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ABSTRACT

We present a foraging algorithm, GoldenFA, in which search direc-
tion is chosen based on the Golden Ratio. We show both theoreti-
cally and empirically that GoldenFA is more efficient for a single
searcher than a comparable algorithm where search direction is
chosen uniformly at random. Moreover, we give a variant of our
algorithm that parallelizes linearly with the number of searchers.
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1 INTRODUCTION

"Golden Ratio is a powerful mathematical constant woven into the

very fabric of biology. It is the unique visual tension between com-

forting symmetry and compelling asymmetry, and its thoughtful

application can bring beauty and harmony and intrigue to all manner

of designed things." - Darrin Crescenzi

The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, ... is created by the
recurrence Fn = Fn−1 + Fn−2 and is one of the most famous
biologically-inspired mathematical sequences. The Golden Ratio,
denoted ϕ, is the limit of the ratio of consecutive numbers in this
sequence. Fibonacci generated the sequence as an idealized model
of a reproducing rabbit population assuming overlapping genera-
tions [2]. It was documented in India many centuries earlier, and
has been observed in numerous biological systems including the
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arrangement of pine cones, unfurling of fern leaves, and the ar-
rangement of sunflower seeds that optimally fills the circular area of
the flower [17]. The Golden ratio and Fibonacci numbers have been
used in computer science for various applications like obtaining
optimal schedules for security games [10], Fibonacci hashing [14],
bandwidth sharing [8], data structures [4] and game theoretic mod-
els for blocking-resistant communication [13].

In this paper, we use the Golden Angle created by arcs that form
the Golden Ratio to develop a collective foraging algorithm that
reduces the time to first discovery of clustered targets. In particular,
we show that our new foraging algorithm, GoldenFA, performs
better in theory and practice than a previous algorithm that chooses
search directions uniformly at random [1].
Motivation for using the “most irrational" number.Any num-
ber can be written as an integer plus 1 over another number. The
larger the denominator in the fractional part, the better the integer
part is as an approximation. For example, π = 3 + 1/x , for x ≥ 7,
and so π is fairly-well approximated by 3. Thinking recursively, the
number x in the denominator can itself be written as an integer
plus 1 over another number. Thus, we can write any number as a
(possibly infinite) continued fraction [11]

x1 +
1

x2 +
1

x3+...

where the xi values are all integers for i ≥ 1.
The degree to which the original number is well-approximated

by a finite continued fraction depends on how large the xi values
are. When xi = 1 for all i ≥ 1, we obtain an irrational number that
is most difficult to approximate. To find this most difficult irrational
number, we sety = 1+ 1

y , and solve the resulting quadratic equation

to obtain a solution y = 1+
√
5

2 , which is the celebrated Golden ratio
ϕ.

The fact that ϕ is difficult to approximate with a rational number
has useful implications in ensuring angles are “well-spread". For
example, if we start at the point 0 on a unit circle, and iteratively
add points by moving clockwise by distance ϕ, then we will end up
with points that spread out with ample distance between points.1
Interestingly, this approximates how plants add florets, leaves and

1In contrast, if we use π instead of ϕ , the points will cluster around 3 spokes since π
is fairly well-approximated by 3. See [18] for a fascinating simulation and discussion
of these facts.

https://doi.org/...


BDA’19, July 29, 2019, Toronto, CA. Abhinav Aggarwal, William F. Vining, Diksha Gupta, Jared Saia, and Melanie E. Moses

petals as they grow. If the next leaf is added by moving distance
ϕ along a unit circle, this ensures that leaves are well-spread in
order to increase their total intersection with sunlight without
interference.

In this paper, we make use of the “most irrational" property of ϕ
to design a foraging algorithm. A searcher first forages in an initial
direction from a nest site to a boundary of the search space, and
then returns to the nest site. The angle for the next spoke from the
nest site is chosen by moving a distance of ϕ along a unit circle. In
this way, we can ensure that our foraging spokes are “well-spread",
thus minimizing overlap at the circle center while maximizing the
probability of the first discovery of a cluster of resources somewhere
in the circle area. If there are multiple searchers, it is straight-
forward to parallelize this process.

