
Dynamically Fault-Tolerant Content Addressable Networks

Jared Saia ∗ Amos Fiat† Steve Gribble∗ Anna R. Karlin∗ Stefan Saroiu∗

Abstract

We describe a content addressable network which is ro-
bust in the face of massive adversarial attacks and in a
highly dynamic environment. Our network is robust in
the sense that at any time, an arbitrarily large fraction of
the peers can reach an arbitrarily large fraction of the data
items. The network can be created and maintained in a
completely distributed fashion.

1 Introduction

Distributed denial-of-service attacks on the Internet are
highly prevalent, targeting a wide-range of victims [3].
Peer-to-peer systems are particularly vulnerable to such
attacks, since peers lack the technical expertise and re-
sources needed for maintaining a high level of protection.
In addition to being vulnerable to such attacks, we can ex-
pect peer-to-peer systems to be confronted with a highly
dynamic peer turnover rate [8]. For example, in both Nap-
ster and Gnutella, half of the peers participating in the sys-
tem will be replaced by new peers within one hour. Thus,
maintaining fault-tolerance in the face of massive targeted
attacks and in a highly dynamic environment is critical to
the success of a peer-to-peer system.

The contributions of this paper are two-fold. First, we
de£ne the notion of dynamically strong fault-tolerance.
Our de£nition captures the properties that a peer-to-peer
system must have to be robust to orchestrated attacks and
in a highly dynamic environment. Second, we present
a content addressable network [9] which is dynamically
strong fault-tolerant.

1.1 Dynamic Fault Tolerance To better address fault-
tolerance in peer-to-peer networks, we de£ne a new no-
tion of dynamically strong fault-tolerance. First, we as-
sume an adversarial fail-stop model – at any time, the ad-
versary has complete visibility of the entire state of the
system and can choose to ”delete” any peer it wishes. A
”deleted” peer stops functioning immediately, but is not
assumed to be Byzantine. Second, we require our network
to remain “robust” at all times provided that in any time

∗Department of Computer Science and Engineering, University of
Washington, Seattle, WA 98195; email: {saia, gribble, kar-
lin, tzoompy}@cs.washington.edu
†Department of Computer Science, Tel Aviv University; email:

fiat@cs.tau.ac.il

interval during which the adversary deletes some number
of peers, some larger number of new peers join the net-
work.

More formally, we say that an adversary is limited if
for some constants γ > 0 and δ > γ, during any period
of time in which the adversary deletes γn peers from the
network, at least δn new peers join the network (where n
is the number of peers initially in the network). Each new
peer that is inserted knows only one other random peer
currently in the network.

For such a limited adversary, we seek to maintain a
robust network for indexing up to n data items. Although
the number of indexed data items remains £xed, the
number of peers in the network will ¤uctuate as nodes
are inserted and deleted by the adversary.

We say that a content addressable network (CAN) is
ε-robust at some particular time if all but an ε fraction of
the peers in the CAN can access all but an ε fraction of the
data items.

Finally, we say that a CAN (initially containing n
peers) is ε-dynamically strong fault-tolerant (or simply ε-
dynamically fault-tolerant) if, with high probability, the
CAN is always ε-robust during a period when a limited
adversary deletes a number of peers polynomial in n.

In section 2, we present an ε-dynamically fault-
tolerant CAN for any arbitrary ε > 0, and any constants γ
and δ such that γ < 1 and δ > γ + ε. Our CAN stores n
data items1, and has the following characteristics:

1. With high probability, at any time, an arbitrarily large
fraction of the nodes can £nd an arbitrarily large
fraction of the data items.

2. Search takes time O(log n) and requires O(log3 n)
messages in total.

3. Every peer maintains pointers to O(log3 n) other
peers.

4. Every peer stores O(log n) data items.

5. Peer insertion takes time O(log n).

1For simplicity, we’ve assumed that the number of items and the
number of initial nodes is equal. However, for any n nodes and
m ≥ n data items, our scheme will work, where the search time remains
O(log n), the number of messages remains O(log3 n), and the storage
requirements are O(log3 n×m/n) per node.

