odd even odd even

Figure 6.1: Classification of degree 4 vertices

and a 6-stage direct migration plan. We will then give the reduction.

6.2.1 Indirect Migration of 4-Regular multigraphs with space constraints

Algorithm 2 presents our construction of an indirect migration plan for 4-regular multigraphs

with space constraints. We begin with some intuition for the algortihms.

The difficulty in constructing an efficient migration plan arises from dealing with the

vertices with exactly two in-edges and two out-edges. We call such vertices hard vertices,

since we are required to send at least one of the out-edges from such a vertex before we

send both in-edges. We refer to all other vertices as easy vertices since they have at least

as much free space initially as they have in-edges, and hence their edges can be sent in any

order.1

We formalize in the following proposition the high-level construction that we use to

ensure that space constraints are never violated.

Proposition 24 Let G be a 4-regular multigraph. Suppose that the edges of G are A/B

labeled such that each hard vertex has two of its incident edges labeled A, and two of its

incident edges labeled B, with at least one out-edge labeled A. Then if all edges labeled A

are sent, in any order, before any edge labeled B, there will never be a space constraint

violation.

1Recall that our free space assumption is that each vertex has one free space at the start and finish of
the migration.

69

Algorithm 2 The bypass algorithm for 4-regular multigraphs. Given a 4-regular multigraph

with n nodes, this algorithm uses at most n/3 bypass nodes to color the multigraph with

exactly 4 colors in a way that respects space constraints.

1. Split each hard vertex into two representative vertices with one having two in-edges

and the other having two out-edges. This breaks the graph into connected components

(when the edges are viewed as undirected). (Figure 6.2(a) shows an example graph,

and Figure 6.2(b) shows the result of splitting hard vertices, shown as �.)

2. Construct an Euler tour for each component (ignoring the directionalities of the edges)

(Figure 6.2(c) shows the resulting Euler tours.)

3. Alternately A/B label the edges along the Euler tour of each of the even components.

4. While there exist a pair of odd components that share a vertex (each component

contains one of the split hard vertices), label the two out-edges of the split vertex A,

label the two in-edges of the split vertex B, and alternately A/B label the remaining

portions of the two Euler tours. (Figure 6.2(d) shows an example.)

5. Repeatedly select an unlabeled odd component and perform the following step:

Within that component, bypass exactly one edge, say (u, v), where the edge is chosen

using Procedure 1. Label A the edge from u to the new bypass node and B the edge

from the bypass node to v. Alternately A/B label the remaining edges in the tour.

6. The resulting A and B subgraphs have maximum degree 2. (The only vertices in

either graph of degree 1 are bypass nodes.) Bypass an edge in each odd cycle that

occurs in either the A or B graph, converting all cycles to even-length cycles. The

graph can now be colored with 4 colors in a way that respects space constraints. We

simply alternately color the edges in each A cycle color 1 and color 2, and alternately

color the edges in the B cycle color 3 and color 4.

70

�

�

 �

�

�

�

�

�

 �

�

�

�

�

�

 �

�

�

�

(a) Original Graph (b) Split Graph (c) Euler-Tours

�

�

 �

�

�

�

B

A

A

B

A

A

B

B

A

B

1

3

2

4
1

2

4

3

4

2
3

1

(d) Step 4 Applied (e) Step 6 Applied

Figure 6.2: Illustration of steps 1 through 6 of Algorithm 2. In step 6 of the the algorithm,
a single bypass node is used to get the final 4-coloring. In particular, a bypass node is added
to the odd cycle induced by the A-labelled edges to ensure that it can be colored with colors
1 and 2; this same bypass node is used for the odd cycle induced by the B-labelled edges to
ensure that it can be colored with colors 3 and 4. The final coloring is shown in figure (e).

71

Thus, our goal is reduced to finding an A/B labeling that meets the conditions of

Proposition 24, and that can be performed in as few stages as possible.

Interestingly, if there are no odd vertices (shown in the figures as), vertices such that

the parity of their in-degree (and out-degree) is odd, then the problem is easy: We split

each vertex into two with the property that each new vertex has exactly two edges of the

same orientation. This new graph need not be connected. We construct an Euler-tour of

each component (ignoring the directionality of the edges) and alternately label edges along

these tours A and B. No conflicts arise in the A/B labeling because the tours have even

length – each vertex has either only in-edges or only out-edges so the tour passes through

an even number of vertices. The A and B induced subgraphs are a 2-factor decomposition

of the original graph with the property that exactly one out-edge is labeled A. We can thus

use our standard method for performing migration with or without bypass nodes given a

2-factor decomposition. With bypass nodes, this method sends the A-edges in stages one

and two and the B-edges in stages three and four.

When there are both odd vertices and hard vertices, the problem becomes more difficult.

In particular, it is not hard to show that there exist 4-regular multigraphs in which no A/B

labeling of the graph ensures that every vertex has two incident A edges and two incident

B edges, with at least one A-labeled out-edge from each hard vertex. To solve the problem,

we will need to bypass some of the edges in the graph.

Our algorithm starts out very much like the algorithm just described for graphs with

no odd nodes, but now we split only the hard vertices into two representative vertices with

one having two in-edges and the other having two out-edges.

Each resulting component (disregarding edge directionality) still has an Euler tour of

course, but not all components have even length. We call those with even length tours

even components and those with odd length tours odd components. Those that do have

even length can be alternately A/B labeled. We could then bypass one edge in each odd

component, and A/B label the resulting even-length tour. Note that the choice of bypassed

edge determines the A/B labeling of the tour – as discussed in Section 6.1 the incoming

edge to the bypass node must be labeled A and the outgoing edge must be labeled B.

Unfortunately, this will not give us a good bound on bypass nodes, since there can be

72

2n/5 odd components (Figure 6.2). We get around this problem by observing that the

A/B labeling so constructed satisfies a more restrictive property than that needed to obey

space constraints – it guarantees that every hard vertex has both an in-edge and an out-edge

labeled A. This excludes perfectly legal labelings that have hard vertices with two out-edges

labeled A. Indeed, it is not possible in general to beat the 2n/5 bound on bypass nodes if

we disallow both out-edges from being labeled A.

Therefore, the algorithm will sometimes have to label both out-edges from a hard vertex

A. In our algorithm, this happens whenever we find a pair of odd components that share

representatives of the same hard vertex. We can merge the two odd components into a

single even component which can be A/B labeled such that both out-edges of the shared

hard vertex are labeled A. When no remaining unlabeled odd components can be merged

in this fashion, we are guaranteed that there are at most n/3 odd components remaining.

Unfortunately, our work is not done, since in addition to the bypass nodes introduced for

each remaining odd component (which have one incident edge labeled A and one incident

edge labeled B), there may be odd cycles in the A and B induced graphs. We will also need

to bypass one edge in each of these odd cycles. If we are not careful about which edge we

bypass in the odd component, we will end up with too many bypass nodes used to break

odd A or B cycles. The heart of our algorithm and analysis is judiciously choosing which

edge to bypass in each odd component. With carefully accounting for these bypass nodes

in the analysis, we show that the total number of bypass nodes used is at most n/3.

Terminology.

The result of steps 1-4 is a decomposition of the graph into a collection of unlabeled odd

components that are connected via A or B labeled paths (which correspond to edges that

were in even components, or odd components that were merged and labeled in Step 4)

Within each unlabeled odd component, we have two types of vertices: internal vertices,

which have all their edges inside the odd component, and external vertices, which have only

two edges, either both directed towards the vertex or both directed away from the vertex.

Since adjacent odd components have been labeled (Step 4), the other two edges incident to

73

C3

C2

C1

C4

External A loopExternal B path

Figure 6.3: An example of what the graph might look like after Step 4.

each external vertex are both already labeled (one A and one B).

Figure 6.3 shows a example of what the resulting graph might look like. There are

four unlabeled components (C1, . . . , C4). Classify the A and B paths emanating from each

external vertex as either an external loop if its two endpoints (external vertices) are in

the same unlabeled component, or as an external path if its two endpoints are in different

unlabeled components.

Analysis.

We now turn to the analysis of the algorithm. By construction, edges are A/B labeled so

that the conditions of Proposition 24 are met, and hence we have:

Lemma 25 Algorithm 2 computes a migration plan that respects space constraints.

Our main theorem is the following:

74

Procedure 1 A/B coloring odd components
There are two cases:

1. There is only one external vertex.

Within this case, there are two subcases:

• If there is a pair of internal vertices that are each not adjacent to the external

vertex that have an edge between them, bypass that edge.

• If not, there are only two possible graphs, shown below. We omit the justification

of this fact. (The external vertex is on the left and the directionality of the edges

is not shown.) Bypass the dashed edge.

2. There are 3 or more external vertices.

Let v be the external vertex incident to the largest number of external loops. Bypass

one of its incident internal edges. If the resulting A/B labeling of this component’s

Euler tour creates an A or B cycle with v (containing an external loop and an internal

path connecting the endpoints of the external loop), switch which one of v’s internal

edges is bypassed.

75

Theorem 26 The bypass algorithm for edge coloring 4-regular multigraphs with space con-

straints uses four colors and at most n/3 bypass nodes, where n is the number of nodes in

the graph.

Proof: By construction, the algorithm described uses 4 colors. We have only to show that

it uses at most n/3 bypass nodes. We do this by “crediting” each bypass node used in the

A stages with a distinct set of three vertices in the graph, and crediting each bypass node

used in the B stages with a distinct set of three vertices in the graph.

A bypass node that is created in order to break an odd A cycle (or B cycle) will be

credited with three vertices in that cycle. Notice that bypass nodes used to break A cycles

can be reused to break B cycles. The tricky part of the argument will be to show that each

bypass node that is created when an odd component is A/B labeled can also be credited

with 3 vertices.

The accounting scheme we use is based on the following observations about the structure

of what happens when step 5 is performed. Prior to performing this step, we have exactly

one A external path or loop and exactly one B external path or loop connected to each

external node. When we pick an edge inside the component to bypass, and A/B label

the component, every internal vertex (which is of degree 4) gets two of its incident edges

labeled A and two of its incident edges labeled B, and every external vertex gets one of

its incident internal edges labeled A and one labeled B. Thus the internal A path (or B

path) emanating from an external node either terminates at a bypass node, in which case

we call it an end path, or it terminates at another external node, in which case we call it an

inscribed path. Thus, looking at the A subgraph (or similarly the B subgraph) of an odd

component with 2k + 1 external vertices, we obtain precisely k disjoint inscribed A paths

and one A end path. (Note that the odd component must have an odd number of external

vertices, since each internal vertex appears twice in the Euler tour of the component and

each external vertex appears once and the length of the tour is odd.)

For the case where an odd component has exactly one external vertex, we can simply

verify that breaking the proposed edge results in three vertices not in odd cycles that can

be credited to the A and B end-path. In both graphs, bypassing any edge except the ones

76

incident to the external vertex guarantees that there will be no odd cycle created inside the

component. Since only the end paths leave the components all vertices inside the component

are not in odd cycles and can be credited to the bypass node.

If the odd component has more than one external vertex, then it must have at least

three. We will credit the bypass node with the external node on the end path terminating

at the bypass node (which in general will be different for A and B), and with two other

external vertices in the component. The difficulty is that if we are not careful about which

edge in the component we bypass, the two other external vertices we select can have an

inscribed A path between them and an external A loop, and thus might end up in a short

odd A cycle. If this happens, we will violate our condition of crediting each bypass node

with distinct vertices in the graph, since the bypass node created to break this short A cycle

will also be credited with these vertices. Therefore, we choose an edge to bypass so that the

other two external vertices we credit to the bypass node are not in a short cycle.

We find that it is sufficient to guarantee that for each odd component processed in Step 5,

in the resulting A graph (resp. in the resulting B graph) one of the following situations holds:

1. There are at least two external paths labeled A (resp. B).

If there are at least two external paths labeled A, one of them is not connected to the

A end path. Thus, there is an inscribed A path that connects the external path to

some other external path or loop. In this case, we credit the bypass node (in stage A)

with the two external vertices on this inscribed path and with the external vertex on

the A end path connected to it.

2. The component is labeled so that there is an A (resp. B) external loop that does not

form a cycle with an inscribed A (resp. B) path.

In this case, the A external loop is connected to some other A external loop or path via

an inscribed A path. We can again credit the bypass node with the external vertices

on this inscribed path and with the external vertex on the end path connected to it.

If the edge selected to bypass in Step 5 results in one of these two situations holding, we

say that a good edge was bypassed.

77

Notice that in both of these situations, the two external vertices credited to the bypass

node may end up in an odd A (or B) cycle. We claim, however, that if this happens, it is an

odd cycle created by two or more external A loops or paths and hence it has length at least

five. Since we have only credited two of the external vertices on the cycle to the bypass

node created in Step 5, we still have three vertices in the odd cycle that can be credited to

the bypass node that will be used to break the cycle. In fact, the argument is slightly more

complicated than this – we omit the details.

Finally, we must show that the procedure used to select an edge to bypass in each odd

component with at least three external vertices results in bypassing a good edge.

Let v be the odd component’s external vertex with the largest number of incident ex-

ternal loops as chosen by the algorithm. If there is no external A (likewise B) loop at v

then the odd component has at least two A paths and, as such, any edge is good for A. To

see why this is the case note that if v has no external loops then no external vertices have

loops so clearly there are at least two external paths of both labels. If v has one external

loop of label B then the other endpoint of the loop has a B loop (the same one). Since v

has the largest number of loops, this other vertex can not have an A loop. Thus, both this

vertex and v have A paths.

Now we argue that our choice of edge to bypass guarantees that any external loop

emanating from v does not form a cycle with an inscribed path. Suppose v’s internal edges

are both in-edges2 from vertices u1 and u2 and we bypass the edge (u1, v) using bypass node

b. The edges (u1, b) and (u2, v) are thus both labeled A and the edge (b, v) is labeled B

(See Figure 6.4(b)). As such the B loop, if there is one, does not create a cycle. Assume

that there is an A loop. If not, we are done. If labeling the rest of the odd component

according the the Euler tour does not cause an incribed path to be created between the

external A loop’s endpoints then we are also done and (u1, v) is good for A. Otherwise,

this incribed path must go through the edge (u2, v). The algorithm swaps which edge is

bypassed so that edges (u2, b) and (u1, v) are both labeled A and the edge (b, v) is labeled B

(See Figure 6.4(c)). The bypassed edge is still good for B. We now argue that is also good

2The case where they are both out-edges is similar.

78

v

u1 u2

v

u1 u2

(a) Initial (b) (u1, v) bypassed

v

u1 u2

(c) (u2, v) bypassed

Figure 6.4: Choosing which edge to bypass.

79

for A. The rest of the labeling remains the same as the edges incident on u1 and u2 have

not changed labels. Since the rest of the labeling does not change, there is still an internal

A path from the one endpoint of the external A loop to u2. This path continues from u2 to

b and terminates. Thus, the edge (u2, v) is good for A.

6.2.2 4-regular migration without bypass nodes

We next show how to compute a six stage migration plan of a 4-regular multigraph without

using bypass nodes. The first 4 steps of the algorithm are the same as in Algorithm 2.

Procedure 2 replaces Steps 5 and 6 of Algorithm 2, the only steps that used bypass nodes,

with a construction that uses two extra colors instead. In this procedure, the label A will

be for stages 1, 2, and 3, while the label B will be for stages 4, 5, and 6.

After completing Step 4 of the previous algorithm, the graph contains a number of

unlabeled disjoint odd components connected by A/B labeled paths and loops (Figure 6.3).

We make the following additional observations about the graph:

• Each odd component contains at least one odd vertex. (Otherwise, the tour would be

of even length.)

• Since odd unlabeled components are disjoint, and odd vertices are always internal,

every path between two odd vertices in different odd unlabeled components has length

at least three.

The algorithm can be easily seen to meet the conditions of Proposition 24. Straightfor-

ward arguments thus give us the following theorem:

Theorem 27 The above algorithm computes a proper six coloring of the graph that respects

the space constraints of the hard vertices.

Proof: First we argue that the coloring is proper. For the A induced subgraph, this is

immediate. For the B induced subgraph, the the argument is not as straightforward. First,

80

Procedure 2 Final steps in 4-regular migration without bypass nodes

5′. A/B label each remaining odd component by starting with an odd vertex, v, and the

label B and following the Euler tour of the component labeling edges alternately A

and B. Note: v will have three B labeled edges incident and one A labeled edge.

6′. Color the A and B induced subgraphs:

(a) Color the A induced subgraph (note: the A induced subgraph is a set of paths

and cycles):

i. Break all odd length cycles by coloring one edge in them 3.

ii. Color all remaining paths and even cycles with the colors 1 and 2.

(b) Color the B induced subgraph (note: the B induced subgraph has vertices of

degree two and degree three only):

i. Color one edge 6 on each degree three vertex. We are left with cycles and

paths.

ii. Color one edge 6 in each odd length cycle to convert the cycle into a path.

Choose an edge that is not incident on one of the degree three vertices (which

is possible because of the second observation above).

iii. The remaining graph is just paths and even cycles. Color them with colors

4 and 5.

81

the path distance between any two degree three vertices in the B subgraph is at least three.

This is because they are odd nodes from different odd components that are not adjacent.

This means that they do not share neighbors so they must have two vertices between them

(and thus three edges). Since this is the case, step 6′(b)i of Procedure 2 does not color two

edges 6 that are incident on the same vertex. Also because of the distance between degree

three vertices in the remaining odd cycles there must be an edge that is not incident on

a degree three vertex. As such step 6′(b)ii does not color an edge 6 that is incident to a

vertex that already has a 6 edge. It is easy to see that colors 4 and 5 are proper.

Now we argue that space constraints are respected. Since all edges in the A subgraph

are sent before all edges in the B subgraph, all we have to show is that each hard vertex

has an A colored out-edge. In Step 5′ we colored alternating edges A and B in the Euler

tour of each odd component. Since hard nodes are split into two representatives such that

each representative has either two in-edges or two out-edges, the alternating Euler tour will

color one in-edge and one out-edge A and and likewise for B. Having consecutive Bs on an

odd vertex in the tour does not affect the hard vertices. As such each hard vertex in the

remaining components has an A colored out-edge. By the correctness of the previous steps

of the algorithm, all vertices previously A/B colored have this property as well.

6.2.3 The Reduction

We next show how to reduce the general migration problem with space constraints to the

problem of migration with space constraints on 4-regular multigraphs. Ideally, we might

like to split the graph into 2-factors, such that sending the edges within a 2-factor in any

order satisfies our space constraints, and so that after each 2-factor is sent, there is still one

free space at each vertex. This is not always possible. What we are able to do is to split the

graph into 4-factors such that after each 4-factor is sent, there is once again a free space at

each vertex. To partition the edges of the graph in this way, we need, roughly speaking, to

match up in-edges of a vertex with corresponding out-edges. Algorithm 3 gives the precise

details.

82

The key lemma is the following:

Lemma 28 A migration that repeatedly picks one edge incident to vin and one incident to

vout to send in either order will never violate the space constraints of v.

Proof: We consider two cases, depending on which of vin or vout has incident edges only of

one type (at least one of them must).

Case: vout has only incident out-edges.

Then since one of the edges chosen is an out-edge there will be at least one out-edge

sent for every in-edge so the free space after the two edges are sent is at least what it

was before.

Case: vin has only incident in-edges.

If � = din − dout, then we know by the free space assumption that there are at least

� + 1 free spaces initially. We allocate this free space as follows:

• The number of times that two in-edges are chosen is exactly �/2 we allocate two

free spaces to each of these.

• The remaining times we choose an in-edge and an out-edge. All of these cases

will share the one remaining free-space. Since both an in-edge and an out-edge

are sent, we will regain the free space again after the two edges are sent.

Note that since we always have exactly one edge incident to vin and exactly one incident

to vout if the edge happens to be a dummy self loop then it is the only edge chosen at this

step of the migration. Since nothing happens in this case, the available free space remains

unchanged. There is also at most one dummy edge and it is incident to vin or vout, whichever

has less of its type of edge. Our argument above focused on the edges incident on vin or

vout, whichever has more of its type of edge, so the arguments still hold when a dummy

edge is present.

83

Algorithm 3 The reduction to 4-regular graphs

1. Make G regular with degree a multiple of four (4k) (using the procedure in Sec-

tion 6.3.1).

2. Split each vertex v into vin and vout assigning v’s edges to either vin or vout to get G′

as follows:

(a) Assign dummy self loops, (v, v), as (vout, vin).

(b) Assign the remaining in-edges to vin and the remaining out-edges to vout (exclud-

ing the dummy edge).

(c) Assign the dummy edge, if there is one, to the representative of v with the least

number of adjacent edges.

(d) Make the degrees of vin and vout equal by moving real edges from one to the

other until they have equal degree.

G′ has 2n vertices and is 2k-regular.

3. Compute a 2-factoring of G′ (viewed as undirected). This gives k 2-factors.

4. In each 2-factor merge vertex representatives back together. That is, vin and vout

become v again. The result is k 4-factors of our original graph G. The problem is

thus reduced to computing a migration with space constraints on these 4-factors of G.

84

We thus obtain:

Theorem 29 Algorithm 3 reduces the problem of performing a migration with space con-

straints on an arbitrary graph to that of performing a series of migrations with space con-

straints on 4-regular multigraphs.

6.2.4 The Algorithms 4-Factoring Direct and 4-Factoring Indirect

We can now define the algorithms 4-Factoring Direct and 4-Factoring Indirect.

The algorithm 4-Factoring Direct is defined as follows: Use Algorithm 3 to reduce the

graph into 4-factors and then use the algorithm from Theorem 27(in Section 6.2.2) to migrate

each of these in 6 steps.

The algorithm 4-Factoring Indirect is defined as follows: Use Algorithm 3 to reduce the

graph into 4-factors and then use the algorithm 2 to migrate each of these in 4 steps using

no more than n/3 bypass nodes.

Combining Theorem 29 with Theorems 27 and 26 gives us the following corollaries:

Corollary 30 4-Factoring Direct takes as input an arbitrary directed multigraph of maxi-

mum degree ∆ and finds a 6 �∆/4� stage migration plan without bypass nodes.

Corollary 31 4-Factoring Indirect takes as input an arbitrary directed multigraph of max-

imum degree ∆ and finds a 4 �∆/4� stage migration plan using at most n/3 bypass nodes.

6.3 Obtaining a Regular Graph and Decomposing a Graph

6.3.1 Obtaining a Regular Graph

Some of our algorithms require regular graphs of degree either a multiple of 2 or 4. Let

∆′ be this desired degree, either 2 �∆/2� or 4 �∆/4�. We construct such directed regular

multigraphs as follows.

85

Algorithm 4 Making a directed multigraph ∆′-regular for any even ∆′

1. While there exists a vertex with degree less than ∆′−1, add a self loop to that vertex.

2. While there exist two distinct vertices of degree ∆′ − 1, add an arbitrarily directed

edge between them.

6.3.2 2-factor decomposition

It is well known that a 2k-regular multigraph can be factored into k 2-factors. For complete-

ness, we review an algorithm for doing this. This algorithm takes an undirected multigraph

G with degree ∆ = 2k and returns k 2-factors of G. We will be performing this operation

on directed multigraphs. In this case, the directions of the edges are ignored during the

factoring algorithm.

Algorithm 5 2-factoring a multigraph

1. Construct an Euler-tour of G.

2. Orient the edges according to the direction of the tour. That is, if the tour enters v

on edge e1 and leaves on edge e2, then e1 is an in-edge to v and e2 is an out-edge.

Thus we have din = dout = k.

3. Set up a bipartite matching problem, BG, with a representative of each vertex in the

graph on both sides. Add in all directed edges going from left to right. Note that

each edge is represented it the matching problem exactly once.

4. Find a matching (which is guaranteed to exist by Hall’s Theorem). The matched

edges induce a 2-factor of the original graph. Remove these edges from BG and repeat

this step until there are no edges left.

86

Chapter 7

EXPERIMENTAL STUDY OF DATA MIGRATION ALGORITHMS

FOR IDENTICAL DEVICES AND COMPLETE TOPOLOGIES

The primary focus of the chapter is on the empirical evaluation of the algorithms from

the last chapter along with two new migration algorithms. The chapter is organized as

follows. In Section 7.1, we describe the algorithms we have evaluated for indirect migration

without space constraints. In Section 7.2, we describe the algorithms we have evaluated for

migration with space constraints. Section 7.3 describes how we create the demand graphs on

which we test the migration algorithms while Sections 7.4 and 7.5 describe our experimental

results. Section 7.6 gives an analysis and discussion of these results.

7.1 Indirect Migration without Space Constraints

We begin with the new algorithm, Max-Degree-Matching given as Algorithm 6. Max-Degree-

Matching uses at most 2n/3 bypass nodes and always attains an optimal ∆ step migration

plan without space constraints. The algorithm works by sending, in each stage, one object

from each vertex in the demand graph that has maximum degree. To do this, we first find

a matching which matches all maximum-degree vertices with no out-edges. Next, we use

the general matching algorithm [MV80] to expand this matching to a maximal matching.

Finally, we match each unmatched maximum-degree vertex up with a bypass node and

then send every edge in this final matching. Theorem 32 gives the main properties of the

algorithm.

Theorem 32 Max-Degree-Matching computes a correct ∆-stage migration plan using at

most 2n/3 bypass nodes.

Proof: First we show that the algorithm uses no more than ∆ stages. Hall’s theorem can

be used to show that the matching problem constructed in step 1 of the algorithm always

87

Algorithm 6 Max-Degree-Matching(demand graph G)

1. Set up a bipartite matching problem as follows: the left hand side of the graph is

all maximum degree vertices not adjacent to degree one vertices in G, the right hand

side is all their neighbors in G, and the edges are all edges between maximum degree

vertices and their neighbors in G .

2. Find the maximum bipartite matching. The solution induces cycles and paths in the

demand graph. All cycles contain only maximum degree vertices, all paths have one

endpoint that is not a maximum degree vertex.

3. Mark every other edge in the cycles and paths. For odd length cycles, one vertex will

be left with no marked edges. Make sure that this is a vertex with an outgoing edge

(and thus can be bypassed if needed). Each vertex has at most one edge marked.

Mark every edge between a maximum degree vertex and a degree one vertex.

4. Let V ′ be the set of vertices incident to a marked edge. Compute a maximum matching

in G that matches all vertices in V ′ (This can be done by seeding the general matching

algorithm [MV80] with the matching that consists of marked edges.) Define S to be

all edges in the matching.

5. For each edge vertex u of maximum degree with no incident edge in S, let (u, v) be

some out-edge from u. Add (u, b) to S, where b is an unused bypass node, and add

(b, v) to the demand graph G.

6. Schedule all edges in S to be sent in the next stage and remove these edges from the

demand graph.

7. If there are still edges in the demand graph, go back to step 1.

88

has a solution in which all the maximum degree vertices not adjacent to degree 1 vertices

are matched. Thus at each stage the degree of each maximum degree vertex is decreased by

one. After ∆ stages we have no edges left and are done. The constraint that each vertex has

only one edge sent or received per stage is maintained because we only send the edges in a

general matching solution and edges out of vertices not matched by the general matching.

Next we show that the algorithm uses no more than 2n/3 bypass nodes. We first note

that there are no more than n/2 active bypass nodes after each stage. Then we show that

in the turnover as some bypass nodes are spent and some are created within a stage, that

the number of bypass nodes does not exceed 2n/3. We wish to show that after each stage

in the bypass algorithm, only n/2 bypass nodes are in use. Let k be the number of paths

and cycles induced in G by the matching. After this stage each component can only have

one bypass node associated with it. For cycles this is because originally the cycle had no

bypass nodes, but if it is an odd cycle then after this stage it has one bypass node. For

paths this is because any odd length path could end in a node with a bypass node. If this

is the case, since the path is odd length, the bypass node does not get used. Each of these

path or cycle has at least two vertices, so k ≤ n/2. Any bypass node that is not adjacent

to a path or cycle will be satisfied in this stage. Thus, there are at most n/2 bypass nodes

after any stage. Note that this says nothing about the number of different bypass nodes

used in a stage. For example, the bypass nodes at the end of the stage might not be the

same as the ones at the start of the stage. If one node is used in a stage and one node is

created, two nodes must exist because the node cannot both send (to be used) and receive

(to be created) in the same stage.

To get the bound on the number of nodes in use during a given stage of less than 2n/3,

we note that we need to bound the sum of the number of bypass nodes enlisted in this

stage and the number that were left from the previous stage. Assume the number of bypass

nodes left over from the previous stage is nb, and that the number of maximum degree

vertices without bypass nodes is nm. The number of bypass nodes created in this stage

is bounded by nm/3 because bypass nodes are only created from odd length cycles in the

matching. These cycles must have at least 3 vertices in them and only vertices not adjacent

to bypass nodes (ones put on the left hand side of the matching) can be in cycles in the

89

matching. Here, nm is at at most n − nb because each bypass node is adjacent to exactly

one maximum degree node. So to maximize the number of bypass nodes we must maximize:

nm/3 + nb ≤ (n − nb)/3 + nb = n/3 + 2nb/3. We proved above that nb ≤ n/2 so the most

bypass nodes that can be in use during a given stage is 2n/3. Bypass nodes can be recycled

so that only 2n/3 are required for the entire bypass algorithm.

We compare Max-Degree-Matching with 2-factoring, which also computes an indirect

migration plan without space constraints. We have shown in the last chapter that 2-factoring

takes 2 �∆/2� time steps while using no more than n/3 bypass nodes.

We note that in a particular stage of 2-factoring as described in the last chapter, there

may be some nodes which only have dummy edges incident to them. A heuristic for reducing

the number of bypass nodes needed is to use these nodes as bypass nodes when available to

decrease the need for “external” bypass nodes. Our implementation of 2-factoring uses this

heuristic.

7.2 Migration with Space Constraints

The Greedy Matching algorithm (Algorithm 7) is a new and straightforward direct migration

algorithm which obeys space constraints. This algorithm eventually sends all of the objects

(see Section 7.2.1) but the worst case number of stages is unknown.

7.2.1 Proof of Termination for Greedy Matching

For a node v, let din(v) be the in-degree of the node and let dout(v) be the out degree.

Lemma 33 Given initial free space of fi ≥ 1 + max(0, din(vi) − dout(vi)), at any stage of

Greedy Matching (i.e. after sending any number of objects) at least one unsent object is

sendable.

Proof: At any stage in the migration, the graph G only has edges left in it for objects that

have not yet been sent to their destination. Since we assume that fi ≥ 1 + max(0, din(vi)−

dout(vi)) for all i initially, all we have to show now, is that there exists a node v∗ ∈ V that

90

Algorithm 7 Greedy Matching

1. Let G′ be the graph induced by the sendable edges in the demand graph. An edge is

sendable if there is free space at its destination.

2. Compute a maximum general matching on G′.

3. Schedule all edges in matching to be sent in this stage.

4. Remove these edges from the demand graph.

5. Repeat until the demand graph has no more edges.

has din(v∗)− dout(v∗) ≥ 0 with din(v∗) > 0. This would imply that v∗ has free space and an

incoming edge and hence the object corresponding to that incoming edge is sendable.

Let V ′ be the subset of V that has only vertices that have sendable edges (that is,

din + dout > 0). Then
∑

v∈V ′ (din(v) − dout(v)) = 0. This is because each edge contributes

to exactly one vertex’s in-degree and one vertex’s out-degree. Since the average over all

v ∈ V ′ of (din(v) − dout(v)) = 0, there must be a vertex in V ′, which we call v∗, with

din(v∗) − dout(v∗) ≥ 0. Since we also have dout(v∗) ≥ 0, it must be that din(v∗) > 0.

We compare Greedy-Matching with the two provably good algorithms for migration with

space constraints from the last chapter: 4-factoring direct and 4-factoring indirect. We have

shown that 4-factoring direct finds a 6 �∆/4� stage migration without bypass nodes and that

4-factoring indirect finds a 4 �∆/4� stage migration plan using at most n/3 bypass nodes.

In our implementation of 4-factoring indirect, we again use the heuristic of using nodes

with only dummy edges in a particular stage as bypass nodes for that stage.

91

Table 7.1: Theoretical Bounds for Tested Migration Algorithms

Algorithm Type Space Constraints Plan Length Worst Case

Max. Bypass Nodes

2-factoring indirect No 2 �∆/2� n/3

4-factoring direct direct Yes 6 �∆/4� 0

4-factoring indirect indirect Yes 4 �∆/4� n/3

Max-Degree-Matching indirect No ∆ 2n/3

Greedy-Matching direct Yes unknown 0

7.3 Experimental Setup

Table 7.1 summarizes the theoretical results known for each algorithm on which we have

run experiments1.

We tested these algorithms on four types of multigraphs2:

1. Load-Balancing Graphs. These graphs represent real-world migrations. A detailed

description of how they were created is given in Section 7.3.1.

2. General Graphs(n, m). A graph in this class contains n nodes and m edges. The edges

are chosen uniformly at random from among all possible edges disallowing self-loops

(but allowing parallel edges).

3. Regular Graphs(n, d). Graphs in this class are chosen uniformly at random from

among all regular graphs with n nodes, where each node has total degree d (where

d is even). We generated these graphs by taking the edge-union of d/2 randomly

generated 2-regular graphs over n vertices.

1For each algorithm, the time to find a migration plan is negligible compared to time to implement the
plan.

2Java code implementing these algorithms along with input files for all the graphs tested is available at
www.cs.washington.edu/homes/saia/migration

92

4. Zipf Graphs(n, dmin). These graphs are chosen uniformly at random from all graphs

with n nodes and minimum degree dmin that have Zipf degree distribution i.e. the

number of nodes of degree d is proportional to 1/d. Our technique for creating random

Zipf graphs is given in detail in Section 7.3.2 .

7.3.1 Creation of Load-balancing Graphs

A migration problem can be generated from any pair of configurations of objects on nodes

in a network. To generate the Load-Balancing graphs, we used two different methods of

generating sequences of configurations of objects which might occur in a real world system.

For each sequence of say l configurations, C1, . . . Cl, for each i, 1 ≤ i ≤ l − 1, we generate a

demand graph using Ci as the initial configuration and Ci+1 as the final.

For the first method, we used the Hippodrome system on two variants of a retail data

warehousing workload [AHK+01]. Hippodrome adapts a storage system to support a given

workload by generating a series of object configurations, and possibly increasing the node

count. Each configuration is better at balancing the workload of user queries for data objects

across the nodes in the network than the previous configuration. We ran the Hippodrome

loop for 8 iterations (enough to stabilize the node count) and so got two sequences of 8

configurations. For the second method, we took the 17 queries to a relational database

in the TPC-D benchmark [Cou96] and for each query generated a configuration of objects

to devices which balanced the load across the devices effectively. This method gives us a

sequence of 17 configurations.

Different devices have different performance properties and hence induce different config-

urations. When generating our configurations, we assumed all nodes in the network were the

same device. For both methods, we generated configurations based on two different types

of devices. Thus for the Hippodrome method, we generated 4 sequences of 8 configurations

(7 graphs) and for the TPC-D method, we generated 2 sequences of 17 configurations (16

graphs) for a total of 60 demand graphs.

93

7.3.2 Creation of Zipf Graphs

The Zipf graphs for mimimum degree dmin are generated as follows: we first create sets

S1, . . . , Sk each containing k! vertices and let S be the union of all the sets. We then find

dmin random perfect matchings from S to S so that now every vertex in S has degree dmin.

We next, for all i, 1 ≤ i ≤ k, partition Si into k!/i subsets each with i nodes and then

merge each of these subsets into one node. By doing this, we get k!/i new vertices each

with degree dmin ∗ i. We let these new vertices be the vertices of the Zipf graph.

The total number of vertices in this Zipf graph is k!Hk where Hk is the k-th Harmonic

number. We note that the maximum degree of the graph is dmin ∗ k while the minimum

degree is 1. We further note that for all i, 1 ≤ i ≤ dmin ∗k, the number of nodes with degree

i is dmin ∗ k!/i

7.4 Results on the Load-Balancing Graphs

7.4.1 Graph Characteristics

In this section, we describe the load-balancing graphs used in our experiments. We refer to

the sets of graphs generated by Hippodrome on the first and second device type as the first

and second set respectively and the sets of graphs generated with the TPC-D method for

the first and second device types as the third and fourth sets.

The number of nodes in each graph is less than 50 for the graphs in all sets except the

third in which most graphs have around 300 nodes. The edge density for each graph varies

from about 5 for most graphs in the third set to around 65 for most graphs in the fourth

set. The ∆ value for each graph varies from about 15 to about 140, with almost all graphs

in the fourth set having density around 140.

7.4.2 Performance

Figure 7.1 shows the performance of the algorithms on the load-balancing graphs in terms

of the number of bypass nodes used and the time steps taken. The x-axis in each plot gives

the index of the graph which is consistent across both plots. The indices of the graphs are

94

clustered according to the sets the graphs are from with the first, second, third and fourth

sets appearing left to right, separated by solid lines.

The first plot shows the number of bypass nodes used by 2-factoring, 4-factoring in-

direct and Max-Degree-Matching. We see that Max-Degree-Matching uses 0 bypass nodes

on most of the graphs and never uses more than 1. The number of bypass nodes used

by 2-factoring and 4-factoring indirect are always between 0 and 6, even for the graphs

with about 300 nodes. The second plot shows the number of stages required divided by

∆ for Greedy-Matching. Recall that this ratio for 2-factoring,Max-Degree-Matching and 4-

factoring indirect is essentially 1 while the ratio for 4-factoring direct is essentially 1.5. In

the graphs in the second and third set, Greedy-Matching almost always has a ratio near 1.

However in the first set, Greedy-Matching has a ratio exceeding 1.2 on several of the graphs

and a ratio of more than 1.4 on one of them. In all cases, Greedy-Matching has a ratio less

than 4-factoring direct.

We note the following important points: (1) On all of the graphs, the number of bypass

nodes needed is less than 6 while the theoretical upper bounds are significantly higher. In

fact, Max-Degree-Matching used no bypass nodes for the majority of the graphs (2) Greedy-

Matching always takes fewer stages than 4-factoring direct.

7.5 Results on General, Regular and Zipf Graphs

7.5.1 Bypass Nodes Needed

For General, Regular and Zipf Graphs, for each set of graph parameters tested, we generated

30 random graphs and took the average performance of each algorithm over all 30 graphs.

For this reason, the data points in the plots are not at integral values. Greedy-Matching

never uses any bypass nodes so in this section, we include results only for Max-Degree-

Matching, 4-factoring indirect and 2-factoring.

Varying Number of Nodes

The three plots in the left column of Figure 7.2 give results for random graphs where the

edge density is fixed and the number of nodes varies. The first plot in this column shows

95

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

B
yp

as
s

no
de

s
re

qu
ire

d

Graph number

Bypass nodes required for each demand graph

2-factoring
4-factoring indirect

Max-Degree-Matching

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 10 20 30 40 50 60 70

st
ag

es
 r

eq
ui

re
d/

de
lta

Graph number

Stages required/delta for each demand graph

Greedy Matching

Figure 7.1: Bypass nodes and time steps needed for the algorithms. The top plot gives
the number of bypass nodes required for the algorithms 2-factoring, 4-factoring indirect
and Max-Degree-Matching on each of the Load-Balancing Graphs. The bottom plot gives
the ratio of time steps required to ∆ for Greedy-Matching on each of the Load-Balancing
Graphs. The three solid lines in both plots divide the four sets of Load-Balancing Graphs

96

the number of bypass nodes used for General Graphs with edge density fixed at 10 as

the number of nodes increases from 100 to 1200. We see that Max-Degree-Matching and

2-factoring consistently use no bypass nodes. 4-factoring indirect uses between 2 and 3

bypass nodes and surprisingly this number does not increase as the number of nodes in the

graph increases.

The second plot shows the number of bypass nodes used for Regular Graphs with ∆ = 10

as the number of nodes increases from 100 to 1200. We see that the number of bypass nodes

needed by Max-Degree-Matching stays relatively constant at 1 as the number of nodes

increases. The number of bypass nodes used by 2-factoring and 4-factoring indirect are very

similar, starting at 3 and growing very slowly to 6, approximately linearly with a slope of

1/900.

The third plot shows the number of bypass nodes used on Zipf Graphs with minimum

degree 1 as the number of nodes increases. In this graph, 2-factoring is consistently at 0,

Max-Degree-Matching varies between 1/4 and 1/2 and 4-factoring indirect varies between 1

and 4.

Varying Edge Density

The three plots in the right column of Figure 7.2 show the number of bypass nodes used

for graphs with a fixed number of nodes as the edge density varies. The first plot in the

column shows the number of bypass nodes used on General Graphs, when the number of

nodes is fixed at 100, and edge density is varied from 20 to 200. We see that the number of

bypass nodes used by Max-Degree-Matching is always 0. The number of bypass nodes used

by 2 and 4-factoring indirect increases very slowly, approximately linearly with a slope of

about 1/60. Specifically, the number used by 2-factoring increases from 1/2 to 6 while the

number used by 4-factoring indirect increases from 4 to 6.

The second plot shows the number of bypass nodes used on Regular Graphs, when the

number of nodes is fixed at 100 and ∆ is varied from 20 to 200. The number of bypass

nodes used by Max-Degree-Matching stays relatively flat varying slightly between 1/2 and

1. The number of bypass nodes used by 2-factoring and 4-factoring indirect increases near

97

linearly with a larger slope of 1/30, increasing from 4 to 12 for 2-factoring and from 4 to 10

for 4-factoring indirect.

The third plot shows the number of bypass nodes used on Zipf Graphs, when the number

of nodes is fixed at 146 and the minimum degree is varied from 1 to 10. 2-factoring here

again always uses 0 bypass nodes. The Max-Degree-Matching curve again stays relatively

flat varying between 1/4 and 1. 4-factoring indirect varies slightly, from 2 to 4, again near

linearly with a slope of 1/5.

We suspect that our heuristic of using nodes with only dummy edges as bypass nodes

in a stage helps 2-factoring significantly on Zipf Graphs since there are so many nodes with

small degree and hence many dummy self-loops.

7.5.2 Time Steps Needed

For General and Regular Graphs, the migration plans Greedy-Matching found never took

more than ∆ + 1 time steps. Since the other algorithms we tested are guaranteed to have

plans taking less than ∆ + 3, we present no plots of the number of time steps required for

these algorithms on General and Regular Graphs.

As shown in Figure 7.3, the number of stages used by Greedy-Matching for Zipf Graphs

is significantly worse than for the other types of random graphs. We note however that

it always performs better than 4-factoring direct. The first plot shows that the number of

extra stages used by Greedy-Matching for Zipf Graphs with minimum degree 1 varies from 2

to 4 as the number of nodes varies from 100 to 800. The second plot shows that the number

of extra stages used by Greedy-Matching for Zipf Graphs with 146 nodes varies from 1 to 11

as the minimum degree of the graphs varies from 1 to 10. High density Zipf graphs are the

one weakness we found forGreedy-Matching.

7.6 Analysis

Our major empirical conclusions for the graphs tested are:

• Max-Degree-Matching almost always uses less bypass nodes than 2-factoring.

98

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200

B
yp

as
s

no
de

s

Number of Nodes

General Graph, Density = 10

’2-factoring’
’4-factoring indirect’

’Max-Degree-Matching’

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

B
yp

as
s

no
de

s

Density

General Graph, Nodes = 100

’2-factoring’
’4-factoring indirect’

’Max-Degree-Matching’

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200

B
yp

as
s

no
de

s

Number of Nodes

Regular Graph, Delta = 10

’2-factoring’
’4-factoring indirect’

’Max-Degree-Matching’

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200

B
yp

as
s

no
de

s

Delta

Regular Graph, Nodes = 100

’2-factoring’
’4-factoring indirect’

’Max-Degree-Matching’

0

1

2

3

4

5

0 100 200 300 400 500 600 700

B
yp

as
s

no
de

s

Number of Nodes

Zipf Graph, Minimum Degree = 1

’2-factoring’
’4-factoring indirect’

’Max-Degree-Matching’

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

B
yp

as
s

no
de

s

Minimum Degree

Zipf Graph, Nodes = 147

’2-factoring’
’4-factoring indirect’

’Max-Degree-Matching’

Figure 7.2: Six plots giving the number of bypass nodes needed for 2-factoring, 4-factoring
direct and Max-Degree-Matching for the General, Regular and Zipf Graphs. The three plots
in the left column give the number of bypass nodes needed as the number of nodes in the
random graphs increase. The three plots in the right column give the number of bypass
nodes needed as the density of the random graphs increase. The plots in the first row are
for General Graphs, plots in the second row are for Regular Graphs and plots in the third
row are for Zipf Graphs.

99

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700

S
te

ps
 n

ee
de

d
ab

ov
e

D
el

ta

Number of Nodes

Zipf Graph, Minimum Degree = 1

’Greedy Matching’
4-factoring direct

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

S
te

ps
 n

ee
de

d
ab

ov
e

D
el

ta

Minimum Degree

Zipf Graph, Nodes = 147

’Greedy Matching’
4-factoring direct

Figure 7.3: Number of steps above Delta needed for Greedy-Matching on Zipf Graphs.

• Greedy-Matching always takes less time steps than 4-factoring direct.

• For all algorithms using indirection, the number of bypass nodes required is almost

always no more than n/30.

For migration without space constraints, Max-Degree-Matching performs very well in

practice, often using significantly fewer bypass nodes than 2-factoring. Its good perfor-

mance and good theoretical properties make it an attractive choice for real world migration

problems without space constraints.

For migration with space constraints, Greedy-Matching always outperforms 4-factoring

direct. It also frequently finds migration plans within some small constant of ∆. However

there are many graphs for which it takes much more than ∆ time steps and for this reason

we recommend 4-factoring indirect when there are bypass nodes available.

7.6.1 Theory Versus Practice

In our experiments, we have found that not only are the number of bypass nodes required

for the types of graphs we tested much less than the theoretical bounds suggest but that in

addition, the rate of growth in the number of bypass nodes versus the number of demand

graph nodes is much less than the theoretical bounds. The worst case bounds are that n/3

bypass nodes are required for 2-factoring and 4-factoring indirect and 2n/3 for Max-Degree-

100

Matching but in most graphs, for all the algorithms, we never required more than about

n/30 bypass nodes.

The only exception to this trend is regular graphs with high density for which 2-factoring

and 4-factoring indirect required up to n/10 bypass nodes. A surprising result for these

graphs was the fact that Max-Degree-Matching performed so much better than 2-factoring

and 4-factoring indirect despite its worse theoretical bound.

101

Chapter 8

DATA MIGRATION WITH HETEROGENEOUS DEVICE SPEEDS

AND LINK CAPACITIES

In this chapter, we consider the problem of data migration with heterogeneous device

speeds and link capacities. We call this more difficult problem, for reasons that will become

obvious, the flow routing problem. In Section 8.1, we define the flow routing problem and

give an outline of our results. In Section 8.2, we present solutions for a particular variant

of the flow routing problem where the topology is complete, which we call edge-coloring

with speeds. In Section 8.3, we present solutions for the variant of the problem where the

topology is a tree which we call migration on trees. In Section 8.4, we present solutions for

arbitrary topologies and device speeds in the case where the data objects can be split which

we call migration with splitting.

8.1 Flow Routing Problem Definition

In this section, we describe the Flow Routing problem which is motivated by the following

real world constraints for wide area networks :

• Disk speeds of storage devices are heterogeneous and network links have varying ca-

pacities.

• The nodes (storage devices) in the network may not be connected in a complete graph,

but rather in a tree or some other type of network.

Formally, the input to the flow routing problem is a graph G = (V, E) describing the

topology of the network connecting the storage devices and a set of objects O. Each of the

nodes, v, represents a storage device and has speed s(v), which gives the disk bandwidth of

102

the device. Each of the edges, e, represents a network link and has capacity c(e). Each of

the objects starts at some source node and has some destination node.

We assume that it takes unit time to transfer an object between any two nodes. This

assumption is a consequence of the fact that objects all have the same fixed size, and that

the time to transfer an object is dominated by the time to read/write it to disk. Thus, we

can assume that the objects are migrated in a series of stages, where a stage consists of a

single time unit in which possibly multiple objects are routed between nodes. We define a

flow routing to be an assignment, for each object and for each stage, of a path (possibly

empty) along which the object is to be routed in that stage. These assignments must satisfy

the following constraints.

• Every object is eventually routed from its source node to its destination node.

• Any storage device, v, reads or writes at most s(v) objects from disk in any stage, i.e.,

no node, v, has more than s(v) objects whose paths start or end at v in any stage.

• For any edge e in the network, no more than c(e) objects have paths through e in any

stage.

Our objective is to route all of the objects from their source nodes to their destination nodes

in the minimum number of stages.

An essential feature of this problem is that storage devices have integer speeds, edges

have integer capacities and objects are of a common fixed size. We note that if the node

speeds and edge capacities are not integral, we give up no more than a factor of 2 in all our

approximation guarantees by rounding each speed and each capacity down to the nearest

integer. This flow routing problem generalizes the data migration problem studied in the

last two chapters where the network is assumed to be complete and all nodes are assumed

to have speed 1.

We will also be considering a variant of this problem where each device has space con-

straints. In this variant, each device v has space, m(v), and the number of objects stored

at v at the end of any stage is no more than m(v). We note that each device must have an

103

amount of memory that is at least the maximum of the number of objects that are stored

on the device initially and the number of objects that are stored on the device at the end

of the migration.

8.1.1 Our Results

In Section 8.2, we consider the flow routing problem where G is a complete graph and all

edges have infinite capacities, but the machines have varying speeds. We give a simple

3/2-approximation algorithm for this problem. We will use this approximation algorithm

for our algorithm for flow routing on the tree. We also show in this section, that in cases

where all speeds are multiples of 2, we can find a near optimal flow routing without space

constraints.

In Section 8.3, we consider the flow routing problem where G is a tree, nodes have

variable speeds and edges have variable capacities. The tree network is interesting both

for the fact that it describes the minimal connectivity needed to perform flow routing and

for the fact that storage systems over wide area networks typically have a sparse, tree-like

topology. We give a 3/2-approximation algorithm for flow routing on a tree in the case

where there are no space constraints.

Finally, in Section 8.4, we consider the flow routing problem where the edges of G =

(V, E) have arbitrary capacities and the nodes have arbitrary speeds and space constraints.

Let ε > 0 and let l∗ be the optimal number of stages for the flow routing. Then our algorithm

gives, with high probability, a flow routing taking �(1 + ε)l∗� stages provided that we can

split the objects into (1 + 1/ε)2 ln(2ne)/.38 pieces where ne = (2|V |+ |E|) �(1 + ε)l∗)�. (We

note that l∗ is only used as an upper bound in this quantity, the exact amount of splitting

required can be computed directly by our algorithm). Some reasonable values for these

quantites are |V | = 20, |E| = 60 and l∗ = 100. For ε = 1, this implies that the objects must

be split into about 112 pieces. In many cases, the objects are large enough (e.g. gigabytes),

to be split into this many pieces [AHH+01]. Allowing objects to be split into pieces in this

way gives a very good approximation algorithm for a problem for which previously only

heuristical techniques were known. We note that it is NP-Hard to get a constant factor

104

approximation algorithm to the flow routing problem if we can split only into a number of

pieces which is independent of l∗ (by a reduction from Disjoint Paths).

8.1.2 Multicommodity Flow and Flow Routing

As stated in Chapter 5, the flow routing problem is closely related to integer multicommodity

flow. In the multicommodity flow problem, we are given a network with edge capacities.

We are also given a set of commodities each with its own sink and source and demand. We

want to mazimize the sum of all the flows sent from sources to sinks subject to the capacity

constraints on the edges and the constraint that the flow for any given commodity is no

more than its demand. In the integer multicommodity flow problem, we have the additional

constraint that all flows must be integral valued.

To see the correspondence between integer multicommodity flow and flow routing, we

can think of each object as a commodity for which there is only one unit of demand. If we

let the speeds of all objects be infinite then the minimum number of stages in a flow routing

is the smallest number of valid multicommodity flows necessary to send each commodities

from its source to its sink.

We note that an approximation algorithm for integer multicommodity flow does not

give an approximation algorithm for flow routing nor does an approximation algorithm for

flow routing give an approximation algorithm for integer multicommmodity flow. Greedily

maximizing the number of objects sent in the first stage of a flow routing can lead to

a flow routing which takes more steps than optimal. The relationship between integer

multicommodity flow and flow routing is analogous to the relationship between maximum

general matching and edge-coloring.

8.2 Edge-Coloring with Speeds

In this section, we present results for the flow routing problem where the topology graph

is complete and all edges have infinite capacities but where the machines have arbitrary

integral speeds. We will not consider space constraints. This variant of the flow routing

problem is equivalent to the following problem which we call edge-coloring with speeds: We

105

are given a multigraph G = (V, E) which has the same nodes as the nodes in the topology

graph and for every object o in the flow routing problem, G has an edge from source(o)

to sink(o). We are also given a speed function s which maps the nodes of V to integers.

We want to find the minimum number of colors needed to color the edges of G such that

any node v in G has no more than s(v) edges with the same color incident to it. As noted,

the number of colors needed is equivalent to the number of time steps needed for the flow

routing. We will be using the following theorem from [Sha49] about edge-coloring any graph

G with n nodes and maximum degree ∆ whose vertices all have speed 1.

Theorem 34 ([Sha49]) G can be edge-colored using at most 3 �∆/2� colors.

For a graph G = (V, E), for all v ∈ V , let d(v) be the degree of v, t(v) = �d(v)/s(v)�,

∆(G) = maxv d(v) and T (G) = maxv∈V t(v). A trivial lower bound on the number of colors

needed to edge-color G is T (G).

We now present our first result. Algorithm 8 is a simple algorithm for edge-coloring with

speeds; Theorem 35 proves that it is a 3/2-approximation algorithm.

Algorithm 8 Algorithm for edge-coloring a graph G = (V, E) with speeds

1. Let G′ = (V ′, E′) be a new graph defined as follows: for every node v ∈ V , V ′ has

nodes v1, . . . vs(v). For every edge e = (x, y) ∈ E, E′ has an edge from xi to yj for

some i and j. These edges of E′ are distributed such that for every node v ∈ V and

vi ∈ V ′, t(v) ≥ d(vi) ≥ t(v)− 1. An example of G and the corresponding G′ are given

in Figure 8.1.

2. Find an 3�∆(G′)/2� edge-coloring of G′ using Theorem 34.

3. Color each edge of G with the same colors as its corresponding edge in G′.

Theorem 35 Algorithm 8 edge-colors a graph G with speeds using 3�T (G)/2� colors.

106

a1 b1 b2 b3

c1 c2 d1

b4

G’:

a b

c d

(1)

(2)

(4)

(1)

G:

Figure 8.1: The graph G is a demand graph with speeds given in parenthesis. The graph
G′ is the graph constructed by Theorem 35

Proof: Consider the graph G′ created in the first step of the algorithm. We note that by

construction, ∆(G′) = T (G). Hence the coloring for G′ found in the second step of the

algorithm uses no more than 3�T (G)/2� colors. Finally, the edge-coloring of G we get in

the third step of the algorithm uses 3�T (G)/2� colors and has the property that no node v

has more that s(v) monochromatic edges incident to it.

8.2.1 Speeds that are Multiples of 2

In practice, for certain data migration applications, it is possible to directly increase the

speed of nodes by buying faster resources. For example, we can increase the speed of a

LAN in a disk farm by adding more disks to it. Results in this subsection are of use to

practitioners in that they give a principled way to build up resources in a network so as to

minimize migration time.

Corollary 37 shows that we can get very good results for edge-coloring with speeds if

the speeds are all multiples of 2. The basic idea behind the Corollary is to create a bipar-

tite graph by splitting the nodes and distributing the edges appropriately. The Corollary

depends on Lemma 36.

Lemma 36 There is a polytime algorithm to get an edge coloring using T (G) colors for

any graph G = (V, E) which has all node even degree and for which for all nodes v ∈ V ,

107

s(v) is even.

Proof: We first create a new graph G′ = (V ′, E′) which for every node v ∈ V , contains the

nodes v′1, . . . , v′s(v). To determine the edges G′, we first give each edge of G an orientation by

taking an Eulerian tour on G treated as an undirected graph. For an edge e = (x, y) ∈ E,

we say e is oriented from x to y if when e is traversed in the tour x is visited before y.

Otherwise we say that e is oriented from y to x.

For each edge in G oriented from node x to node y, we have edge (x′
i, y

′
j) where i is

some odd number between 1 and s(x) and j is some even number between 1 and s(y). We

distribute the edges such that ∀v ∈ V and ∀i1 ≤ i ≤ s(v), d(vi) ≤ t(vi).

G′ is now a bipartite graph where the left side is all nodes of form v′i for any v where i

is odd and the right side is all nodes of form v′j for any v where j is even. There is also a

1 − 1 mapping between the edges of G and the edges of G′ and ∆(G′) = T (G)

Since G′ is bipartite, it is well known that we can color it with ∆(G′) colors. Such a

coloring gives an edge coloring with speeds of G which uses T (G) colors.

Corollary 37 If all speeds are multiples of 2, we can edge color with speeds in 2�T (G)/2�

with no bypass nodes.

Proof: We can add dummy edges to G to ensure that all nodes have even degree while

increasing the maximum degree to at most 2 �T (G)/2� (the procedure for doing this is trivial

and was given in Section 6.3.1). We then edge color this new graph using the algorithm in

Lemma 36.

8.3 Migration on Trees

In this section, we present results on the problem of migration on trees. This is simply the

flow routing problem on trees when there are no space constraints. Since on trees there is

108

a unique path between any two vertices, we can simplify the flow routing problem on trees

to a problem we call flow coloring: we are given the same network, set of objects and speed

and capacity constraints but for each object, we need only specify the stage the object is

sent since the path is uniquely determined.

For a graph G = (V, E), let s be a function mapping each node in V to a integer speed,

let c be a function mapping each edge to a integer capacity and let O be a set of objects

with specified sources and sinks in V . Then we will use the notation F = (G, O, s, c) to

specify the appropriate flow routing problem.

For an object o, we will use the notation σ(o) to specify the stage or color of the object

in the solution to the flow routing problem.

8.3.1 Trees of Height 1

We note that flow coloring is NP-hard by a reduction from edge-coloring even when the tree

is of height 1 and all nodes have speed 1 and edges have capacity 1. We will first give an

approximation algorithm for flow coloring on trees of height 1 and then show how we can

use this algorithm to get a good approximation for trees of arbitrary height.

For any flow coloring problem F = (G, O, s, c) and graph G = (V, E), where G is a tree

of height 1, let V = {v1, . . . vn} where v1 is the root of the tree and let E = {e2, . . . , en}

where ei connects v1 and vi. We define for any v ∈ V , O(v) to be the set of objects that

have source or sink equal to v and t(v) = �O(v)/s(v)� and similarly, for any e ∈ E, we

define O(e) to be the set of objects whose paths traverse edge e and t(e) = �O(e)/c(e)�.

We define T (F) = max(maxv∈V t(v), maxe∈E t(e)) to get the following lemma whose proof

is immediate.

Lemma 38 T (F) is a lower bound on the number of colors needed in a flow coloring F .

Algorithm 9 achieves an approximation to this lower bound. Figure 8.2 gives an example

flow coloring problem

Lemma 39 Algorithm 9 finds a valid flow coloring using no more than 3�T (F)/2� colors.

109

v1’ v2’

v3’ v4’

G’:F:

v2 v3 v4

v1

(1)

1

(1) (3)

(1)

2 1

Figure 8.2: Example flow coloring problem, labelled as F and the corresponding graph G′

created by Algorithm 9. In this example, s(v3) = 3 while all other speeds of nodes in F
are 1 and c(e3) = 2 while all other capacities of edges in F are 1. The 4 objects in F
are represented by dashed arrows from the source of the object to the sink. In the graph
G′ = (V ′, E′) created for F by Algorithm 9, s ′(v′3) = 2 while all other speeds of nodes in V ′

are 1. The coloring with speeds of G′ which uses two colors gives a flow coloring of F using
2 colors.

Algorithm 9 Finds flow coloring for F = (G, O, s, c) where G = (V, E) is an undirected

tree of height 1.

1. Create a new multigraph G′ = (V ′, E′) where for all vi ∈ V , there is a node v′i ∈ V ′

and for each object o ∈ O, where source(o) = vi and sink(o) = vj , there is an edge

(v′i, v
′
j) in E′. Define the function s ′ as follows: s ′(v1) = s(v1) and for all other v′i ∈ V ′,

s ′(v′i) = min(s(vi), c(ei)).

2. Edge-color G′ with speeds s ′ using Algorithm 8. To get the flow coloring σ of F , for

each o ∈ O, let σ(o) be the color given to eo in this edge-coloring.

110

Proof: We note that T (G′) ≤ T (F) so the edge-coloring of G uses no more than 3 �T (F)/2�

colors by Theorem 35. We next show that for any edge-coloring of G′, if we assign the color

given to each edge in E′ to its corresponding object in O then we get a valid flow coloring of

F . To see this, consider any edge ei ∈ E and the corresponding node v′i ∈ V ′. For any color

t, v′i has no more than min(s(vi), c(ei)) edges of color t incident to it in the edge-coloring of

G′. Hence for any color t, there are no more than c(ei) objects that traverse edge ei that

are colored t in the flow coloring of F . For similar reasons, for any color t and node vi ∈ V ,

there are no more than s(vi) objects with source or sink equal to vi that are colored t in

the flow coloring of F .

8.3.2 Trees of Arbitrary Height

In the algorithm for trees of arbitrary heights, we need the notion of a restriction of a set

of objects. For flow coloring problem F = (G, O, s, c) where G = (V, E) a tree, and for any

V ′ ⊂ V , the restriction of O to V ′ is a new set of objects O′ where for each o ∈ O whose

path P from source to sink in G crosses a node in V ′, there is a o′ ∈ O′ which has source

equal to the first node in P in V ′ and sink equal to the last node in P in V ′.

Now assume we have a flow problem F = (G, O, s, c) where G is a tree with root v1

which has child nodes v2, . . . , vl. We define Sub(F, vi) = (Gi, Oi, s ′, c′) to be a flow coloring

problem where Gi is the subtree rooted at vi with v1 added as another child of vi and Oi

the set of objects O restricted to Gi. All speeds and edge capacities are the same in the new

problem except that node v1 has speed |O(vi)|. We define Local(F, v1) = (G′, O′, s ′, c) to be

a flow coloring problem where G′ is the height 1 tree consisting of v1 and all its children and

O′ is O restricted to the vertices in G′. All capacities are the same in this new problem as

is the speed of node v1. However ∀i 2 ≤ i ≤ l, s ′(vi) = |O(vi)|. Figure 8.3 gives examples

of Sub and Local problems. Algorithm 10 is the promised 3/2-approximation algorithm for

trees of arbitrary height.

For notational convenience in the proof of the approximation ratio for Algorithm 10, we

will, for a flow coloring F = (G, O, s, c), G = (V, E), let s(v, F) be the speed in F of a

111

F:

v2

v4 v5

v8

v3

v1

v6 v7

Local(F,v1): v1’

v2’ v3’

Sub(F,v2): v2’

v4’ v5’ v1’

v8’
o1

o2

o3

o3

o2

o1
o3

o2

Figure 8.3: A flow coloring problem F and Local(F, v1) and Sub(F, v2) (dashed arrows
represent objects)

Algorithm 10 Finds flow coloring for F = (G, O, s, c) where G is a tree.

1. If G is of height 1, use Algorithm 9 to color F .

2. Let v1 be the root of G and let v2, . . . vl be the children of v1. Recursively color

Local(F, v1) and for all i = 2, . . . l, recursively color Sub(F, vi). Let σ1 be the coloring

of Local(F, v1) and σ2, . . . , σl be the colorings of Sub(F, v2), . . . ,Sub(F, vl).

3. For i = 2, . . . , l, permute the coloring σi such that for any o ∈ O that is in both

Local(F, v1) and Sub(F, vi) σi(o) is set to σ1(o) and such that two objects previously

assigned different colors in σi are still assigned different colors in the permutation of

σi (doing this with no more colors than the maximum number of colors used in σ1

and σi is trivial).

4. Each object o ∈ O is now assigned the same color in any of the colorings σ1, . . . , σl

that it appears in. This color is the color assigned to o in our flow coloring for F .

112

node v ∈ V and c(e, F) be the capacity in F of an edge e ∈ E. Further, we let O(v, F) be

the number of objects at vertex v in F and t(v, F) = �|O(v, F)|/s(v, F)�. Similarly for any

edge e, we let t(e, F) = |O(e, F)|/c(e, F).

Theorem 40 Algorithm 10 finds a valid flow coloring using no more than 3�T (F)/2� col-

ors.

Proof: We prove this by induction on the height of the tree G. The base case is established

by Lemma 39. For trees of height more than 1, we first show that the algorithm finds a

valid flow coloring and then show that the flow coloring found uses no more than 3�T (F)/2�

colors.

To show that the coloring of F is a valid flow coloring, consider some arbitrary node

u ∈ V . If u = v1 then s(u, F) = s(u,Local(F, v1)). Further there is a 1 − 1 correspon-

dence between O(u, F) and O(u,Local(F, v1)). By the inductive hypothesis, the objects

in O(u,Local(F, v1)) contain no more than s(u, F) monochromatic objects. Hence, there

are no more than s(u, F) monochromatic objects in O(u, F). If u �= v1 then for some

2 ≤ i ≤ l, s(u, F) = s(u,Sub(F, vi)) and there is a 1 − 1 correspondence between O(u, F)

and O(u,Sub(F, vi)) so by an argument similar to the above, there are no more than s(u, F)

monochromatic objects in O(u, F).

Next consider some arbitrary edge e ∈ E. We note that for some i, 2 ≤ i ≤ l, c(e, F) =

c(e,Sub(F, vi)) and that there is a 1−1 correspondence between O(e, F) and O(e,Sub(F, vi))

so again there are no more than c(e, F) monochromatic objects in O(e, F).

Finally, we show that the flow coloring found by the algorithm uses no more than

3�T (F)/2� colors. We first note that in the last step of the algorithm, if we let M be the

maximum number of colors needed in any of the colorings of the subproblems, the coloring

of F has exactly M colors. Hence, if we show that T (Local(F, v1)) ≤ T (F) and that for all

i, 2 ≤ i ≤ l, T (Sub(F, vi)) ≤ T (F) then by the inductive hypothesis, we can achieve our

bound. In the following, we assume T (F) ≥ 1.

Consider some vertex u that is both in F and Local(F, v1). We know that if u ∈

{v2, . . . , vl} then t(u,Local(F, v1)) = 1 (since s(u,Local(F, v1)) = |O(u,Local(F, v1))|). We

113

also know that if u = v1, s(u, F) = s(u,Local(F, v1)) and |O(u,Local(F, v1))| = |O(u, F)|

so t(u, F) = t(u,Local(F, v1)). So in either case, we know T (F) ≥ t(u,Local(F, v1))

We also know that if u is in both F and Sub(F, vi) for some i, that if u = v1, t(u,Sub(F, vi)) =

1. On the other hand, if u �= v1, s(u, F) = s(u,Sub(f, vi)) and |O(u,Sub(f, vi))| = |O(v, F)|

so t(u, F) = t(u,Sub(F, vi)). In either case, T (F) ≥ t(u,Sub(F, vi))

Next consider some edge e in the problem F . We know that c(e, F) = c(e,Local(F, v1))

and c(e, F) = c(e,Sub(F, vi)) for any i, 2 ≤ i ≤ l. We also know that if e is in Local(F, v1)

then |O(e,Local(F, v1))| = |O(e, F)| so t(e,Local(F, v1)) = t(e, F). A similar argument

shows that if e appears in Sub(F, vi) for any i, 2 ≤ i ≤ l, that t(e,Sub(F, vi)) = t(e, F).

Putting these bounds together show that T (Local(F, v1)) ≤ T (F) and for all i, 1 ≤ i ≤ l,

T (Sub(F, vi)) ≤ T (F).

We note that if speeds of all nodes and capacities of all edges are multiples of 2, that by

using Corollary 37, we can find a flow coloring for the tree which is essentially the optimal

number of stages.

8.4 Migration with Splitting

In this section, we will be considering the problem of migration with splitting. This is

simply the general flow routing problem on an arbitrary topology in the presence of space

constraints where splitting of data objects is allowed. We will give a (1 + ε)-approximation

algorithm for this problem when objects can be split into a fairly large number of pieces.

Let F = (G, O) be a flow routing problem over graph G = (V, E) with object set O.

Let the speeds and memory at nodes be given by functions s and m respectively and let

capacities at edges be given by the function c. For some integer α, we define F ′ = split(F, α)

to be a new flow routing problem over G defined as follows. Each node v in F ′ has speed

αs(v) and memory αm(v) while each edge e in F ′ has capacity αc(e). For each object

o ∈ O, F ′ contains α objects each with source source(o) and sink sink(o). Formally, if we

are given F , and we can find a flow routing for F ′, in k stages, then we say that if the

objects of F are split into α pieces, we can route F in k stages. Our reasoning behind this is

114

as follows: in one stage in the migration with pieces, a storage device multiplexes over the

object pieces that it is assigned to send or recieve (i.e. the stage is divided into time slices

and the device spends one time slice on each object). If a device v has speed s and memory

m, it can send or receive αs object pieces in one stage by multiplexing and can store αm

pieces at the end of each stage. Similarly, each edge with capacity c can handle αc object

pieces in one stage. We note that there will be an overhead due to the multiplexing so that

in practice, a stage of sending pieces of objects will take somewhat longer that a stage of

sending the objects.

8.4.1 Preliminaries

In our approximation algorithm, we will round a solution to a certain multicommodity flow

problem to get an integer multicommodity flow and then use this integer multicommodity

flow to create a valid flow routing. We depend on the following corollary to a result by

Raghavan and Thompson [RT87] whose proof is given here for completeness.

Corollary 41 Let δ be any fixed number such that 0 < δ <
√

5−1
2 . Assume we are given a

fractional multicommodity flow over a graph G = (V, E) which sends exactly one unit of each

commodity and that the the amount of flow over every edge is no more than (1 − δ) times

the capacity of that edge and that each edge has capacity at least β. Then with probability

greater than 1 − 2|E|e−.38δ2β, we can find an integral multicommodity flow over G which

sends exactly one unit of each commodity.

Proof: For each commodity i, let si be the source node of i and ti be the sink node of i.

Further, for each commodity i and edge e, let f(i, e) be the fractional flow of i sent through

e.

Our approach will be for each commodity i to perform a random walk from si to ti

guided by the fractional flows f(i, e). The random walk for commodity i begins at si. Now

suppose we are at a node v in the walk and let A(v) be the set of edges leaving v. The

random walk chooses to proceed along edge a ∈ A(v) with probability f(i,a)∑
e∈A(v)f(i,e)

. The

walk terminates at reaching ti which it must since we can assume with out loss of generality

that the set of edges with non-zero flow form a directed acyclic graph.

115

x x’

y y’

z z’

w w’ x x’

y y’

z z’

w w’ x x’

y y’

z z’

w w’
so1

so2

MCF(F,3):

t o1

o2t

Figure 8.4: An example flow problem F and MCF (F, 3). In this example, F is a flow routing
problem on a network with nodes x, y, z, w and edges {(x, y), (y, w), (w, z), (z, x)). There
are two objects o1 which has source x and sink w and o2 which has source x and sink z. In
the figure, s-edges and c-edges are shown as solid lines while m-edges are shown as dashed
lines. Edge capacities are omitted.

A simple inductive argument shows that in the above rounding, the probability that

the random walk for commodity i traverses any edge e equals f(e, i). Further the event:

“commodity i traverses edge e” is an independent event for each i.

Hence we can bound the probability for any edge x that the total number of walks travers-

ing it exceeds c(e) using Chernoff bounds. This probability is no more than 2e−.38δ2c(x))

where c(x) is the capacity of the edge x. Then by a union bound, we can say that the prob-

ability that capacity constraints are violated on any edge is less than 2
∑

x∈E e−.38δ2c(x).

Since we know that the capacity of each edge is at least β, we can say that this probability

is no more than 2|E|e−.38δ2β

The multicommodity flow problem we will be using is given in Procedure 3 as MCF (F, l)

where F is a flow routing problem and l is a bound on the number of allowed stages.

An example of the graph for MCF (F, 3) is given in Figure 8.4. The following lemma

demonstrates the usefulness of MCF (F, l).

Lemma 42 There is a flow routing for F taking l stages if and only if there is a feasible

integer flow for MCF (F, l).

Proof: Assume F has a flow routing taking l stages. We will show how to construct a

116

Procedure 3 Creates multicommodity flow problem MCF (F, l) for integer l and flow prob-

lem F = (G, O, s, c) where G = (V, E).

1. We first create a graph G′ from G = (V, E) on which to route the flow. For each

vertex v ∈ V , for each i = 1, . . . , l, G′ contains vertices vi and v′i. For each o ∈ O, G′

contains source node so and sink node to. Edges are created in the following way:

• For each edge e = (v, w) ∈ E and for each i = 1, . . . , l, G′ contains the edge

(v′i, w
′
i) with capacity c(e). We call such edges c-edges since they enforce capacity

constraints.

• For each node v ∈ V and for each i = 1, . . . , l, G′ contains the edge (vi, v
′
i) with

capacity s(v). We call such edges s-edges since they enforce speed constraints.

• For each node v ∈ V and for each i = 1, . . . , l− 1, G′ contains the edge (vi, vi+1)

with capacity m(v). For each o ∈ O, with source x and sink y, G′ also contains

the edge (so, x1) with capacity m(x) and edge (yl, to) with capacity m(y). We

call all such edges m-edges since they enforce memory constraints.

2. The flow problem is defined as follows: for each o ∈ O, we demand that one unit of

commodity o be routed from node so to node to in G′.

117

feasible integer multicommodity flow for MCF (F, l). Consider any object o ∈ O, which is

routed along some path P from a to b at stage i < l in the flow routing. We will send

commodity o through the following edges in MCF (F, l). First we will send it through edge

(ai, a
′
i) ,then for each edge (x, y) ∈ P , we send it through edge (x′

i, y
′
i) and finally we will

send it through the edges (b′i, bi) and (bi, bi+1). For each commodity o, with source v and

sink w, we will send commodity o through edge (so, v1) and through edge (vl, to).

The capacities of the s-edges, c-edges and m-edges in MCF (F, l) are not exceeded by our

assumption that the flow routing is valid. In particular, consider some s-edge, (vi, v
′
i), for

vertex v and stage i. We know that no more than s(v) objects begin or end at v in our flow

routing and so we know that no more than s(v) units of commodity traverse this edge. Now

consider some m-edge, (vi, vi+1), for some vertex v. We know that the number of objects

on the node of v at the end of any stage of the flow routing is no more than m(v) so we also

know that no more than m(v) units of commodity traverse this edge. Finally, consider some

c-edge, (v′i, w
′
i), for some nodes v and w and some stage i. Let e be the edge between v and

w in the topology graph. Then we know that no more than c(e) objects traverse edge e at

stage i in the flow routing so we know that no more that c(e) units of commodity traverse

edge (v′i, w
′
i). We also know that one unit flow of each commodity is sent in our constructed

flow since our assumed flow routing sends every object from its source to its sink.

Now assume there is a feasible integer multicommodity flow, f , for the problem MCF (F, l).

We construct a flow routing taking l stages as follows. For each object o, let (ai, a
′
i), P, (b′i, bi)

be a sequence of the edges in the path that commodity o is sent along where P is a sequence

of edges of the type (x′
i, y

′
i) for any vertices x and y. Then in stage i of the flow routing, we

send object o from vertex a to vertex b along edge path P . The speed, capacity and space

constraints in the flow routing are respected by arguments similar to those given above since

since f is a valid flow. In addition, our flow routing takes l stages by construction.

118

8.4.2 The Algorithm

We can now give the entire algorithm for computing a flow routing on an arbitrary topology;

the algorithm is given as Algorithm 11. Algorithm 11 uses Procedures 3 and 4. The proof

of its correctness uses lemmas 42 and 44.

Theorem 43 For a flow routing F = (G, O, s, c) which has a solution taking l∗ time steps,

Algorithm 11 gives a routing for any 0 < ε < 1 using no more than �(1 + ε)l∗� time steps.

The algorithm splits the objects into α pieces where α is (1 + 1/ε)2/.38 ln(2ne) and ne =

(2|V | + |E|) �(1 + ε)l∗)�

Proof: The proof is immediate from Lemmas 42 and 44.

Algorithm 11 Given a flow routing problem F = (G, O, s, c) and a fixed constant 0 < ε < 1,

finds for a certain α, a flow routing for F taking no more than (1 + ε) times the optimal

number of time steps when the objects in O are split into α pieces.

1. Do binary search on l ∈ {1, . . . , |O|} to find smallest l for which a feasible flow exists

for MCF (F, l). Let l∗ be the smallest such l and let f be the feasible flow for MCF (F, l∗)

2. Let F ′ = split(F). We now use f to define a feasible flow f ′ for MCF (F ′, l∗) as follows.

Let fo(e) be the flow of commodity o through edge e in the flow f . For all i, 1 ≤ i ≤ α

set f ′
oi

(e) = fo(e) where oi is the commodity associated with the i-th copy of object o

in F ′.

3. Round the flow f ′ using Procedure 4 to get an integral flow fi for MCF (F ′, (1+ ε)l∗).

4. Use fi and Lemma 42 to get a flow routing for F ′ using (1 + ε)l∗ stages.

Lemma 44 Procedure 4 finds with high probability a flow routing for F ′ = split(F, β) taking

�(l + ε)1∗� stages.

119

Procedure 4 Let ε > 0, f be a flow for MCF (F ′, l) (where F ′ = split(F, β) and β is as in

Lemma 44). Finds an integral flow for MCF (F, (1 + ε)l) with high probability.

1. Let G = (V, E) be the graph we will find the flow over and δ = ε/(1 + ε). We create

f ′, a feasible fractional flow over MCF (F, �(1 + ε)l�) as follows. For each commodity

o, integer i, 1 ≤ i ≤ l and edge e = (x, y) ∈ E, let k = �i/ε�, ei = (xi, yi) be an

edge in MCF (F, l), e′i be the corresponding edge in MCF (F, (1 + ε)l) and e′l+k be the

edge (xk+l, yk+l) in MCF (F, (1 + ε)l). We set f ′(e′i, o) = (1 − δ)f(ei, o) and also set

f ′(e′l+k, o) = δf(ei, o).

2. Round the flow f ′ using the technique given in Corollary 41 to get a feasible integer

flow for MCF (F, �(1 + ε)l)� with high probability.

Proof: We show that the rounding in the first step of the procedure gives with high prob-

ability a feasible integer flow. First we note that for every edge e in MCF (F, �(1 + ε)l�),

f ′(e) ≤ (1− δ)c(e) where δ = ε/(1 + ε). This is immediate for edges in the level i subgraph

of MCF (F, �(1 + ε)l�) for i ≤ l and for all levels i > l, for any edge ei, there are at most

1/ε contributions of flow of size no more than (ε/(1 + ε))c(ei) to this edge so the total flow

is no more than (1/(1 + ε))c(ei) = (1 − δ)c(ei).

We will now apply Corollary 41 to get the desired result. We note that there are

ne = (|E| + 2|V |) �(1 + ε)l� edges total in MCF (F ′, �(1 + ε)l�) and each has capacity at

least β = ln 2ne/.38δ2. If we now apply Corollary 41 with δ as given above, we get that

the probability of success is bounded away from 0. Repeating the rounding in the first step

gives the desired high probability of success.

120

Chapter 9

CONCLUSION AND FUTURE WORK

9.1 Future Work

While this research has demonstrated the potential for designing provably good algorithms

for managing data in distributed systems, there are still many open problems. In this

section, we discuss open problems in the areas of peer-to-peer networking, data migration,

and embedded networks.

9.1.1 Peer-to-Peer Networks

Attack-Resistance

Many compelling empirical and theoretical problems remain open in the area of attack-

resistant peer-to-peer networks. Major empirical problems include:

• Can we create a usable real-world peer-to-peer system based on the deletion resistant

network and the control resistant network described in this thesis?

• For practical levels of attack-resistance, what will the constants be like in the resource

bounds for our attack-resistant networks? Are there heuristics which can, in practice,

significantly decrease these constants?

• What are the load balancing properties of our networks in practice?

Open theoretical problems include:

• For the deletion resistant network, is it possible to reduce the number of messages

that are sent in a search for a data item from O(log2 n) to O(log n)? For the control

121

resistant network, is it possible to reduce the number of messages sent in a search for

a data item from O(log3 n)?

• Can one deal efficiently with more general attacks? The control resistant network de-

scribed in this thesis is resistant to an adversary that makes nodes send fake messages,

but it is not resistant to an adversary that uses the nodes under its control to flood

the network and thereby shut it down. Can the ideas in this thesis be extended to

allow for resistance to this kind of attack?

• We conjecture that our networks have the property that they are poly-log competitive

with any fixed degree network. I.e., we conjecture that given any fixed degree network

topology, where n items are distributed amongst n nodes, and any set of access requests

that can be dealt with fixed sized buffers, then our network will also deal with the

same set of requests by introducing no more than a polylog slowdown. Can we prove

this result?

Restraining Free Riders

“Free Riders” are peers in a network which consume the resources of the network by doing

searches for content, but do not provide their own resources (e.g. storage space, bandwidth

and content) in return. In current peer-to-peer networks like Napster and Gnutella, a

significant fraction of the peers can currently be classified as free riders [SGG02, AH00].

The existence of these peers tends to degrade the performance and utility of the network.

One possible way to restrain the free rider problem is to try to enforce a set of rules

which will ensure “good” behavior for all the peers. An example rule might be something

like: “For every ten search request issued by a peer, that peer must service one search

request”. Given such a set of rules, the problem is how to enforce these rules for most of

the peers in the network even in the face of massive Byzantine faults.

Another, perhaps less draconian, approach to this problem is to assume that each peer

gets some benefit for receiving desired files from the network and pays some cost for pro-

viding resources to the network and then design a mechanism which ensures that there is

122

an economic incentive to provide resources. In particular, the network can then be modeled

as a coalitional game and the goal is to design a mechanism under which there is never an

economic incentive for some subset of peers to secede from the network.

Latency Aware Overlay Networks

A final compelling problem in peer-to-peer networks is designing algorithms for maintaining

peer-to-peer overlay topologies in such a way that peers which are close in the underlying In-

ternet are close in the overlay topology. Can we design an online algorithm which maintains

a topology such that most communication through the overlay occurs almost as efficiently

(say within a constant factor) as it would in the underlying Internet?

9.1.2 Data Migration

There are many open theory problems in the area of data migration. For the simplest prob-

lem of migration on the complete graph with homogeneous devices (the problem discussed

in Chapter 6), we have the following open questions:

• Is there a good approximation algorithm for migration with indirection when no ex-

ternal bypass nodes are available? In this thesis, we considered the problem of finding

near-optimal plans when a certain number of extra nodes are available as temporary

storage. While in many cases it is reasonable to assume there are extra nodes avail-

able, removing this assumption would make the formal results much more general. To

the best of our knowledge, no algorithm with an approximation ratio better than 3/2

for this problem is known at this time. 1

• What is the tradeoff between the number of bypass nodes available and the number

of stages (or colors) required? In this thesis, we established that if n/3 bypass nodes

are available that the number of stages is near optimal. What if we have somewhere

between 0 and n/3 bypass nodes? Can we get a good approximation guarantee, for

example, if we have n/6 bypass nodes?

1We note, however, that a recent result by Sanders and Solis-Oba [SSO00], gives a 6/5-approximation
algorithm for this problem when the data objects can be split into 5 pieces.

123

• What is the relationship between the chromatic index of a graph and its “chromatic

index with space constraints”? Are there better approximation algorithms for this

latter problem than those presented here? Is there a “Vizing-like” theorem for edge

coloring simple graphs with space constraints?

Another major area for future work in data migration is the online migration problem.

In this thesis, we have ignored loads imposed by user requests in devising a migration plan.

A better technique for creating a migration plan would be to migrate the objects in such

a way that we interfere as little as possible with the ability of the devices to satisfy user

requests and at the same time improve the load balancing behavior of the network as quickly

as possible. Since user requests are unpredictable, the loads imposed by data objects change

in an online manner over time. Can we design good online algorithms for this problem?

A final area for future work is exploring similarities between data migration and the

problem of routing in optical networks. While these two problems are in very different

application domains, their abstract formulations are similar. The results presented in this

thesis on data migration can likely be used as a basis for solving some important problems

in optical routing and conversely, some of the work in optical routing may be useful in

attacking open problems in data migration.

9.1.3 Embedded Networks

Embedded networks [CoNSoECTB01] are a burgeoning new area in distributed systems.

Audiovisual equipment, home and office appliances, automobiles, aircraft and buildings

already contain complex systems of embedded networked computers (EmNets), and the

number of application domains for embedded networks is growing rapidly. The opportunities

for good algorithm design in this area are extraordinary, as EmNets will be incorporated into

complex systems that people will depend on in unprecedented ways. EmNets will operate in

environments where resources such as power, time and bandwidth are severely constrained

and where robustness is extremely important.

It seems likely that some of the ideas in this thesis can be applied to problems in the area

of embedded networks. For example, fault tolerance is important in many EmNet systems

124

and as in peer-to-peer systems, each node in an EmNet is very vulnerable to attack but

there are massive numbers of nodes. In EmNets, we can actually build redundant nodes

into the system. An intriguing question is: Can we find a way to use redundant nodes

as efficiently as possible to ensure high degrees of attack-resistance for the EmNet? We

note that the definition of attack-resistance for EmNets would likely be different than the

definition of attack-resistance we have used for peer-to-peer networks.

Another compelling open problem is power-aware routing of data through EmNets. In

an EmNet, each node has some initial amount of power, and a node’s supply of power

decreases a fixed amount when transmitting a bit of information to another node. The

decrease in power for a communication is proportional to the physical distance between the

two nodes. In many applications, we would like to maximize the number of bits of data that

are routed through the network given these power constraints. This problem of power-aware

routing seems ripe for the same sort of algorithmic analysis that we have applied to the data

migration problem.

9.2 Conclusion

We now summarize the major contributions of this thesis.

9.2.1 Contributions

Contribution 1: A New Notion of Fault-Tolerance

In this thesis, we introduced a new notion of fault-tolerance which we call attack-

resistance. We define a network to be attack-resistant if it’s the case that after an adversary

deletes or controls a constant fraction of the nodes in the network an arbitrarily large frac-

tion of the remaining nodes can still access an arbitrarily large fraction of the content in

the network. This property of attack-resistance is simultaneously stronger and weaker than

common notions of fault-tolerance. The property is stronger in the sense that it holds true

even in the face of targetted attack of a constant fraction of the nodes in the network.

The property is weaker in the sense that it only guarantees that some large fraction of the

remaining nodes can access some large fraction of the remaining content. This is in contrast

125

to common notions of fault-tolerance in quorum systems [Gif79, MRW00, MRWW98] and

file storage systems [MWC00, AKK+00], where the guaranteed property is that even after

faults occur, each node can access each data item.

We note that our new notion of fault-tolerance is crucial for the domain of peer-to-

peer systems. The fact that the property holds true even when a constant fraction of the

peers in the network has been attacked is crucial since peers are particularly vulnerable to

attack. The weaker guarantee is crucial because without it, we would not be able to ensure

scalability. For example if we were to guarantee that every peer can access every data item

after attack, each peer would require an amount of storage which is linear in the number of

peers and data items. This kind of resource requirement is not scalable.

Contribution 2: Attack-Resistant Peer-to-peer Networks

We have designed two attack-resistant peer-to-peer networks. The deletion resistant

network is attack-resistant to an adversary which deletes up to an arbitrarily large constant

fraction of the peers. The control resistant network is resistant to an adversary which

controls some constant less than one half of the peers in the network. The networks are

attack-resistant in the sense that even after attack, an arbitrarily large constant fraction of

the remaining peers can access an arbitarily large constant fraction of the data items. We

have also designed a network which is robust in a highly dynamic environment: the network

is robust even if all of the old peers are repeatedly deleted provided that enough new peers

join.

Contribution 3: Definition of the Data Migration Problem

We have defined several intriguing and well-motivated twists on the traditional edge

coloring problem. These data migration problems are motivated by the real-world problem

of efficiently moving data through a network but are also mathematically rich and interesting

in their own right.

Contribution 4: Data Migration algorithms with good theoretical properties

We have introduced multiple provably good algorithms for the data migration problems.

Our main results are polynomial time algorithms for finding a near-optimal migration plan

in the presence of space constraints when a certain number of additional nodes is available

as temporary storage, and a 3/2-approximation for the case where data must be migrated

126

directly to its destination. These algorithms match the worst case bounds for this problem.

We have also introduced data migration algorithms for networks with different node and

link speeds and topologies which are not complete. In many cases, these algorithms also

match the theoretical worst case bounds.

Contribution 5: Data Migration algorithms with good empirical properties

We have empirically evaluated the performance of multiple data migration algorithms on

both random and real-world type data migration problems. The metrics we used to evaluate

the algorithms are: (1) the number of time steps required to perform the migration, and

(2) the number of bypass nodes used as intermediate storage devices. We have found

that several data migration algorithms with weaker theoretical bounds actually perform

better empirically. Not surprisingly, we have also found that for all the algorithms tested,

the theoretical bounds are overly pessimistic. We conclude that many of the algorithms

described in this thesis are both practical and effective for data migration.

9.2.2 Conclusion

In this thesis, we have addressed the problems of attack-resistance and data migration - two

problems of fundamental importance in the area of managing data in distributed systems.

We have defined multiple theoretical problems in these areas, described polynomial time

algorithms for solving these problems and proven that our algorithms have many desirable

properties. We have also shown that our algorithms for data migration have good empirical

properties.

127

BIBLIOGRAPHY

[AB96] Yonatan Aumann and Michael Bender. Fault tolerant data structures. In

IEEE Symposium on Foundations of Computer Science, 1996.

[AH00] E. Adar and B. Huberman. Free riding on gnutella, 2000.

[AHH+01] Eric Anderson, Joe Hall, Jason Hartline, Michael Hobbes, Anna Karlin,

Ram Swaminathan, and John Wilkes. An experimental study of data

migration algorithms t. In Workshop on Algorithm Engineering, 2001.

[AHK+01] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and A. Veitch.

Hippodrome: running circles around storage administration. Submitted

to Symposium on Operating System Principles, 2001.

[AKK+00] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia Malkhi, and Julien

Stern. Scalable secure storage when half the system is faulty. In Proceed-

ings of the 27th International Colloquium on Automata, Languages and

Programming, 2000.

[And96] R. Anderson. The eternity service, 1996.

[AS00] Noga Alon and Joel Spencer. The Probabilistic Method, 2nd Edition. John

Wiley & Sons, 2000.

[BDET00] Bolosky, Douceur, Ely, and Theimer. Feasibility of a serverless distributed

file system deployed on an existing set of desktop pcs. In Proceedings of

the international conference on Measurement and modeling of computer

systems, pages 34–43, 2000.

128

[BGM+97] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E.Shriver,

M.Spasojevic, and J. Wilkes. Using attribute-managed storage to achieve

QoS. In Presented at 5th Intl. Workshop on Quality of Service, Columbia

Univ., New York, June 1997.

[Bor00] John Borland. Gnutella girds against spam attacks. CNET News.com,

August 2000. http://news.cnet.com/news/0-1005-200-2489605.html.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for

designing efficient protocols. In The First ACM Conference on Computer

and Communications Security, pages 62–73, 1993.

[Cli] Clip2. Gnutella: To the bandwidth barrier and beyond.

http://dss.clip2.com/gnutella.html.

[CoNSoECTB01] Computer Science Committee on Networked Systems of Embedded Com-

puters and National Research Council Telecommunications Board. Em-

bedded, Everywhere: A Research Agenda for Networked Systems of Em-

bedded Computers. National Academy Press, 2001.

[Cou96] Transaction Processing Performance Council. TPC Benchmark D (Deci-

sion Support) Standard Specification Revision 2.1. Transaction Processing

Performance Council, 1996.

[Dav01] David Moore, Geoffrey Voelker and Stefan Savage. Inferring internet

denial-of-service activity. In Proceedings of the 2001 USENIX Security

Symposium, 2001.

[DR01] Peter Druschel and Antony Rowstron. PAST: A Large-Scale, Persistent

Peer-to-Peer Storage Utility. In Proceedings of the Eighth IEEE Work-

shop on Hot Topics in Operating Systems (HotOS-VIII), Schoss Elmau,

Germany, May 2001.

129

[ECL85] D.S. Johnson E.G. Coffman, M.R. Garey and A.S. Lapaugh. Scheduling

file transfers. In SIAM Journal on Computing, volume 14, pages 744–780,

1985.

[Fou] Electronic Freedom Foundation. Eff — censorship — internet censor-

ship legislation & regulation (cda, etc.) — archive. http://www.eff.org/-

pub/Censorship/Internet censorship bills.

[FS02] Amos Fiat and Jared Saia. Censorship Resistant Peer-To-Peer Content

Addressable Networks. In 13th annual ACM-SIAM Symposium on Dis-

crete Algorithms, 2002.

[GHKS98] M.D. Grammatikakis, D.F. Hsu, M. Kraetzl, and J. Sibeyn. Packet rout-

ing in fixed-connection networks: A survey. In Journal of Parallel and

Distributed Processing, volume 54, pages 77–132, 1998.

[Gif79] D.K. Gifford. Weighted voting for replicated data. In Proc. of the Seventh

ACM Symposium on Operating Systems Principles, pages 150–159, 1979.

[Gol84] M. K. Goldberg. Edge-coloring of multigraphs: Recoloring technique. J.

Graph Theory, 8:121–137, 1984.

[Gri02] Steve Gribble. private communication, 2002.

[GS90] B. Gavish and O. R. Liu Sheng. Dynamic file migration in distributed

computer systems. Communications of the ACM, 33:177–189, 1990.

[GSKTZ00] I. Golubchik, S. Khuller S. Khanna, R. Thurimella, and A. Zhu. Approx-

imation Algorithms for Data Placement on Parallel Disks. In Proceedings

of the Eleventh Annual ACM-SIAM Symposium on Discrete ALgorithms,

pages 223–232, 2000.

130

[GVY97] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Flow and mul-

ticut in trees. Algorithmica, 18(1):3–20, 1997.

[HHK+01] J. Hall, J. Hartline, A. Karlin, J. Saia, and J. Wilkes. On algorithms

for efficient data migration. In 12th annual ACM-SIAM Symposium on

Discrete Algorithms, 2001.

[Hia01] Brian Hiatt. With napster weakened, riaa hopes to settle land-

mark lawsuit, July 2001. http://www.mtv.com/sendme2.tin?page=/-

news/articles/1445466/20010727/index.jhtml.

[HLN89] J. Hastad, T. Leighton, and M. Newman. Fast computation using faulty

hypercubes. In Proceedings of the 21st Annual ACM Symposium on The-

ory of Computing, 1989.

[HNS96] D. S. Hochbaum, T. Nishizeki, and D. B. Shmoys. A better than “Best

Possible” algorithm to edge color multigraphs. J. of Algorithms, 7:79–104,

1996.

[Hoc95] Dorit Hochbaum, editor. Approximation Algorithms for NP-Hard Prob-

lems. PWS Publishing Company, 1995.

[Hoy81] I. J. Hoyer. The NP-completeness of edge coloring. SIAM J. Comput.,

10:718–720, 1981.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-

erspoon, Westley Weimer, Chris Wells, and Ben Zhao. Oceanstore: An

architecture for global-scale persistent storage. In Appears in Proceed-

ings of the Ninth international Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 2000), 2000.

131

[KNT94] Anna R. Karlin, Greg Nelson, and Hisao Tamaki. On the fault tolerance

of the butterfly. In ACM Symposium on Theory of Computing, 1994.

[Kub96] M. Kubale. ”Preemptive versus nonpreemptive scheduling of biproces-

sor tasks on dedicated processors”. In European Journal of Operational

Research, volume 94, pages 242–251, 1996.

[LMS98] Thomson Leighton, Bruce Maggs, and Ramesh Sitamaran. On the fault

tolerance of some popular bounded-degree networks. SIAM Journal on

Computing, 1998.

[LSP82] L. Lamport, R.E. Shostack, and M. Pease. The byzantine generals prob-

lem. In ACM Trans. Prog. Lang. and Systems, 1982.

[Mar] Robert Marquand. China’s web users kept on their toes.

http://www.csmonitor.com/durable/2000/12/07/fp7s1-csm.shtml.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.

Cambridge University Press, 1995.

[MRW00] Dahlia Malkhi, Michael Reiter, and Avishai Wool. The load and avail-

ability of byzantine quorum systems. SIAM Journal of Computing,

29(6):1889–1906, 2000.

[MRWW98] Dahlia Malkhi, Michael Reiter, Avishai Wool, and Rebecca N. Wright.

Probabilistic byzantine quorum systems. In Symposium on Principles of

Distributed Computing, 1998.

[MV80] Micali and Vazirani. An O(
√

|V ||E|) algorithm for finding a maximum

matching in general graphs. In 21st Annual Symposium on Foundations

of Computer Science, 1980.

132

[MWC00] Aviel D. Rubin Marc Waldman and Lorrie Faith Cranor. Publius: A

robust, tamper-evident, censorship-resistant, web publishing system. In

Proc. 9th USENIX Security Symposium, pages 59–72, August 2000.

[Nar02] Narayanan. private communication, 2002.

[NK90] T. Nishizeki and K. Kashiwagi. On the 1.1 edge-coloring of multigraphs.

In SIAM Journal on Discrete Mathematics, volume 3, pages 391–410,

1990.

[NZN96] S. Nakano, X. Zhou, and T. Nishizeki. Edge Coloring Algorithms. In

Computer Science Today, pages 172–183, 1996.

[oC] Index on Censorship. Index on censorship homepage.

http://www.indexoncensorship.org.

[Ora01] Andy Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive

Technologies. O’Reilly & Associates, July 2001.

[Pin73] M. Pinsker. On the complexity of a concentrator. In 7th International

Teletraffic Conference, 1973.

[PRR97] C. Plaxton, R. Rajaram, and A.W. Richa. Accessing nearby copies of

replicated objects in a distributed environment. In Proceedings of the

Ninth Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), 1997.

[PRU01] Gopal Pandurangan, Prabhakar Raghavan, and Eli Upfal. Building low-

diameter p2p networks. In STOC 2001, Crete, Greece, 2001.

[PST+97] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer,

and Alan J. Demers. Flexible update propagation for weakly consistent

133

replication. In Sixteen ACM Symposium on Operating Systems Principles,

1997.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A Scalable Content-Addressable Network. In Proceedings of

the ACM SIGCOMM 2001 Technical Conference, San Diego, CA, USA,

August 2001.

[RT87] P. Raghavan and C. Thompson. Randomized Rounding. In Combinator-

ica, volume 7, pages 365–374, 1987.

[Sai] Yasushi Saito. Consistency management in optimistic replication algo-

rithms.

[SFG+02] Jared Saia, Amos Fiat, Steve Gribble, Anna R. Karlin, and Stefan Saroiu.

Dynamically fault-tolerant content addressable networks. In First Inter-

national Workshop on Peer-to-Peer Systems, 2002.

[SGG02] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Mea-

surement Study of Peer-to-Peer File Sharing Systems. In Proceedings of

Multimedia Computing and Networking, 2002.

[Sha49] C. E. Shannon. A theorem on colouring lines of a network. J. Math.

Phys., 28:148–151, 1949.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22,pp.

612–613, 1979.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Bal-

akrishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet

Applications. In Proceedings of the ACM SIGCOMM 2001 Technical Con-

ference, San Diego, CA, USA, August 2001.

134

[SSO00] P. Sanders and R. Solis-Oba. How Helpers Hasten h-Relations. In Euro-

pean Symposium on Algorithms, 2000.

[Vaz01] Vijay Vazirani. Approximation Algorithms. Springer Verlag, 2001. pp73-

78.

[Viz64] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret.

Anal., 3:25–30, 1964.

[weba] Gnutella website. http://gnutella.wego.com/.

[webb] Napster website. http://www.napster.com/.

[Wol89] J. Wolf. The Placement Optimization Problem: a practical solution to

the disk file assignment problem. In Proceedings of the ACM SIGMET-

RICS international conference on Measurement and modeling of computer

systems, pages 1–10, 1989.

[ZKJ01] B.Y. Zhao, K.D. Kubiatowicz, and A.D. Joseph. Tapestry: An Infras-

tructure for Fault-Resilient Wide-Area Location and Routing. Technical

Report UCB//CSD-01-1141, University of California at Berkeley Techni-

cal Report, April 2001.

135

VITA

Jared Saia holds a B.S. degree from Stanford University and an M.S. degree from the

University of New Mexico. He has previously been a researcher at ATR Labs in Nara,

Japan. His primary technical interest is in designing and analyzing algorithms for practical

problems in computer systems and other application areas.