The rest of the paper is organized as follows: We first define our
formalmodel and problem statement. Thenwe introduceGoldenFA
and explain the theoretical upper bound on finding a single target of
a given diameter for a single searcher and then multiple searchers.
We then compare theoretical predictions to simulated searchers.

2 OUR MODEL AND PROBLEM STATEMENT

We assume a circular arena of radiusR with the nest at the centre2. A
cluster

3 of targets is placed at a distance D from this collection zone
and has a diameter ∆. We assume an obstacle-free arena in which
the cluster does not move or regenerate as targets are collected.

We assume N ≥ 1 searchers. Each searcher has limited memory
and can complete straight line motion in a specified direction from
the nest to the edge of the search arena. Searchers can detect if they
have encountered a target. Moreover, they know the direction in
which they are currently moving, but no information from the past
can be stored and or communicated.
Overview of our Approach. Previous work shows that foraging
for a single target in an arena without any knowledge of the arena
parameters requires time that is proportional to the area of the
arena [3]. We seek to reduce time to discover a cluster with large
diameter. In particular, when cluster diameter is any increasing
function of arena diameter our foraging strategy can locate the
cluster in sub-quadratic time.

We state our main result in the theorem below and defer its proof
to the full version of our paper.

Theorem 2.1. The number of time steps taken by GoldenFA before

the cluster is located for the first time is O
((

R
N∆ + 1

)
D
)
.

Again, as long as ∆ is some increasing function ofD, GoldenFA has
improved performance. Additionally, when N = R searchers work
in parallel, the distance travelled is O(D), which is asymptotically
optimal.

To prove this theorem , we compute the minimum number of
spokes needed before the maximum arc length between any two
consecutive spokes becomes sufficiently small. In particular, we
determine when this maximum arc length become smaller than
2Similar to existing work, this arena can be modelled as a discrete grid with the
Manhattan distance as the metric, however, since working in the continuous Euclidean
space introduces only a constant multiplicative blowup, we state our algorithm and
the results for a continuous arena for mathematical simplicity.
3We assume that this cluster is circular in shape for mathematical simplicity, however,
our results apply to all cluster shapes that can be circumscribed by a circle.
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Figure 1: A schematic of the GoldenFA algorithm for a sin-

gle cluster (shown as the shaded area) of diameter ∆ located

at a distance D from the source.

the cluster diameter. No matter where the cluster is located in the
arena, we require O(D/∆) spokes before a spoke will intersect the
cluster.

3 THE GOLDEN FORAGING ALGORITHM

We now describe our algorithm, GoldenFA.
Single-searcher case: The searcher starts from the reference head-
ing, moves along a spoke to the end of the arena and then returns
to the nest. Next, the searcher turns an arc distance of ϕ along a
unit circle centered at the nest, and moves along a spoke in that
direction to the end of the arena. This process continues until the
searcher locates the cluster.
Multiple searchers case: When N ≥ 1 searchers search for the
cluster together, searcher i starts the search at an arc distance of
(i − 1)ϕ from the reference heading and searches along spokes that
are Nϕ arc distance apart (see Figure 1).

For this to work, each searcher must have a unique identifier and
know its relative order in the sorted sequence of these identifiers.
For simplicity, we assume that the search stops as soon as any
searcher discovers a target.

4 EXPERIMENTAL EVALUATION

The theoretical analysis in the previous section makes many as-
sumptions that do not hold in a robotics setting. These include the
lack of collisions between robots, which is a cause of significant
slow-down in central place foraging [16]; the use of an exact value
of ϕ instead of an approximation; and imprecise robot motion. To
test whether the analysis holds under more realistic constraints,
we implemented the multiple-searcher GoldenFA in the ARGoS
swarm robotics simulator [19], and evaluated the time required to
discover a single square cluster of resources placed uniformly at
random in a 100 × 100 meter square arena.

The resources in the cluster are placed 0.15meters apart such that
a square cluster with k resources on a side has diameter ∆ ≈ 0.15k
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meters. We conducted experiments with square clusters of 8 × 8,
16×16, 32×32, 64×64, and 128×128 resources. For each cluster and
value of N , we computed the average time over 100 experiments.
Time to Discover versus ∆ and N. Figure 2 shows how the time
to discover decreases as ∆ increases. There seems to be a nice linear
decrease, as predicted in Theorem 2.1, for N = 1 and N = 10, with
a slope of 32. However, for N = 100, the slope is larger, probably
because of congestion effects. We note that congestion happens
when searchers are not infinitely small, as is assumed by the theory.

Figure 3 shows how the time to find the cluster depends on the
number of searchers. For increasingN , we evaluated square clusters
of size 16 × 16, 32 × 32 and 64 × 64 in a 100 × 100 meter arena. The
figure shows how additional searchers reduce the search time, but
how adding too many searchers causes increased congestion, which
results in increased search times.
Comparison to Ballistic Algorithm. We compared our algo-
rithmwith the Ballistic Central Place ForagingAlgorithm (bCPFA) [1],
for the case N = 10. In bCPFA, the searchers traverse spokes in
directions chosen uniformly at random, until the cluster is located.
It can be shown that the number of spokes required by this algo-
rithm is O

(
D
∆ log D

∆

)
with high probability, using the result about

maximum distance between random points on an arc from [12].
This is asymptotically worse than GoldenFA for all values of D
and ∆.

Figure 4 shows that the searchers using GoldenFA are able to
find the cluster faster than those using the Ballistic CPFA (bCPFA).
The results for varying cluster diameter show that the search time
using bCPFA is both longer and more variable than the search time
using GoldenFA. Ballistic CPFA searches have a large number of
outliers that take considerably longer than average time to find the
cluster.

5 RELATEDWORK

Search is a fundamental problem in biology, where survival de-
pends on search for mates, prey and other resources. It is also a
common problem in robotics and mobile computing. Collective
search, where multiple searchers must coordinate, is a key problem
in computer science, robotics and in social insects. Ant- and bee-
inspired algorithms have been particularly influential in swarm
robotics research [9, 15, 20]. In prior work, we have used algo-
rithms inspired by foraging behaviours of desert seed-harvesting
ants. These ants forage collectively as follows : each ant leaves a
central nest, travels in a relatively straight line in an apparently
randomly chosen direction.Upon finding food, the ant determines
whether to remember and return to that location or communicate
the location to nest mates by laying a pheromone trail.

We mimic this behaviour in robots with a generic Central Place
Foraging Algorithm (CPFA) which is effective at finding nearby
resources quickly, particularly when resources are distributed in
multiple clusters of unknown diameter [7]. However, a simpler in-
terlocking spiral algorithm finds targets faster than the bio-inspired
CFPA, and the spiral is particularly fast at completely collecting all
targets [1, 5, 6].

Our prior work [1] shows that the most efficient foraging al-
gorithms that completely retrieve all items in a search arena in

minimal time use geometric patterns that fill space with minimal
traversal of already searched territory. In contrast, in this work,
we seek foraging patterns that minimize the time to first discovery
when resources are clustered in a single pile of unknown diameter.

6 DISCUSSION

Foraging forMultipleClustersWhenmultiple clusters are placed
in the arena, time for first detectionwill be determined by the largest
cluster. For discover of all clusters, the number of spokes must be
large enough to find the cluster with smallest diameter. Note that
if the smallest cluster has a diameter that is constant, then the as-
ymptotic performance of GoldenFA is no better than exhaustive
search, which has quadratic cost.
Conclusions and FutureWork:We have described an algorithm,
GoldenFA that can locate a cluster efficiently. Our algorithm has
search time that asymptotically decreases linearly with cluster
diameter and the number of searchers. Moreover, our algorithm
performs well in practice, with search times that generally match
our theoretical predictions. Further, our algorithm empirically out-
performs another common search algorithm in both mean time
to discovery and variance. We believe our algorithm is a first step
toward minimizing foraging time when resources are distributed in
an unknown number of clusters of unknown and variable diameter.

Next steps of this work include the following. First, implement-
ing GoldenFA in real, rather than simulated, robots to determine
how well it performs with real-world noise and error. Second, a
theoretical analysis of resilience of GoldenFA. Finally, measuring
collection time of multiple clusters by GoldenFA and comparing
to other foraging algorithms.
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