1

The constants in these resource bounds are functions
of ε, γ and δ. The technical statement of this result is
presented in Theorem 1.1.

We note that, as we have de£ned it, an ε-dynamically
fault-tolerant CAN is ε-robust for only a polynomial
number of peer deletions by the limited adversary. To
address this issue, we imagine that very infrequently,
there is an all-to-all broadcast among all live peers to
reconstruct the CAN(details of how to do this are in [1]).
Even with these infrequent reconstructions, the amortized
cost per insertion will be small. Our main theorem is
provided below.
THEOREM 1.1. For all ε > 0 and value P which is
polynomial in n, there exist constants k1(ε), k2(ε) and
k3(ε) and k4(ε) such that the following holds with high
probability for the CAN for deletion of up to P peers by
the limited adversary:

• At any time, the CAN is ε-robust

• Search takes time no more than k1(ε) log n.

• Peer insertion takes time no more than k2(ε) log n.

• Search requires no more than k3(ε) log3 n messages
total.

• Every node stores no more than k4(ε) log3 n pointers
to other nodes and k3(ε) log n data items.

1.2 Related Work Fiat and Saia [1] present a content
addressable network for which even after adversarial re-
moval of a linear number of nodes in the network, an arbi-
trarily large fraction of the remaining nodes can access an
arbitrarily large fraction of the original data items. While
the Fiat-Saia network is an important £rst step towards
the goal of a strongly fault-tolerant CAN, this scheme is
inherently static. Thus, even if many new peers join the
network, the CAN ceases to be ε-robust when all the orig-
inal peers die.

Weaker forms of static fault-tolerance are known to
exist for other peer-to-peer systems. Experimental mea-
surements of a connected component of the real Gnutella
network have been studied [8], and it has been found to
still contain a large connected component even with a 1/3
fraction of random peer deletions.

Several content addressable networks are robust un-
der random node deletions [4, 9, 2]. For example, Chord
correctly routes queries in O(log(n)) expected time even
after each node fails with probability 1/2. However, it
is unclear whether it is possible to extend any of these
systems to remain robust under orchestrated attacks. In
addition, many known network topologies are known to
be vulnerable to adversarial deletions. For example, with
a linear number of node deletions, the hypercube can be

Figure 1: The butter¤y network of supernodes.

fragmented into components all of which have size no
more than O(n/

√
log n) ([5]).

2 A Dynamically Fault-Tolerant Content
Addressable Network

Our scheme is most easily described by imagining a
“virtual CAN”. The speci£cation of this CAN consists
of describing the network connections between virtual
nodes, the mapping of data items to virtual nodes, and
some additional auxiliary information. In Section 2.1,
we describe the virtual CAN. In Section 2.2, we go on
to describe how the virtual CAN is implemented by the
peers.

2.1 The Virtual CAN The virtual CAN, consisting of
n virtual nodes, is closely based on the [1] scheme. We
make use of a butter¤y network of depth log n− log log n,
we call the nodes of the butter¤y network supernodes (see
Figure 1). Every supernode is associated with a set of
virtual nodes. We call a supernode at the topmost level of
the butter¤y a top supernode, one at the bottommost level
of the network a bottom supernode and one at neither the
topmost or bottommost level a middle supernode.

We use a set of hash functions for mapping virtual
nodes to supernodes of the butter¤y and for mapping data
items to supernodes of the butter¤y. We assume these
hash functions are approximately random. 2

The virtual network is constructed as follows:

• We choose an error parameter ε > 0, and as a
function of ε we determine constants C, D, α and
β. (See [1] for detailed information on how this is
done).

• Every virtual node v is hashed to C random top su-
pernodes (we denote by T (v) the set of C top su-
pernodes v hashes to), C random bottom supernodes

2We use the random oracle model ([6]) for these hash function, it
would have suf£ced to have a weaker assumption such as that the hash
functions are expansive.

2

(denoted B(v)) and C log n random middle supern-
odes (denoted M(v)) to which the virtual node will
belong.

• All the virtual nodes associated with any given su-
pernode are connected in a clique. (We do this only
if the set of virtual nodes in the supernode is of size
at least αC lnn and no more than βC lnn.)

• Between two sets of virtual nodes associated with
two supernodes connected in the butter¤y network,
we have a complete bipartite graph. (We do this
only if both sets of virtual nodes are of size at least
αC lnn and no more than βC lnn.)

• We map the n data items to the n/ log n bottom
supernodes in the butter¤y: each data item, say d, is
hashed to D random bottom supernodes; we denote
by S(d) the set of bottom supernodes that data item
d is mapped to. (Typically, we would not hash the
entire data item but only it’s title, e.g., “Singing in
the Rain”).

• The data item d is then stored in all the component
virtual nodes of S(d) (if any bottom supernode has
more than βB lnn data items hashed to it, it drops
out of the network.)

• Finally, we map the meta-data associated with each
of the n virtual nodes in the network to the n/ log n
bottom supernodes in the butter¤y. For each virtual
node v, information about v is mapped to D bottom
supernodes. We denote by I(v) the set of bottom
supernodes storing information about virtual node v.
(if any bottom supernode has more than βB lnn vir-
tual nodes hashed to it, it drops out of the network.)

• For each virtual node v in the network, we do the
following:

1. We store the id of v on all component virtual
nodes of I(v).

2. A complete bipartite graph is maintained be-
tween the virtual nodes associated with supern-
odes I(v) and the virtual nodes in supernodes
T (v), M(v) and B(v).

2.2 Implementation of Virtual CAN by PeersEach
peer that is currently live will map to exactly one node in
the virtual network and each node in the virtual network
will be associated with at most one live peer. At all times
we will maintain the following two invariants:

1. If peers p1 and p2 map to virtual nodes x and y and
x links to y in the virtual network, then p1 links to
p2 in the physical overlay network.

2. If peer p maps to virtual node x, then p stores the
same data items that x stores in the virtual network.

Recall that each virtual node in the network partici-
pates in C top, C log n middle and C bottom supernodes.
When a virtual node v participates in a supernode s in this
way, we say that v is a member of s. For a supernode s,
we de£ne V (s) to be the set of virtual nodes which are
members of s. Further we de£ne P (s) to be the set of live
peers which map to virtual nodes in V (s).

2.3 Search for a Data Item We will now describe the
protocol for searching for a data item from some peer p in
the network. We will let v be the virtual node p maps to
and let d be the desired data item.

1. Let b1, b2, . . . , bD be the bottom supernodes in the
set S(d).

2. Let t1, t2, . . . , tC be the top supernodes in the set
T (v).

3. Repeat in parallel for all values of k between 1 and
C:

(a) Let ` = 1.
(b) Repeat until successful or until ` > B:

i. Let s1, s2, . . . sm be the supernodes in the
path in the butter¤y network from tk to the
bottom supernode b`.
• Transmit the query to all peers in the

set P (s1).
• For all values of j from 2 to m do:

– The peers in P (sj−1) transmit the
query to all the peers in P (sj).

• When peers in the bottom supernode
are reached, fetch the content from
whatever peer has been reached.

• The content, if found, is transmitted
back along the same path as the query
was transmitted downwards.

ii. Increment `.

2.4 Content and Peer Insertion An algorithm for in-
serting new content into the network is presented in [1].
In this section, we describe the new algorithm for peer in-
sertion. We assume that the new peer knows one other
random live peer in the network. We call the new peer p
and the random, known peer p′.

1. p £rst chooses a random bottom supernode, which
we will call b. p then searches for b in the manner
speci£ed in the previous section. The search starts
from the top supernodes in T (p′) and ends when we
reach the node b(or fail).

2. If b is successfully found, we let W be the set of all
virtual nodes, v , such that meta-data for v is stored

3

on the peers in P (b). We let W ′ be the set of all
virtual nodes in W which are not currently mapped
to some live peer.

3. If b can not be found, or if W ′ is empty, p does not
map to any virtual node. Instead it just performs
any desired searches for data items from the top
supernodes, T (p′).

4. If there is some virtual node v in W ′, p takes over
the role of v as follows:

(a) Let S = T (v)∪M(v)∪B(v). Let F be the set
of all supernodes, s in S such that P (s) is not
empty. Let E = S − F .

(b) For each supernode s in F :
i. Let R be the set of supernodes that neigh-

bor s in the butter¤y.
ii. p copies the links to all peers in P (r) for

each supernode r in R. These links can all
be copied at once from one of the peers in
P (s). Note that each peer in P (b) contains
a pointer to some peer in P (s).

iii. p noti£es all peers to which it will be link-
ing to also link to it. For each supernode
r in R, p sends a message to one peer in
P (r) notifying it of p’s arrival. The peer
receiving the message then relays the mes-
sage to all peers in P (r). These peers then
all point to p.

iv. If s is a bottom supernode, p copies all the
data items that map to s. It copies these
data items from some peer in P (s).

(c) If E is non-empty, we will do one broadcast to
all peers that are reachable from p. We will £rst
broadcast from the peers in all top supernodes
in T (p) to the peers in all reachable bottom
supernodes. We will then broadcast from the
peers in these bottom supernodes back up the
butter¤y network to the peers in all reachable
top supernodes. 3:

i. p broadcasts the id of v along with the
ids of all the supernodes in E. All peers
that receive this message, which are in
supernodes neighboring some supernode
in E will connect to p.

ii. In addition to forging these links, we seek
to retrieve data items for each bottom su-
pernode which is in the set E. Hence, we
also broadcast the ids for these data items.

3This broadcast takes O(logn) time but requires a large number of
messages. However, we anticipate that this type of broadcast will occur
infrequently. In particular, under the assumption of random failures, this
broadcast will never occur with high probability.

We can retrieve these data items if they are
still stored on other peers.4

3 Conclusion

In this paper, we have introduced the notion of a dynam-
ically strong fault-tolerance and have described a content
addressable network that has this property. Future direc-
tions include reducing the number of messages sent for
search and node insertion and reducing the number of
pointers stored at each peer.

References

[1] Amos Fiat and Jared Saia. Censorship Resistant Peer-to-
Peer Content Addressable Networks. In Symposium on
Discrete Algorithms, 2002.

[2] B.Y. Zhao, K.D. Kubiatowicz and A.D. Joseph. Tapestry:
An Infrastructure for Fault-Resilient Wide-Area Location
and Routing. Technical Report UCB//CSD-01-1141, Uni-
versity of California at Berkeley Technical Report, April
2001.

[3] David Moore, Geoffrey Voelker and Stefan Savage. Infer-
ring internet denial-of-service activity. In Proceedings of
the 2001 USENIX Security Symposium, 2001.

[4] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek
and Hari Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In Proceedings
of the ACM SIGCOMM 2001 Technical Conference, San
Diego, CA, USA, August 2001.

[5] Johan Hastad, Thomson Leighton and Mark Newman.
Fast computation using faulty hypercubes. In Proceedings
of the 21st Annual ACM Symposium on Theory of Comput-
ing, 1989.

[6] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: a paradigm for designing ef£cient protocols. In
The First ACM Conference on Computer and Communica-
tions Security, pages 62–73, 1993.

[7] Noga Alon, Haim Kaplan, Michael Krivelevich, Dahlia
Malkhi and Julien Stern. Scalable secure storage when
half the system is faulty. In Proceedings of the 27th
International Colloquium on Automata, Languages and
Programming, 2000.

[8] Stefan Saroiu, P. Krishna Gummadi and Steven D. Grib-
ble. A Measurement Study of Peer-to-Peer File Sharing
Systems. In Proceedings of Multimedia Computing and
Networking, 2002.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp and Scott Shenker. A Scalable Content-Addressable
Network. In Proceedings of the ACM SIGCOMM 2001
Technical Conference, San Diego, CA, USA, August 2001.

4We note that, using the scheme in [7], we can retrieve the desired
data items, even in the case where we are connected to no more than
n/2 live peers. To use this scheme, we need to store, for each data item
of size s, some extra data of size O(s/n) on each node in the network.
Details on how to do this are ommitted.

4

A Appendix

In this appendix, we provide proofs for statements made
in the paper.

A.1 Dynamic Fault-Tolerance We will be using the
following two lemmas which follow from results in [1].
We £rst de£ne a peer as ε-good if it is connected to all but
1− ε of the bottom supernodes.
LEMMA A.1. Assume at any time, at least κn of the
virtual nodes map to live peers for some κ < 1. Then
for any ε, we can choose appropriate constants C and D
for the virtual network such that at all times, all but an ε
fraction of the top supernodes are connected to all but an
ε fraction of the bottom nodes.
Proof. This lemma follows directly from Theorem 4.1
in [1] by plugging in appropriate values.
LEMMA A.2. Assume at any time, at least κn of the
virtual nodes map to live peers for some κ < 1. Then
for any ε < 1/2, we can choose appropriate constants
C and D for the virtual network such that at all times,
all ε-good nodes are connected in one component with
diameter O(log n).
Proof. By Lemma A.1, we can choose C and D such that
all ε-good peers can reach more than a 1/2 fraction of the
bottom supernodes. Then for any two ε-good peers, there
must be some bottom supernode such that both peers are
connected to that same supernode. Hence, any two ε-good
peers must be connected. In addition, the path between
these two ε-good peers must be of length O(log n) since
the path to any bottom supernode is of length O(log n)

We now give the proof of Theorem 1.1 which is
restated here.
Theorem 1.1: For all ε > 0 and value P which is
polynomial in n, there exist constants k1(ε), k2(ε) and
k3(ε) and k4(ε) such that the following holds with high
probability for the CAN for deletion of up to P peers by
the limited adversary:

• At any time, the CAN is ε-robust

• Search takes time no more than k1(ε) log n.

• Peer insertion takes time no more than k2(ε) log n.

• Search requires no more than k3(ε) log3 n messages
total.

• Every node stores no more than k4(ε) log3 n pointers
to other nodes and k3(ε) log n data items.

Proof. We brie¤y sketch the argument that our CAN is
dynamically fault-tolerant. The proofs for the time and
space bounds are given in the next two subsections.

For concreteness, we will prove dynamic fault-
tolerance with the assumption that 2n/10 peers are added

whenever (1/10− ε)n peers are deleted by the adversary.
The argument for the general case is similar. Consider
the state of the system when exactly 2n/10 virtual nodes
map to no live peers. We will focus on what happens
for the time period during which the adversary kills off
(1/10− ε)n more peers. By assumption, during this time,
2n/10 new peers join the network. In this proof sketch,
we will show that with high probability, the number of vir-
tual nodes which are not live at the end of this period is no
more than 2n/10. The general theorem follows directly.

We know that Lemma A.1 applies during the time
period under consideration since there are always at least
n/2 live virtual nodes. Let R be the set of virtual nodes
that at some point during this time period are not ε-good.
By Lemma A.2, peers in virtual nodes that are not in the
set R have been connected in the large component of ε-
good nodes throughout the considered time interval. Thus
these peers have received information broadcasted during
successful peer insertions. However, the peers mapping
to virtual nodes in R may at some point have not been
connected to all the other ε-good nodes and so may not
have have received information broadcasted by inserted
peers. We note that |R| is no more than εn by Lemma A.1
(since even with no insertions in the network, no more
than εn virtual nodes would be not be ε-good at any point
in the time period under consideration). Hence we will
just assume that those peers with stale information, i.e. the
peers in R, are dead. To do this, we will assume that the
number of adversarial node deletions is n/10. (We further
note that all peers which are not ε-good will actually be
considered dead by all peers which are ε-good. This is
true since no bottom supernode reachable from an ε-good
node will have a link to a peer which is not ε-good. Hence,
such a virtual node will be fair game for a new peer to map
to.)

We claim that during the time interval, at least n/10
of the inserted peers will map to virtual nodes. Assume
not. Then there is some subset, S, of the 2n/10 peers
that were inserted such that |S| = n/10 and all peers in
S did not reach any bottom supernodes with information
on virtual nodes that had no live peers. Let S ′ be the set
of peers in S that both 1) had an initial connection to an
ε-good peer and 2) reached the bottom supernode which
they searched for after connecting. We note that with high
probability, |S′| = θ(n) since each new peer connects to
a random peer (of which most are ε-good) and since most
bottom supernodes are reachable from an ε-good peer.

Now let B′ be the set of bottom supernodes that are
visited by peers in S′. With high probability |B′| =
θ(n/ log n). Finally let V ′ be the set of virtual nodes
that supernodes in B′ have information on. For D (the
constant de£ned in the virtual network section) chosen
suf£ciently large, |V ′| must be greater than 9n/10 (by
expansion properties between the bottom supernodes and

5

the virtual nodes they have information on). But by
assumption, there must be some subset V of virtual node
ids which are empty after the insertions where |V | ≥
n/10. But this is a contradiction since we know that the
set of virtual nodes that the new peers in S ′ tried to map
to was of size greater than 9n/10

Hence during the time that n/10 peers were deleted
from the network, at least n/10 virtual nodes were newly
mapped to live peers. This implies that the number of
virtual peers not mapped to live nodes can only have
decreased. Thus the number of virtual peers not mapped
to live nodes will not increase above 2n/10 after any
interval with high probability.

A.1.1 Time That the algorithm for searching for data
items takes O(log n) time and O(log2 n) messages is
proven in [1].

The common and fast case for peer insertion is when
all supernodes to which the new peer’s virtual node be-
longs already have some peer in them. In this case, we
spend constant time processing each one of these supern-
odes so the total time spent is O(log n).

In the degenerate case where there are supernodes
which have no live nodes in them, a broadcast to all
nodes in the network is required. Insertion time will still
be O(log n) since the connected component of ε-good
nodes has diameter O(log n). However we will need
to send O(n) messages for the insertion. Unfortunately,
the adversary can force this degenerate case to occur
for a small (less than ε) fraction of the node insertions.
However if the node deletions are random instead of
adversarial, this case will never occur in the interval in
which some polynomial number of nodes are deleted.

A.1.2 Space Each node participates in C top supern-
odes. The number of links that need to be stored to play
a role in a particular top supernode is O(log n). This in-
cludes links to other nodes in the supernode and links to
the nodes that point to the given top supernode.

Each node participates in C log nmiddle supernodes.
To play a role in a particular middle supernode takes
O(log n) links to point to all the other nodes in the
supernode and O(log n) links to point to nodes in all
the neighboring supernodes. In addition, each middle
supernode has O(log n) roles associated with it and each
of these roles is stored in D bottom supernodes. Hence
each node in the supernode needs O(log2n) links back to
all the nodes in the bottom supernodes which store roles
associated with this middle supernode.

Each node participates in C bottom supernodes.
To play a role in a bottom supernode requires storing
O(log n) data items. It also requires storing O(log n)
links to other nodes in the supernode along with nodes
in neighboring supernodes. In addition, it requires stor-

ing O(log n) links for each of the O(log n) supernodes
for each of the O(log n) roles that are stored at the node.
Hence the total number of links required is O(log3 n).

6

