
Attack-Resistant Frequency Counting

Bo Wu † Valerie King ∗ Jared Saia †

Abstract
We present collaborative peer-to-peer algorithms for the problem of approximating frequency counts

for popular items distributed across the peers of a large-scale network. Our algorithms are attack-resistant
in the sense that they function correctly even in the case where an adaptive and computationally un-
bounded adversary causes up to a 1/3 fraction of the peers in the network to suffer Byzantine faults. Our
algorithms are scalable in the sense that all resource costs are polylogarithmic. Specifically, latency is
O(log n); the number of messages and number of bits sent and received by each peer is O(log2 n) per
item; and number of neighbors of each peer is O(log2 n). Our motivation for addressing this problem
is to provide a tool for the following three applications: worm and virus detection; spam detection; and
distributed data-mining.

To the best of our knowledge, our algorithms are the first attack-resistant and scalable algorithms for
this problem. Moreover, surprisingly, our algorithms seem to be the first attack-resistant algorithms for
any data mining problem.

1 Introduction
In this paper, we address the problem of robustly computing frequency counts for popular items that are
distributed across the peers of a large network. Finding frequency counts in large-scale networks is a funda-
mental problem; an algorithm that solves this problem can be used for many types of applications including
the following.

• Worm and virus detection: Techniques for automatic generation of worm signatures based on preva-
lence of portions of flow payloads have already been developed in systems such as Earlybird [34]
and Autograph [21]. These systems work well in practice. In fact, Netsift, a company based on the
technology of the Earlybird system, was acquired by Cisco systems in 2005 for $30 Million [31].1

However, to best of our knowledge, there are currently no systems that can generate worm signatures
in a collaborative setting, when a large number of peers in the network are malicious.

• Spam detection: The company Cloudmark maintains a system called Spamnet that is currently used
by over two hundred million people [39]. Users that participate in this network mark those emails they
receive that they consider spam; fingerprints are then generated for emails that are marked as spam
by many users and these fingerprints are distributed to all users in the network.2 Peer-to-peer systems
have been proposed in the academic literature for collaborative spam detection [13, 6]. However,
unfortunately, none of these systems are guaranteed to work correctly in the case where a large number
of peers in the network are malicious.

∗Department of Computer Science, University of Victoria; Victoria, BC; Canada V8W 3P6; Email: val@uvic.ca. This research
was supported by an NSERC grant.
†Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-1386; email: {bowu,

saia}@cs.unm.edu. This research was partially supported by NSF CAREER Award 0644058, NSF CCR-0313160, and AFO
MURI FA9550-07-1-0532 grant.

1Both Earlybird and Autograph make use of Rabin fingerprinting and the technique of breaking flow payloads into smaller
strings, and are thus able to generate signatures for a large class of polymorphic worms, with few false positives and few false
negatives.

2These fingerprints are robust in the sense that they can be used to identify messages that are slight variants of each other.

• Data Mining: Finding frequency counts has several important data mining applications including:
finding frequent search queries [19, 7]; mining association rules [1]; enabling iceberg queries [5, 20];
and measuring IP traffic for detecting DoS attacks and hot spots [14]. Manku and Motwani give
a comprehensive account of how an algorithm for computing approximate frequency counts can be
used in the latter three applications [26].

Not surprisingly, the problem of approximating frequency counts has been studied extensively in the data
mining community [7, 26, 27]. Moreover, there have been many results on maintaining frequency counts
scalably in a distributed setting [25, 8, 10, 9]. However, to the best of our knowledge, there are no results
on fault-tolerant algorithms for approximating frequency counts. Moreover, even more surprisingly, there
do not seem to be any results for fault-tolerant algorithms for any data streaming problem. In particular,
previous distributed data streaming results are neither tolerant to a certain number of peers dropping out
of the network (fail-stop faults), nor tolerant to a collusion of malevolent peers that are trying to skew the
results (Byzantine faults). To the best of our knowledge, our work is the first to address the problem of
designing scalable data streaming algorithms that are tolerant to these two types of faults.

Our motivation for studying fault-tolerant peer-to-peer algorithms for frequency counts is threefold.
First, in client-server solutions to this problem the company (e.g. Cisco or Cloudmark) charges the client,
and this cost is a barrier to wide-spread use of the attack-suppression software. The need to charge seems
unavoidable since the company must recoup the cost of the computational resources that it dedicates to
solving the problem. Second, most companies do not have the same computational resources as can be
illegally commandeered by cybercriminals: single botnets3 have been reported to contain over 100, 000
machines [12]. A peer-to-peer approach can help overcome this mismatch. Finally, the company is a single
point of vulnerability. For example, in May of 2006, several hundred junk e-mailers successfully launched
an attack that disabled the websites of the anti-spam firm Blue Security [17].

In this paper, we focus on designing fully distributed, scalable and fault-tolerant algorithms to approx-
imate frequency counts. For simplicity of exposition, we focus initially on solving this problem on a static
network. Recent results by Scheideler and Awerbuch [32, 3] give general techniques that can be used to
adapt our result to a dynamic network, i.e. one that may grow and shrink significantly in size. We also make
use of the techniques in [32] to solve this problem on a dynamic network.

1.1 Problem Statement
We consider a model where data is distributed across n peers in a network and we wish to determine fre-
quency counts for that data. The problem is complicated by the fact that a certain number of peers in the
network are controlled by a malicious adversary. We assume this adversary is essentially omniscient in that it
knows everything except for the random bits of the peers. In particular, it knows the topology of the network,
the data on all peers, the content of all messages sent, and our algorithms. The adversary is adaptive in that
it can delay the decision of which peers to take over. In particular, it may carefully watch the course of the
algorithm, take over a critical set of peers at some point, wait for some more time, take over additional peers,
and so forth until it has taken over its alloted number of peers. We note that an adaptive adversary is stronger
than that considered in many recent results on scalable robust collaborative computation [22, 18, 23], but in
the context of designing algorithms for large-scale, open access networks, we believe it is crucial to consider
an adaptive adversary. Finally, we consider two scenarios for the peers taken over by the adversary. In the
fail-stop fault model, these peers simply stop working; it is as if they are removed from the network. In
the harder Byzantine fault model, these peers are all controlled by the adversary and behave in a malevolent
way. We will refer to the peers taken over by the adversary as bad and the remaining peers as good.

We assume that communication among uncorrupted peers can only occur over edges in the network.
Communication occurs in rounds. In each round, every peer may send out messages to its neighbors in the

3A botnet is a large set of machines that are taken over by a cybercriminal and then used to launch attacks.

2

network. The corrupted peers are assumed to have received the messages of all the uncorrupted peers before
they send out their own messages. The peers are synchronized between rounds so that all messages in round
i are assumed to be received before any messages in round i+ 1 are sent out.

We first note that it is impossible to ensure that all peers receive exact frequency counts in our model.
In particular there are two main problems. First, since we require a sparse network, each good peer will
have only a polylogarithmic number of neighbors. Thus the adversary may target a certain number of good
peers, take over all neighbors of these peers, and thereby keep these targeted peers from learning any of the
frequent items. In other words, it is unavoidable that some peers in the network cannot learn the correct
output. Second, since our network is sparse and since we require the number of messages sent by each peer
to be small, it is inevitable that some good peers will not have their input items counted. Thus, we are unable
to guarantee that any peers receive the exact counts. Note that our result is similar in this way to the result
by Manku and Motwani[26].

To address these two problems, we introduce two relaxation parameters ε and δ. Instead of requiring
every peer to learn the frequent items, we require only all but an ε fraction of the peers to learn them.
Instead of requiring frequencies to be learned exactly for all but this ε fraction of peers, we instead require
frequencies to be learned only within a range of 1− δ to 1 + δ. We can now state our main problem below.

FindFrequentCounts (S,C,M, t, ε, δ)
Given: A set S of n peers; a fixed constant C; integers M and t, where t/n < 1/3; and positive reals ε and
δ. Each peer in S initially has as input up to C items; an adaptive and omniscient adversary controls t of
these peers. For an item v, let c(v) be the number of good peers that have item v as an input.
Output: Each peer p outputs a set of items Fp with estimated frequencies cp(v) for all items v in Fp. For all
but εn of the good peers, the following is true: 1) Fp contains all items v such that c(v) ≥M ; 2) Fp contains
no item v such that c(v) < M−(1+δ)t; 3) Finally, for any item v in Fp, c(v)−δt ≤ cp(v) ≤ c(v)+(1+δ)t

Why Robust Distributed Hash Tables Fail: One naive approach to address the above frequency count
problems is as follows. We maintain a robust distributed hash table (DHT) over all peers in a network.
There are well-known algorithms that provably ensure the functionality of a DHT even in the case where
up to a 1/3 fraction of the peers joining the DHT are controlled by an adversary (see e.g. [3, 32]). Assume
we are maintaining such a DHT. Let h be the function hashing items to peers in this distributed hash table.
Each peer in the network performs a lookup, using h, for each item it holds. Then, for each item v, the peers
at location h(v) are responsible for maintaining counts of the number of unique times that item v has been
looked up in the network; if the number of times item v appears is greater than M , these peers broadcast
this fact to all the other peers in the network.

This naive scheme suffers from several problems. First, it suffers from load-balancing problems: those
peers to which frequent items map may receive Θ(n) messages while peers to which unpopular items map
will receive only Θ(1) messages. Second, it is vulnerable to attack by peer deletion: to prevent the reporting
of some important frequent item v, an adversary need only take over the peers at location h(v) in the DHT.
Finally, it is vulnerable to an internal attack: malicious peers can collude to artificially inflate the counts of
a very large number of items so that the set of items with a count above a certain threshold is too large to be
useful.

To avoid this problem, we need a scheme that ensures: 1) the responsibility for counting any particular
item is distributed throughout the network; 2) malicious peers are unable to artificially inflate the counts of
benign items.

3

1.2 Our Results
In this paper, we describe efficient algorithms for solving the FindFrequentCounts problem. To the best of
our knowledge, our algorithms for this problem are the first that are robust to adversarial attack.

Theoretical Results: Our main theoretical result is given in the following theorem.
Theorem 1.1 With high probability4, we are able to solve the FindFrequentCounts problem, even in the
case where an adaptive adversary causes a 1/3 fraction of the peers in the network to suffer Byzantine
faults. Moreover, the resource costs required by our algorithm are as follows:

• Our algorithm has latency O(log n).

• Every peer sends and receives O(log2 n) messages.

• Every peer has O(log2 n) neighbors in the network.

We measure latency based on the maximum number of links that any message must traverse during the
course of our algorithm. We note that in the case of fail-stop faults, we can reduce the number of messages
each peer must send and receive from O(log2 n) down to O(log n).

Our results depend critically on the existence of a certain type of butterfly network, where each peer of
the butterfly network consists of a subset of O(log n) peers selected uniformly at random from the set of
all peers. This type of network was first described by Fiat and Saia in [15], where it was used to enable
secure storage and lookup of data items in a peer-to-peer network. Our contributions over this past result are
two-fold. First, we present novel algorithms for using this network to perform collaborative computation;
in contrast, the result from Fiat and Saia only used the butterfly network for communication. Thus, the dis-
tributed algorithms running on top of the network in this paper are completely different from the algorithms
in [15]. Second, we design a different type of butterfly network: our new network has each supernode con-
taining exactly the same number of peers, while the Fiat and Saia network requires only that each butterfly
peer contain θ(log n) peers. Showing that our new network is still robust requires different mathematical
tools than from the previous paper.

Empirical Results: We also implement and simulate our algorithms on networks of sizes up to about 53, 000
peers. Our experiments show that we can ensure that almost all peers in the network learn the frequently
occurring items with very high accuracy. Moreover, our algorithms for achieving this scale well in terms of
bandwidth and latency costs.

The rest of our paper is structured as follows. We review related work in Section 1.3. We present our
algorithm in Sections 2 and 3. Our empirical results are in Section 4. Finally, we conclude and give open
problems in Section 5. All of our proofs along with variants on our main algorithm are included in the
appendix.

1.3 Related Work
As previously mentioned, there has been significant work in the data mining community on counting fre-
quent items [7, 26, 27], and there has also been significant work on the distributed version of this prob-
lem [25, 8, 10, 9]. However, to the best of our ability, our work is the first that enables attack-resistant
counting of frequent items.

In the peer-to-peer literature, there have been many results on creating attack-resistant distributed hash
tables (DHTs) [3, 32, 16, 28, 15]. Unfortunately, as mentioned previously, an attack-resistant DHT does not
seem to have the functionality necessary to enable attack-resistant frequency counting. Some recent work
has focused on designing robust peer-to-peer systems that solve basic algorithmic problems like Byzantine

4Throughout this paper, we will use the phrase with high probability (w.h.p.) to mean with probability 1 − 1/nc for some
constant c > 0

4

agreement and leader election [22, 18, 23]. However, these results are not useful for our problem because: 1)
they are not robust to an adaptive adversary; and 2) they do not seem useable as building blocks for enabling
frequency counts.

Two major motivations for our study of the frequency count problem are worm detection and spam
detection. For worm and virus detection, there have been client-server approaches such as Earlybird [34]
and Autograph [21] that are based on finding frequently occurring substrings in network traffic. In addition,
several peer-to-peer systems have been proposed for collaborative detection of worms and viruses [11, 36,
24]. However, none of these systems are robust to an attack where an adversary takes over peers in the
network. For spam detection, systems have been proposed for distributed detection of spam based on:
classification and filtering of email that is spam [39, 13, 33, 38]; identification and blacklisting of users that
frequently send spam [29]; counting and limiting the number of messages that any user can send [37, 4]. We
believe that for all three of these approaches to dealing with spam, a robust tool for distributed frequency
counting would be invaluable.

2 Our Algorithm
In this section, we describe our algorithm. For purposes of illustration, we present a naive version of our
algorithm first, and then describe our more sophisticated algorithm in Section 2.2.

2.1 Naive Algorithm
A m input butterfly network is a directed graph with logm + 1 levels, each with m nodes. An example is
shown in Figure 1. For i = 1, ...,m and j = 0, ..., logm, node i on level j links to two nodes on level j+ 1:
node i and node (i+ 2j) mod 2j . In the simple version of our protocol, if there are m peers, then each peer
i is assigned to position i on every level i = 0, ..., logm of the butterfly network.

We define listp for a peer p to be a list of items and a count of each item, i.e. a list of tuples of the form
{(v, nump(v)) | v is an item and nump(v) is an integer}. Initially, each p is given a list of items, each with
count 1. Our naive algorithm is presented below. It makes use of the following subroutine:

• sum(listp, listq) : returns {(v, nump(v) + numq(v)) | ∀v s.t. nump(v) + numq(v) > 0}.

Algorithm 1 FindApproxFrequent

1. Peer j is assigned to position j for all levels i.

2. For all level i, 0 ≤ i ≤ logm, of the butterfly, repeat

(a) Transfer: Each peer sends its list to its neighbors on level i+ 1.
(b) Check: If a list received from level i contains a numv > 2i, set list to ∅.
(c) Combine: Each peer on level i + 1 revises its list as follows: listp = sum(listA, listB) where

A and B are its neighbors on level i.

2.1.1 ANALYSIS

We now analyze this naive algorithm. We will make use of the following definitions in our proof:
Definition 2.1 A top node is a level 0 node; a bottom node is a level logm node.
Definition 2.2 A node is good if the peer assigned to it is good.
Definition 2.3 A good path is a path through the butterfly network from a top node to a bottom node all of
whose nodes are good. A path that is not good is bad.
Definition 2.4 For any fixed γ > 0, a bottom node is γ-expansive if there exist γm good paths that end at
this node.

5

Observation 2.5 In the butterfly network,

• Each node is on exactly m simple paths from the top level to the bottom level.

• There is exactly one simple path from a top node to a bottom node.

• Each simple path from a top node to a bottom node p contributes either 0 or 1 to nump(v).

• If a good top node contains v and the path from it to a bottom node p contains all good nodes, then
this path contributes 1 to nump(v).

Suppose there are fewer than t′ bad nodes in the network, then fewer than t′m paths contain bad peers.
Hence, for any positive δ ≤ 1, no more than δm good peers at the bottom level receive more than t′/δ
messages passed along bad paths. The following lemma follows easily from Observation 2.5.
Lemma 2.6 In a standard butterfly network, if the frequency of an item v is c(v) then there are (1−δ)m−t′
good peers that can determine a frequency of v in the range [c(v)− t′/δ, c(v) + t′/δ].

2.2 Our Improved Algorithm
We now describe a way to improve the accuracy of the naive algorithm by using supernodes to reduce the
number of corrupt network nodes in a network with n peers. We construct a new butterfly network with
m = n/ log n nodes on each level and log n − log log n levels, where each node of the butterfly network
is replaced by a set of peers of size s = k log n called a supernode. The following claim is proven in
Appendix A.
Claim 2.7 For any constant δ, there is a constant k such that, the assignment of peers to supernodes has
the following properties:

1. Each supernode contains k log n peers.

2. In the top and bottom levels, each peer is in exactly k supernodes.

3. In the middle levels, all but δ2t/ log n supernodes have a majority of uncorrupt peers.

The protocol for the supernode network is similar to the algorithm for the standard butterfly network
except that there is an initialization process and a modification to the Transfer step. In addition, as a peer
may appear in several supernodes in the same level, it is important to remember that until the Final step, its
actions in one supernode on a level are separate and independent of its actions in other supernodes on the
same level.

• Initialize total: When the messages from level 0 supernodes are received, each peer in a level 1
supernode sums up the numbers received for each item, discarding any values not equal to 0 or 1.

For subsequent levels, each peer p in each node constructs its own list for that node, then passes it on.
The following subroutine is used to compile lists passed on by the set of peers in a supernode:

• median(A, i): given a collection of lists sent by peers in supernode A, {listp | p ∈ A}, this function
returns the list f in which numf (v) is the median value of nump(v) over all p ∈ A. The function
sets to 0 any input values in which num(v) > 2is, where s is the number of peers in a supernode.

The Transfer step 2a is thus modified:

• Transfer: Each peer sends its list to every peer in the supernode’s neighbors on level i+ 1. Let C be a
supernode on level i+ 1 and let A and B be its neighbors on level i. Each peer in C computes listA
and listB , respectively, by applyingmedian to each set of lists sent by peers inA andB, respectively.

6

6 7 5 7 8 9 4 8

13 13 12 12 17 17 12 12

25 25 25 25 29 29 29 29

54 54 54 54 54 54 54 54

Figure 1: The butterfly network and example run of Algorithm 2. The numbers are the frequency counts for
a single item. In this example, there are no adversarial faults, so the bottom nodes have the exact sum of all
counts at the top nodes.

A Final step is added, in which the various roles of a peer are brought together:

• Final Step: For each item v, each peer divides num(v) by k. As a single peer may have several values
for num(v) depending on which supernode it is in, it selects the median value as its final value.

Our full algorithm is given below as Algorithm 2. Figure 1 illustrates a run of this algorithm. The
numbers in the figure give an example of how frequency counts might be computed for a single item. For
ease of presentation, the example in the figure assumes no Byzantine faults.

Algorithm 2 FindApproxFrequent (with Supernodes)

1. Each peer is assigned to a supernode in such a way that Claim 2.7 is satisfied (details of how this is
done are described in Section 3).

2. Initialize total: Each peer in a level 0 supernode sends its list to every peer in the supernode’s
neighbors on level 1. When the messages from level 0 supernodes are received, each peer in a level 1
supernode sums up the numbers received for each item , discarding any values not equal to 0 or 1.

3. For all level i, 1 ≤ i < logm, of the butterfly network, repeat

(a) