
Towards Secure and Scalable Computation in Peer-to-Peer Networks

Valerie King ∗ Jared Saia † Vishal Sanwalani ‡ Erik Vee §

Abstract

We consider the problems of Byzantine Agreement and
Leader Election, where a constant fraction b < 1/3 of
processors are controlled by a malicious adversary. The
first problem requires that all uncorrupted processors come
to an agreement on a bit initially held by one of the un-
corrupted processors; the second requires that the uncor-
rupted processors choose a leader who is uncorrupted.

Motivated by the need for robust and scalable compu-
tation in peer-to-peer networks, we design the first scalable
protocols for these problems for a network whose degree
is polylogarithmic in its size. By scalable, we mean that
each uncorrupted processor sends and processes a number
of bits that is only polylogarithmic in n. (We assume no
limit on the number of messages sent by corrupted proces-
sors.) With high probability, our Byzantine Agreement pro-
tocol results in agreement among a 1−O(1/ ln n) fraction
of the uncorrupted processors. With constant probability,
our Leader Election protocol elects an uncorrupted leader
and ensures that a 1−O(1/ ln n) fraction of the uncorrupt
processors know this leader.

We assume a full information model. Thus, the ad-
versary is assumed to have unlimited computational power
and has access to all communications, but does not have
access to processors’ private random bits.

1 Introduction
The potential of peer-to-peer(p2p) networks has been hob-
bled by our lack of understanding of how to design ro-
bust algorithms for large-scale networks. Networks that are
truly p2p are currently very unsophisticated computation-
ally: they are only able to provide the functionality of very

∗Department of Computer Science, University of Victoria, P.O. Box
3055, Victoria, BC, Canada V8W 3P6; email: val@cs.uvic.ca. This
research was supported by NSERC.

†Department of Computer Science, University of New Mexico, Albu-
querque, NM 87131-1386; email: saia@cs.unm.edu. This research was
partially supported by NSF grant CCR-0313160 and Sandia University
Research Program grant No. 191445.

‡Department of Combinatorics and Optimization, University of Wa-
terloo, Waterloo, ON; email: vishal@cs.unm.edu

§IBM Almaden Research Center, 650 Harry Road, San Jose, Ca.
95120; email: vee@almaden.ibm.com

basic data structures such as hash tables or skip lists. This
limits their use to problems of storing, retrieving and dis-
seminating data.

This lack of sophistication is in spite of strong motiva-
tion for building p2p networks that do non-trivial computa-
tion. For example, the company Cloudmark maintains a hy-
brid peer-to-peer network for detecting spam that is already
being used by over one hundred million people [28]. Users
in this network mark those emails they receive that they
consider spam; fingerprints are then generated for emails
that are marked as spam by many users and these finger-
prints are distributed to all users in the network. The net-
work is hybrid peer-to-peer in that it critically relies on a
central authority that tallies votes and performs admission
control by charging users an annual fee in order to partic-
ipate in the network. It would benefit many people finan-
cially if there were a truly peer-to-peer network for spam
prevention that did not charge a participation fee. How-
ever, designing such a network requires the development of
fully distributed algorithms that can function robustly with-
out admission control. These distributed algorithms would
need to work correctly even in the case where an adver-
sary controls a large number of the peers in the network.
E.g., the algorithms would need to be robust to attacks by
“zombienets” i.e. large numbers of computers that have
been compromised and are now under the control of a sin-
gle malicious user.

We note that peer-to-peer algorithms have been pro-
posed not just for spam detection but also for a wide va-
riety of other computationally challenging tasks including:
worm detection and suppression [27, 23], collaborative fil-
tering [9], reputation management [21, 1] and data min-
ing [11]. Unfortunately, all algorithms proposed for these
problems have no theoretical guarantees of being able to
work in a network where an adversary controls a large num-
ber of the peers. This is a barrier to implementation and
wide-spread use of these algorithms.

In this paper, we take a step towards increasing our
understanding of how to design robust algorithms for large-
scale peer-to-peer networks. In particular, we focus on de-
signing robust and scalable algorithms for two fundamental
problems: leader election and Byzantine agreement. Solu-
tions to these two problems can be used as building blocks
for robust and scalable solutions to other problems. For
example, Byzantine agreement is a key component of al-



gorithms for voting; database management [17, 18]; and
secure multiparty computation [29, 19, 3, 4]. Our algo-
rithms have the following important properties.

• Robustness: Our algorithms work on networks where
strictly less than a 1/3 fraction of the nodes are
controlled by an adversary (i.e. suffer Byzantine
faults)

• Scalability: The latency of our algorithms and the
number of bits that each uncorrupted peer sends and
processes are at most polylogarithmic in n, the num-
ber of peers in the network. Moreover our algorithms
operate on networks where each peer has a number of
neighbors that is at most polylogarithmic in n.

• Almost-Everywhere Agreement: It is easy to see that
in a sparse network, an adversary can isolate some
number of uncorrupted processors by taking over all
their neighbors. Hence, our algorithms only guarantee
that all but a O(1/ ln n) fraction of the correct proces-
sors terminate with the correct output.

The problem of distributed computing with a mali-
cious adversary in a sparse network was first considered
in Dwork et. al. [14] in 1988 and improved in [7, 8, 26, 6].
All of these results require that each processor use a poly-
nomial number of bits of communication. Our contribution
is to bring the number of bits of communication down to
polylogarithmic number of bits per processor; the compu-
tation time spent at each processor is polylogarithmic as
well if we assume that each processor knows the topol-
ogy of the network at the start. Our protocols are random-
ized; for Byzantine agreement the protocol succeeds with
high probability. With leader election, success is achieved
with a constant probability. Our communication model and
our model of attack are the same as in the full information
model described in the 2006 paper by Ben-Or, et. al. [5],
except that uncorrupted processors can only communicate
along the fixed edges of the network.

1.1 Our model We design a network with n processors
where each node has degree that is polylogarithmic in
n. We assume that communication among uncorrupted
processors can only occur over edges in the network.
Communication occurs in rounds. In each round, every
processor may send out messages to its neighbors in the
network. The corrupted processors are assumed to have
received the messages of all the uncorrupted processors
before they send out their own messages. The processors
are synchronized between rounds so that all messages in
round i are assumed to be received before any messages
in round i + 1 are sent out. The size of each message is
polylogarithmic in n.

We assume the adversary gets to pick which processors
will be corrupted before the algorithm begins and controls
the actions of all corrupted processors so as to maximize
the chance of causing the algorithm to fail. Also the
adversary is computationally unbounded which disallows
the use of cryptographic assumptions. We assume that
each processor has access to private random bits which
are not known to other processors or the adversary. All
other information, e.g. the topology of the network, the
algorithms run by the uncorrupted nodes, the initial inputs
of the uncorrupted nodes etc., is assumed to be known by
the adversary.

1.2 Our Results In this paper, we relax the requirement
that all uncorrupted processors reach agreement as to the
leader (or the value of bit in the case of Byzantine Agree-
ment) at the end of the protocol, instead requiring that a
1 − o(1) fraction of uncorrupted processors reach agree-
ment. This relaxation is sometimes referred to as almost-
everywhere agreement. Our main results are stated in The-
orems 1.1 and 1.2 below.

THEOREM 1.1. Suppose there are n processors and a con-
stant fraction, b < 1/3 of these processors are corrupted.
There is a polylogarithmic (in n) bounded degree network
and a protocol such that

• With constant probability greater than 0, a 1 −
O(1/ ln n) fraction of the uncorrupted processors
agree on a leader.

• Every uncorrupted processor sends and processes
only a polylogarithmic (in n) number of bits.

• The number of rounds required is polylogarithmic in
n.

THEOREM 1.2. Suppose there are n processors and a con-
stant fraction b < 1/3 of these processors are corrupted.
There is a polylogarithmic (in n) bounded degree network
and a protocol such that:

• With high probability, a 1−O(1/ ln n) fraction of the
uncorrupted processors agree on the same value (for
the bit).

• Every uncorrupted processor sends and processes
only a polylogarithmic (in n) number of bits.

• The number of rounds required is polylogarithmic in
n.

The algorithms we use to prove Theorem 1.1 and 1.2
are adaptations of the Scalable Leader Election algorithm
described in [22] for a fully connected network.



1.3 Related Work There has been significant work in
designing peer-to-peer networks that are provably robust
to a large number of Byzantine faults [16, 24, 20, 2, 25].
This work focuses only on robustly enabling storage and
retrieval of data items. To the best of our knowledge, there
is no previous work in the peer-to-peer literature that fo-
cuses on provably robust algorithms for more sophisticated
computation.

The notion of almost-everywhere Byzantine agree-
ment in which not all, but almost all, correct processors
are required to come to agreement was introduced in a pa-
per by Dwork, et. al. [14] on fault tolerance in bounded
degree networks. They exhibited a communication net-
work of bounded degree connecting n processors that en-
ables all but O(t) correct processors to reach agreement
in the presence of up to t = O(n/ ln n) faulty processors.
Berman and Garay improved on the efficiency of these pro-
tocols [7, 8]. Their main result is an algorithm that achieves
consensus in the butterfly network using O(t+ln n ln ln n)
one-bit parallel transmission steps, while tolerating t =
O(n/ ln n) corrupted processors and having O(t ln t) con-
fused processors (i.e. uncorrupted processors that have de-
cided on the incorrect bit). The number of rounds, num-
ber of corrupted processors that can be tolerated, and num-
ber of confused processors in this result are all asymp-
totically optimal for the butterfly network. Upfal proved
that for any strong-enough expander, there is an almost ev-
erywhere agreement protocol that tolerates linearly many
faulty processors [26]. The local computation required by
each processor is exponential in his protocol even though
the communication complexity is polynomial. Ben-Or and
Ron designed a bounded degree network and an almost-
everywhere agreement algorithm that is fully polynomial
and tolerates a linear number of faults with high probabil-
ity if the faulty processors are randomly located throughout
the network [6].

Dolev and Reischuk show a lower bound on deter-
ministic communication complexity of Byzantine agree-
ment [13]. They show that each processor must send Ω(n)
bits.

In [22], King et al. describe protocols for Leader Elec-
tion and Byzantine Agreement that take polylogarithmic
rounds and require each processor to send and process a
polylogarithmic number of bits. These protocols only run
on fully connected networks. Adapting these protocols to
sparse networks is challenging because of problems with
load-balancing. For example, the idea of simulating a scal-
able leader election protocols on a standard expander-based
network topology such as those in [16, 24, 2, 26] fails to
work. The problem is that the adversary can wait until near
the end of the computation, identify those nodes that play
a critical role in completing the computation and then send
a large number of messages through the network to neigh-

bors of those nodes. This type of denial of service attack al-
lows the adversary to dynamically cut off important nodes
from the rest of the network by overloading their neighbors
with messages. This is a valid attack in our model since
we assume the corrupt processors can send out an arbitrary
number of messages.

To avoid this attack, we introduce a new way of
dynamically updating permissible communication paths.
Each processor dynamically updates, during the compu-
tation, those processors to which it will listen and those
processors for which it will forward messages. This pro-
tects most processors from being overloaded by spurious
messages.

2 Overview
Throughout the paper we use c to represent a (sometimes
different) constant. Sometimes we specify the value of c;
if its value is unspecified c should be read as representing
a sufficiently large constant. We use the phrase with
high probability (or simply w.h.p.) to mean that an event
happens with probability at least 1− o(n−c) for c > 3. For
readability, we treat ln n as an integer.

We now give a high-level sketch of how our protocol
works. In its simplest form as in [22], we divide the proces-
sors into groups of polylogarithmic size; each processor is
assigned to multiple groups. In parallel, each group then
“elects” a small number of processors from within their
group to move on. We recursively repeat this step on the
set of elected processors until there is a set of processors
left which is polylogarithmic in size. At this point, the re-
maining processors in this set run either a known (random-
ized) Leader Election protocol or (deterministic) Byzantine
Agreement protocol. Provided the fraction of corrupted
processors is bounded away from 1/3 (which we insure
w.h.p.) then either with constant probability these proces-
sors (in the set) elect a uncorrupted leader or with proba-
bility 1, they achieve Byzantine Agreement. We then show
how these processors can communicate the leader (or a bit
value) to the rest of the processors.

In [22], the groups of processors are viewed as nodes
in a layered network. There, since the processors are as-
sumed to be fully connected, processors that are “elected”
can directly communicate with each other. In this paper, we
will refer to the network of [22] as an election graph, and
we will show how it may be implemented robustly with a
polylogarithmically bounded static network to achieve our
results.

For the convenience of the reader, we describe the
election graph in Section 3. We then describe our static
network in Section 4. Section 6 contains the protocols
which establish Theorems 1.1 and 1.2, we establish their
correctness in Section 7.

Our protocol makes use of the Byzantine Agreement



protocol in [12], which takes O(k) rounds and requires
O(k3) bits of communication when there are k processors,
provided the fraction of corrupted processors is bounded
above by 1/3. (We note that a straightforward modifica-
tion of the protocol described in [22] gives a Byzantine
Agreement protocol which w.h.p. (in k) works in O(ln k)
rounds and uses O(k2) bits of communication, so long as
the fraction of corrupted processors is strictly less than
1/3. Although this does not qualitatively change our re-
sults, it results in a significantly faster protocol in practice.)
We refer to this protocol as HEAVYWEIGHT-BYZANTINE-
AGREEMENT. We implement this protocol on groups of k
processors for k = O(ln10 n). Our protocols also make use
of two protocols which we call HEAVYWEIGHT-LEADER-
ELECTION and ELECT-SUBCOMMITTEE. These proto-
cols, described in [22] allow small groups of processors to
elect a leader or a subcommittee respectively. These pro-
tocols adapt protocols from [15] which are designed for
the broadcast model, by simulating broadcast when neces-
sary. In particular, each time it is necessary for proces-
sor p to broadcast in the original protocol, we simulate
broadcast by having p send the message to all other proces-
sors followed by a call to HEAVYWEIGHT-BYZANTINE-
AGREEMENT ensuring all the processors agree on the mes-
sage. Although Byzantine Agreement protocols are de-
signed for a single bit, it is easy to see that they can also
be used to agree on a b-bit message for b > 1 as well; sim-
ply run the protocol in parallel b times, once for each bit.

The HEAVYWEIGHT-LEADER-ELECTION protocol is
a straightforward adaptation of the protocol from [15], so
we omit its description here. We give a high level sketch
of the ELECT-SUBCOMMITTEE protocol below. A more
detailed description will be given in Section 6. We assume
the processors know each others’ identities at the start.

ELECT-SUBCOMMITTEE: Input is processors p1, . . . , pk,
with k = Ω(ln8 n).
1 For i = 1 to k,
2 Processor pi randomly selects one of k/(c ln3 n)

“bins” and tells the other processors in its
committee which bin it has selected.

3 The other processors in the committee run
HEAVYWEIGHT-BYZANTINE-AGREEMENT to
come to a consensus on which bin pi has selected.

4 Let B be the bin with the least number of processors
in it, and let SB be the set of processors in that bin.

5 Add the |SB | − c ln3 n lowest numbered processors
in the input which are not in SB to SB to ensure
|SB | = c ln3 n.

6 Return SB as the elected subcommittee.

LEMMA 2.1. Let S be a committee of Ω(ln8 n) proces-
sors, where the fraction, fS , of uncorrupted processors is
greater than 2/3. Then there exists some constant c, such

that w.h.p., the subcommittee election protocol elects a sub-
set Z of S such that |Z| = c ln3 n and the fraction of un-
corrupted processors in Z is greater than (1 − 1/ ln n)fS .
This protocol uses a polylogarithmic number of bits and
polylogarithmic number of rounds in a fully connected net-
work.

The proof of Lemma 2.1 is a simple adaptation of a
proof in [15]. The proof follows from a straightforward
application of Chernoff bounds to show that with high
probability any bin is selected by a number of uncorrupted
processors that is not far below the expected number. A
union bound shows that with high probability this holds for
all bins.

3 The election graph
Our algorithms make use of an election graph to determine
which processors will participate in which elections. This
graph was described in [22] and is repeated here.

Before describing the election graph, we first present
a result similar to that used in [10]. Let X be a set of
processors. For a collection F of subsets of X , a parameter
δ, and a subset X ′ of X , let F(X ′, δ) be the subcollection
of all F ′ ∈ F for which

|F ′
⋂

X ′|

|F ′|
>

|X ′|

|X|
+ δ.

In other words, F(X ′, δ) is the set of all subsets of F
whose overlap with X ′ is larger than the “expected” size
by more than a δ fraction.

Let Γ(r) denote the neighbors of node r in a graph.

LEMMA 3.1. Let l, r, z, n be positive integers such that l
and r are all no more than n and r/l ≥ ln1−zn. Then,
there is a bipartite graph G(L,R) such that |L| = l and
|R| = r and

1. Each node in R has degree lnz n.

2. Each node in L has degree O((r/l) lnz n).

3. Let F be the collection of sets Γ(r) for each r ∈ R.
Then for any subset L′ of L,
|F(L′, 1/ ln n)| < max(l, r)/ lnz−2 n.

The proof of Lemma 3.1 follows from a counting
argument using the probabilistic method and is omitted.

The following corollaries follows immediately by re-
peated application of the above lemma.

COROLLARY 3.1. Let `∗ be the smallest integer such that
n/ ln`∗ n ≤ ln10 n. There is a family of bipartite graphs
G(Li, Ri), i = 0, 1, . . . , `∗, and constants c1 and c2 such
that |Li| = n/ lni n, |Ri| = n/ lni+1 n, and



1. Each node in Ri has degree lnc1 n.

2. Each node in Li has degree O(lnc2 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R.
Then for any subset L′

i of Li,
|F(L′

i, 1/ ln n)| < |Ri|/ ln6 n.

4. Let F ′ be the collection of sets Γ(l) for each l ∈ L.
Then for any subset R′

i of Ri,
|F ′(R′

i, 1/ ln n)| < |Li|/ ln6 n.

COROLLARY 3.2. Let `∗ be the smallest integer such that
n/ ln`∗ n ≤ ln10 n. There is a family of bipartite graphs
G(Li, Ri), i = 0, 1, . . . , `∗, such that |Li| = n/ lni n,
|Ri| = n/ lni+1 n, and

1. Each node in Ri has degree ln5 n.

2. Each node in Li has degree O(ln4 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R.
Then for any subset L′

i of Li,
|F(L′

i, 1/ ln n)| < |Li|/ ln3 n.

Lemma 3.1 and its corollaries show there exists a fam-
ily of bipartite graphs with strong expansion properties
which allow the formation of subsets of processors where
all but a small fraction contain a majority that are uncor-
rupted.

We are now ready to describe the election graph.
Throughout, we refer to nodes of the election graph as e-
nodes to distinguish them from nodes of the static network.
Let `∗ be the minimum integer ` such that n/ ln` n ≤
ln10 n; note that `∗ = O(ln n/ ln ln n). The topmost layer
`∗ has a single e-node which is adjacent to every e-node in
layer `∗ − 1. For the remaining layers ` = 0, 1, ..., `∗ − 1,
there are n/ ln`+1 n e-nodes. There is an edge between the
ith e-node, A, in layer ` and the jth e-node, B, in layer
` + 1 iff there is an edge between the ith node in L`+1 and
the jth node in R`+1 from Corollary 3.2. In such a case,
we say that B is the parent of A, and A is the child of B.
Note that e-nodes have many parents.

Each e-node will contain a set of processors known as
a committee. All e-nodes, except for the one on the top
layer and those in layer 0, will contain c ln3 n processors.
Initially, we assign the n processors to e-nodes on layer
0 using the bipartite graph G(L0, R0) described in Corol-
lary 3.2. The ith processor is a member of the committee
contained in the jth e-node of layer 0 iff there is an edge
in G between the ith node of L0 and the jth node of R0.
Note every e-node on layer 0 has ln5 n processors in it.

The e-nodes on higher layers have committees as-
signed to them during the course of the protocol. Let
A be an e-node on layer ` > 0, let B1, . . . , Bs be the
children of A on layer ` − 1, and suppose that we have

already assigned committees to e-nodes on layers lower
than `. If ` < `∗, we assign a committee to A by run-
ning ELECT-SUBCOMMITTEE on the processors assigned
to B1, . . . , Bs, and assigning the winning subcommittee to
A. (Note that we can run each of these elections in paral-
lel.) If A is at layer `∗, the processors in A, B1, . . . , Bs, run
HEAVYWEIGHT-LEADER-ELECTION for Leader Election
or HEAVYWEIGHT-BYZANTINE-AGREEMENT for Byzan-
tine Agreement.

4 The polylogarithmic bounded degree static
network.

We now describe the bounded degree static network and
show how it can be used to hold elections specified by the
election graph. For each e-node A, we form a collection of
processors which we call the s-node s(A). Intuitively, the
s-node s(A) serves as a central communication point for
an election occurring at e-node A. Our goal is to bound
the fraction of s-nodes controlled by the adversary by a
decreasing function in n, namely 1/ ln10 n, for each layer.
As the number of s-nodes grows much smaller with each
layer, we need to make each s-node more robust. To do this,
the number of processors contained in the s-node increases
with the layer. Specifically, the s-nodes for layer i are
sets of lni+12 n processors. We determine these s-nodes
using the bipartite graph from Lemma 3.1, where L is a
collection of n nodes, one for each processor, R is the set
of s-nodes for layer i and the degree of each node in R is
set to lni+12 n. The neighbors of each node in R constitute
a set of processors in an s-node on layer i.

We use the term link to denote a direct connection
in the static network. Since all the processors cannot
communicate directly with each other, the communications
for an election A will all be routed through s(A): a
message from a processor x to s(A) on layer i will pass
from the processor to a layer 0 s-node, whose processors
will forward the message to a layer 1 s-node and so on, the
goal being to reliably transmit the message via increasingly
larger s-nodes up to s(A). Similarly, communications to
an individual processor x from s(A) will be transmitted
down to a layer 0 s-node whose processors will transmit
the message to x. We describe the connections in the static
network.

Connections in the static network

• Let A be an e-node on layer 0 in the election graph.
Every processor in A has a link to every processor in
s(A).

• Let A and B be e-nodes in the election graph at levels
i and i − 1 respectively such that A is a parent of B.
Thus, s(A) has lni+12 n processors in it and s(B) has
lni+11 n processors in it. Let G be a bipartite graph as



in Lemma 3.1 where L is the set of processors in s(A),
R is the set of processors in s(B) and the degree of R
is set to lnc1 n and the degree of L is set to O(lnc2 n).
If there is an edge between two nodes in L and R
respectively, then the corresponding processor in s(A)
has a link to the corresponding processor in s(B). We
will sometimes say that s(A) is adjacent to s(B) in
the static network.

The following lemma follows easily from the appli-
cation of Lemma 3.1 and its corollaries. Item (1) follows
from Lemma 3.1; items (2) and (4) from Corollary 3.2; and
item (3) from Corollary 3.1. Although item (2) only makes
a guarantee about layer 0 e-nodes, we will see eventually
that w.h.p., the fraction of bad e-nodes on every layer is
small.

LEMMA 4.1. W.h.p., the election graph and the static
network have the following properties:

1. (Bad s-nodes) Any s-node whose fraction of corrupt
processors exceeds b+1/ ln n will be called bad. Else
we will call the s-node good. No more than a 1/ ln10 n
fraction of s-nodes on any given layer are bad.

2. (Bad e-nodes) Any e-node whose fraction of corrupt
processors exceeds b+1/ ln n will be called bad. Else
we call the e-node good. No more than a 1/ ln2 n
fraction of e-nodes on layer 0 are bad.

3. (Bad s-node to s-node connection) For any pair of e-
nodes A and B joined in the election graph, the pro-
cessors in s-nodes s(A) and s(B) are linked such that
the following holds. For any subset S of processors
in s(A), at most a 1/ ln6 n fraction of processors in
s(B) have more than a |S|/|s(A)| + 1/ ln n fraction
of their links to s(A) with processors in S.

4. (Bad e-node to e-node connection) Let |I| represent
the total number of e-nodes on layer i in the election
graph. For any set S of e-nodes on any layer i, at most
a 1/ ln2 n fraction of e-nodes on layer i+1 have more
than |S|/|I|+1/ ln n fraction of their neighbors in S.

OBSERVATION 4.1. The degree of the static network is
polylogarithmic.

5 Communication Protocols
A permissible path is a path of the form P =
x, s(A0), s(A1), ..., .s(Ai) where x is a processor in A0,
i is the current layer of elections being held, each Aj is an
e-node on layer j, and there is an edge in the election graph
between Aj and Aj+1 for j = 0, ..., i. Each processor y
in an s-node s(A) on each layer j keeps a List of permis-
sible paths which determine which processors’ messages it

will forward. The List (for y ∈ s(A)) represents y’s view
of which processors are elected (to the subcommittee) at A
that are still participating in elections on higher layers. If
y’s List indicates that x is such a processor, then the List

will also have the entire path for x, which stretches from x
to the elections on layer i in which x is currently partici-
pating in. We have the following definitions.

• We say a s-node knows a message [resp., knows a
permissible path, or resp., knows a List of permissible
paths] if 1 − b − 2/ ln n processors in the s-node
are uncorrupted and receive the same message [resp.,
have the same path on their Lists, or resp., all have the
same List.]

• A permissible path P is good if every s-node on the
path knows P . Else the path is bad. We will show
our construction of the static network ensures at most
a 1/ ln n fraction of the permissible paths are bad.

We now describe three primitive communication sub-
routines: SENDHOP, SEND, and MESSAGEPASS. The sub-
routine SENDHOP describes how s-nodes (with direct links)
communicate with each other, SEND describes how a pro-
cessor communicates with an s-node, and MESSAGEPASS
describes how two processors communicate with each
other.

SENDHOP(s, r,m, P ): A message m can be passed from
s (the sender) to r (the receiver) from a level i to a level
i − 1 or from a level i to a level i + 1, where s and r
are s-nodes on these layers or one of s, r is a 0-layer s-
node and the other is a processor. If a processor x sends a
message to a layer 0 s-node s(A) it sends the message to
every processor in s(A) (note by construction it will have
a direct link with every processor in s(A)). Similarly if a
message is sent from a layer 0 s-node s(A) to a processor
x, every processor in s(A) sends the message to x.

When an s-node s(A) sends a message to s-node s(B),
every processor in s(A) sends the message to those proces-
sors of s(B) to which it has a direct link. When each pro-
cessor in s(B) receives such a set of messages, it takes the
majority to determine the message. If there is no major-
ity value, the processor ignores the message. Along with
sending the message the processors also send information
which specifies along which path P the message is being
sent. Each time a message is received by a processor of an
s-node s(B) on layer j ≤ i, it checks that

1. The message came from the s-node previous to it in
the path P ; if not the message is dropped.

2. The path P (or its reverse) is on its List of permissible
paths. If not, the message is dropped.



3. Only messages that conform to the protocol in size
and number are forwarded up and down the permis-
sible paths. If more or longer messages are received
from a processor, messages from that processor are
dropped.

SEND(s, r,m, P ): {Of the first two parameters, one must
be a processor (“x”) and one must be an s-node (“s(A)”).
The path P contains the first parameter s as its start and
the second parameter r as its endpoint.} SEND(s, r,m, P )
sends the message m from s to r along the path P via
repeated application of SENDHOP.

MESSAGEPASS(x ∈ A, y ∈ B,m,Px, Py): { Both A and
B are adjacent e-nodes. Hence, s(A) and s(B) are adjacent
in the static network. } A message from processor x in e-
node A sends message m to processor y in e-node B by
first calling SEND(x, s(A),m, Px). Then s(A) sends m
to s(B) by calling SENDHOP(s(A), s(B),m, P ), where P
is the path consisting of two s-nodes s(A), s(B). Finally,
the message is transmitted from s(B) to y by calling
SEND(s(B), y,m, P r

y ), where P r
y is the reversal of path

Py.

6 The protocols for LEADER-ELECTION and
BYZANTINE-AGREEMENT

Before we describe the LEADER-ELECTION and
BYZANTINE-AGREEMENT protocols, we first need to
adapt the ELECT-SUBCOMMITTEE protocol for the static
network. Let A be an e-node with children B1, . . . , Bs,
and let X be the set of all processors from B1, . . . , Bs.
For each i ∈ [s] and x ∈ Bi, let Px denote a good path
of s-nodes from x to s(Bi), concatenated with s(A). At
the start of the election for A, we assume that each node
in Px knows Px and s(A) knows {Px | x ∈ X}. We now
describe the implementation of the subcommittee election.
Every processor x ∈ X sends a random bin number mx

to every other processor y ∈ X . The processors use
the HEAVYWEIGHT-BYZANTINE-AGREEMENT protocol
to determine a consensus on the bin numbers sent by
each processor. (Recall that the number of processors in
e-nodes is always polylogarithmic, so this can be done
sending only polylogarithmic messages.) The bin numbers
are sent up to s(A), where each processor in s(A) takes
a majority to determine the bin numbers, from which it
computes the lightest bin and the winners. Then s(A)
sends down the list of winners along all the permissible
paths to each processor x ∈ X . Processors on the path (i.e.
in s-nodes along the path) update their Lists of permissible
paths to remove those processor-paths who lost as well
as those processor-pairs who won too many elections (we
will quantify this shortly), and make ln4 n copies of each
of the winners’ paths and concatenate a different layer

i + 1 s-node parent onto each one. We present a detailed
description of ELECT-SUBCOMMITTEE below.

ELECT-SUBCOMMITTEE:
1 For each x ∈ X: // This phase done in parallel

Processor x randomly selects one of k/(c1 ln3 n)
“bins”. Let mx be the bin selected. Processor x
tells every other processor y ∈ X its bin selection
mx using MESSAGEPASS(x, y,m, Px, Py, ).

2 The processors of X run
HEAVYWEIGHT-BYZANTINE-AGREEMENT to
come to a consensus on mx.

3 Each y ∈ X sends mx to s(A) by calling
SEND(y, s(A),mx, Py).

4 The processors in s(A) determine each mx by
taking the majority of messages they receive.
Each determines the processors in the lightest bin,
adding the lowest numbered processors if needed to
bring the number to c ln3 n. These become the
elected processors.

5 For each processor x ∈ X that is elected, the processors
in s(A) use SEND(s(A), x,m, P r

x ) to tell x, along
with each s-node in Px, that x was elected.

6 Each processor in each s-node revises its List of
permissible paths to:

Retain only the winners.
Eliminate processors who have won more than
8 elections.
Make ln4 n copies of remaining permissive paths,
concatenating each with a different s-node neighbor
on layer i + 1.

7 s(A) sends its List to every adjacent s-node s(B) on
layer i + 1 using SENDHOP(s(A), s(B),m, P ),
where P is the path consisting only of s(A), s(B).

The condition in Step 5 that requires processors who
have won more than 8 elections to be eliminated is a tech-
nical condition that insures the protocol is load-balanced
and processors in an s-node do not communicate more than
a polylogarithmic number of bits. We now describe the
Leader Election (Byzantine Agreement) protocol.

LEADER-ELECTION [resp., BYZANTINE-AGREEMENT]:
1 For ` = 1 to `∗:
2 For each e-node A in layer `, (Let B1, . . . , Bs be the

children of A in layer ` − 1 of the election graph.)
3 If ` < `∗, run ELECT-SUBCOMMITTEE on the

processors in nodes B1, . . . , Bs. Assign winning
processors to node A.

4 Else, run HEAVYWEIGHT-LEADER-ELECTION
[resp., HEAVYWEIGHT-BYZANTINE-AGREEMENT]
on the processors in nodes B1, . . . , Bs.

5 Let A∗ be the e-node on layer `∗, every processor x
assigned to A∗ communicates the result of



HEAVYWEIGHT-LEADER-ELECTION
[resp., HEAVYWEIGHT-BYZANTINE-AGREEMENT]
to s(A∗) using SEND(x, s(A∗),m, Px) .

6 Every processor in s(A∗) takes the majority to determine
the result of HEAVYWEIGHT-LEADER-ELECTION
[resp., HEAVYWEIGHT-BYZANTINE-AGREEMENT].

Note every processor is a member of s(A∗), thus
Steps 5 and 6 will insure the final result of the protocol
is communicated to every processor.

7 Proofs
To establish the correctness of the protocol presented in
Section 6, we first state some claims regarding the primitive
communication protocols. Their proofs follow by straight-
forward probabilistic arguments and are omitted in the in-
terest of space. Recall the fraction of corrupted processors
is b, where b < 1/3.

CLAIM 7.1. Let s(A) and s(B) be s-nodes on consecutive
layers. Assume the following three conditions hold.

• Both s(A) and s(B) are good.

• s(A) is on a permissible path known by s(B).

• There exists a set S of processors from s(A) such
that for every message m, all processors in S are
uncorrupted and agree on a message m. Further S
consists of at least a 1 − b − 2/ ln n fraction of the
processors in s(A)

Then there is a set S′ of processors from s(B)
such that for every message m, every processor in
S′ is uncorrupted and agrees on the message m after
SENDHOP(s(A), s(B),m, P ) is called. (Here, P is the
path s(A), s(B).) Further, S ′ consists of all but a 1/ ln6 n
fraction of the uncorrupted processors in s(B).

CLAIM 7.2. Let x be an uncorrupted processor. Assume
Px is a good path. Then after SEND(x, s(A),m, Px) is
executed, there is a fixed set S of uncorrupted proces-
sors which contains all but a 1/ ln6 n fraction of the un-
corrupted processors in s(A) and every processor z ∈ S
agrees on m.

An election at e-node A is legitimate if the following
two conditions hold simultaneously for more than a 2/3
fraction of processors x participating in the election at A:
(1) Processor x is uncorrupted; (2) The path Px is good.

The following lemma shows when the election at e-
node A is legitimate, all uncorrupted processors that have
good paths to s(A) come to agreement about the List of
winners, and this List is known by all s-nodes on their
paths.

LEMMA 7.1. For a legitimate election at node A, let X
be a set of uncorrupted processors with good permissible
paths. (Note |X| > 2 ln8 n/3.) Let S be the set of
uncorrupted processors in s(A) that know X . Then after
the execution of ELECT-SUBCOMMITTEE, the processors
in S know the winners of the election in A, as do the s-
nodes that belong to good paths Px.

Proof. From Claim 7.2, we have that every message m sent
by MESSAGEPASS(y ∈ Bi, z ∈ Bj ,m, Py, Pz) from y ∈
X to z ∈ X is received by some fixed set S of uncorrupted
processors in s(Bi), such that S contains at a least 1− b−
2/ ln n fraction of the processors in s(Bi). By Claim 7.1,
every message sent by y is received by z. Since X contains
more than 2/3 of the total processors participating in
the election, (after running HEAVYWEIGHT-BYZANTINE-
AGREEMENT) all the processors in X will all agree on the
same set of bin values. Thus after the processors in X send
these values to s(A), s(A) will know the winners. When
s(A) sends these winners to X , by repeated application of
Claim 7.1, we have every x ∈ X and every s-node in Px

will know these winners.

We have shown that in a legitimate election at node A,
s(A) knows the list of winners. We next consider when
paths are dropped from the permissible path Lists.

7.1 The removal of permissible paths from Lists Let
y be a processor in some s-node on layer i. A permissible
path Px is removed from a processor y’s List on layer i
if y receives a message from an s-node above it in Px,
indicating either x has won more than 8 elections or x
lost in the election held at the last node of Px. Here, we
consider when Px is removed for the former reason. I.e.,
we give an upper bound on the fraction of processors that
are reported to have won too many elections on layer i.

First we consider the effect of legitimate elections. The
following lemma, a version of which appears in [22], shows
that on a given layer a very small fraction of uncorrupted
processors win more than 8 times in legitimate elections.

LEMMA 7.2. W.h.p., the processors that win more than 8
elections, counting multiplicities, account for no more than
a 16/ ln3 n fraction of the uncorrupted processors that are
winners of legitimate elections.

Next we bound the effect of elections that are not
legitimate. We first consider the case where s(A) is good,
yet the fraction of uncorrupted processors participating in
A with good paths is less than 2/3. For the remainder of the
proof we shall treat such an e-node A as a bad e-node.

CLAIM 7.3. Suppose less than a 1/7 fraction of the un-
corrupted processors of a good s(A) agree on a message



m. Then after SENDHOP(p(A), p(B),m, P ) is executed,
all but a 1/ ln6 n fraction of the good processors in s(B)
will ignore m.

Proof. Even if the corrupted processors agree on m, since
b < 1/3, the total fraction of processors in s(A) sending
the message m is less than 10/21. Thus at most a 1/ ln6 n
fraction of the processors in s(B) will receive m from a
majority of processors in s(A).

Hence a good s(A) can only communicate 7 different
sets of winners to the s-nodes below it. Since each uncor-
rupted processor will send ln3 n winners, the total number
of winners sent is at most 7 ln3 n. Hence a bad e-node can
cause at most 7 ln3 n processors to have their permissible
paths removed.

Next we consider the effect of a bad s-node. We
will assume one bad s-node s(A) on layer i can cause
the removal of all the permissible paths for every proces-
sor participating in the election at A. Since ln8 n proces-
sors participate in an election, and fewer than a 1/ ln10 n
fraction of the s-nodes are bad on a layer, the fraction of
uncorrupted winners affected is less than 1/ ln2 n. Thus
we can bound the fraction of the uncorrupted winners on
any layer i that have their permissible paths removed by
1/ ln2 n + 1/ ln3 n + 7βi; where βi represents the frac-
tion of bad e-nodes on layer i. Thus we have the following
lemma.

LEMMA 7.3. Assume the fraction of bad e-nodes on layer
i is bounded by c/ ln2 n, for some constant c. Then the
fraction of uncorrupted winners that have their permissible
paths removed on layer i is bounded by 8c/ ln2 n.

7.2 Proof of Theorems 1.1 and 1.2 We now complete
the proof of Theorems 1.1 and 1.2. They will follow from
the lemma below.

LEMMA 7.4. On layer i, w.h.p., at least a 1 − 4/ ln2 n
fraction of s-nodes s(Aj) have the following properties:

• s(Aj) is good.

• At least a 1 − b − 4i/ ln n fraction of the processors
in node Aj are uncorrupted and have good paths to
s(Aj) (note this implies s(Aj) knows this path). That
is, Aj is a good e-node.

Proof. We prove the lemma by induction. On all layers
and particularly layer 0, only a 1/ ln10 n fraction of the s-
nodes are bad. If s(A) is good, then every processor in A
has a good path to s(A). Further by construction all but a
1/ ln2 n fraction of the e-nodes on layer 0 consist of at least
a 1− b−1/ ln n fraction of uncorrupted processors. So the
lemma is true on layer 0.

Assume the lemma is true for layer i. Then a 1 −
4/ ln2 n fraction of e-nodes are good, more specifically
these e-nodes have at least a 1 − b − 4i/ ln n fraction
of uncorrupted processors that have a good path to their
corresponding s-node. Since the election is legitimate by
Lemmas 2.1 and 7.1, w.h.p., after ELECT-SUBCOMMITTEE
at least a 1−b−4i/ ln n−1/ ln n fraction of the processors
elected are uncorrupted and have a good path to any good
parent of their s-node. Thus at least a 1− b− (4i+1)/ ln n
fraction of the processors elected at layer i are uncorrupted
and have good paths to good parent s-nodes on layer i + 1.
By Lemma 7.3 this fraction is reduced by at most 32/ ln2 n.
Thus at least a 1 − b − (4i + 2)/ ln n fraction of the
processors elected at layer i are uncorrupted and have good
paths to good parent s-nodes on layer i + 1. Since the
fraction of bad s-nodes on layer i+1 is at most 1/ ln10 n, by
Corollary 3.2 at least a 1− 1/ ln2 n− 1/ ln10 n fraction of
the e-nodes (and their corresponding s-nodes) are good on
layer i+1, and have at least a 1−b−(4i+2)/ ln n−1/ ln n
fraction of uncorrupted processors that have good paths to
their corresponding s-nodes.

By Lemma 7.4, w.h.p. the layer `∗ e-node is good.
Thus the processors in this e-node either reach Byzan-
tine Agreement by running HEAVYWEIGHT-BYZANTINE-
AGREEMENT or elect an uncorrupted leader with con-
stant probability by running HEAVYWEIGHT-LEADER-
ELECTION . Since all the processors are in the s-node
(though they may appear multiple times) corresponding to
A on `∗, by Claim 7.2 all but a O(1/ ln n) fraction of the
good processors learn the final result. To prove the number
of bits sent by each processor is polylogarithmic we note
each processor is in a polylogarithmic number of e-nodes
and s-nodes on each layer i, and participates in at most a
polylogarithmic number of election on layer i. Since the
number of layers is O(ln n) Theorems 1.1 and 1.2 follow.

8 Conclusion
We have presented scalable and robust protocols for solv-
ing Byzantine agreement and leader election. Our proto-
cols are scalable in that they operate in a network of n
nodes where each node in the network has a number of
neighbors that is polylogarithmic in n. Further, the latency
of the protocols are polylogarithmic in n, and each proces-
sor sends and processes a number of bits that is polylog-
arithmic in n. Our algorithms are robust in the sense that
they work correctly even if an omniscient and computa-
tionally unbounded adversary controls a constant fraction
of the nodes in the network. Many open problems remain
including the following. First, the protocols described in
this paper work on static networks. Can we adapt them
to work on dynamic networks, which can grow, shrink,
or have significant node turnover during the course of the



computation? Second, what types of computational prob-
lems can and can not be solved in our model of scalable
and robust computation? Third, can we design scalable and
robust protocol that work correctly on any sparse network
with sufficiently good expansion? Alternatively, can we
prove that such a result is not possible? Finally, can we de-
sign simplifications of our protocols or heuristics based on
our protocols that can be deployed in an actual peer-to-peer
network?

References

[1] Z. Abrams, R. McGrew, and S. Plotkin. Keeping peers
honest in eigentrust. In 2nd Workshop on the Economics
of Peer-to-Peer Systems, 2004.

[2] B. Awerbuch and C. Scheideler. Group spreading: A
protocol for provably secure distributed name service. In
Thirty-First Int. Colloquium on Automata, Languages, and
Programming (ICALP), 2004.

[3] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous
secure computation. In Proceedings of the Twenty-Fifth
ACM Symposium on the Theory of Computing (STOC),
1993.

[4] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure
computations with optimal resilience. In Proceedings of
the Thirteenth Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 183–192, 1994.

[5] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzantine
agreement in the full-information model in O(log n) rounds.
In Proceedings of the Thirty-Eighth Annual ACM Sympo-
sium on Theory of Computing (STOC), 2006.

[6] M. Ben-Or and D. Ron. Agreement in the presence of faults,
on networks of bounded degree. Information Processing
Letters, 1996.

[7] P. Berman and J. Garay. Asymptotically optimal distributed
consensus. In Proceedings ICALP 89 (16th International
Colloquium on Automata, Languages and Programming),
1989.

[8] P. Berman and J. Garay. Fast consensus in networks of
bounded degree. In Fourth International Workshop on
Distributed Algorithms, 1990.

[9] J. Canny. Collaborative filtering with privacy. In IEEE
Symposium on Security and Privacy, 2002.

[10] J. Cooper and N. Linial. Fast perfect-information leader-
election protocol with linear immunity. Combinatorica,
15:319–332, 1995.

[11] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kar-
gupta. Distributed data mining in peer-to-peer networks. In
IEEE Internet Computing special issue on Distributed Data
Mining, 2005.

[12] D. Dolev, M. Fischer, R. Fowler, N. Lynch, and H. Strong.
An efficient algorithm for byzantine agreement without
authentication. Information and Control, 1982.

[13] D. Dolev and R. Reischuk. Bounds on information ex-
change for byzantine agreement. In Proceedings of the first

annual ACM symposium on Principles of distributed com-
puting(PODC), 1982.

[14] C. Dwork, D. Peleg, N. Pippenger, and E. Upfal. Fault
tolerance in networks of bounded degree. SIAM Journal
on Computing, 17:975–988, 1988.

[15] U. Feige. Noncryptographic selection protocols. In
Proceedings of 40th IEEE Foundations of Computer Sci-
ence(FOCS), 1999.

[16] A. Fiat and J. Saia. Censorship resistant peer-to-peer con-
tent addressable networks. In Proceedings of the Thirteenth
ACM Symposium on Discrete Algorithms (SODA), 2002.

[17] H. Garcia-Molina, F. Pittelli, and S. Davidson. Is byzantine
agreement useful in a distributed database? In the 3rd ACM
SIGACT-SIGMOD symposium on Principles of database
systems, 1984.

[18] H. Garcia-Molina, F. Pittelli, and S. Davidson. Applications
of byzantine agreement in database systems. ACM Transac-
tions on Database Systems (TODS), 1986.

[19] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game - a completeness theorem for protocols
with honest majority. In Proceedings of the Nineteenth
ACM Symposium on Theory of Computing (STOC), pages
218–229, 1987.

[20] K. Hildrum and J. Kubiatowicz. Asymptotically efficient
approaches to fault-tolerance in peer-to-peer networks. In
Proceedings of the 17th International Symposium on Dis-
tributed Computing, 2004.

[21] S. Kamvar, M. Sclosser, and H. Garcia-Molina. The eigen-
trust algorithm for reputation management in p2p networks.
In Proceedings of the 12th International World Wide Web
Conference (WWW), 2003.

[22] V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable leader
election. In Proceedings of 27th ACM-SIAM Symposium on
Discrete Algorithms(SODA), 2006.

[23] D. Malan and M. Smith. Host-based detection of worms
through peer-to-peer cooperation. In Third Workshop on
Rapid Malcode (WORM), 2005.

[24] M. Naor and U. Wieder. A simple fault tolerant distributed
hash table. In Proceedings of the Second International
Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[25] C. Scheideler. How to spread adversarial nodes? rotate! In
Proceedings of the Thirty-Seventh Annual ACM Symposium
on Theory of Computing (STOC), 2005.

[26] E. Upfal. Tolerating linear number of faults in networks of
bounded degree. In 10th Annual Symposium on Principles
of Distributed Computing(PODC), 1992.

[27] V. Vlachos, S. Androutsellis-Theotokis, and D. Spinellis.
Security applications of peer-to-peer networks. Computer
Networks, 45:195–205, 2004.

[28] C. Website. http://cloudmark.com/.
[29] A. Yao. Protocols for Secure Computations. In Proceedings

of the Twenty-Third IEEE Symposium on the Foundations of
Computer Science (FOCS), pages 160–164, 1982.


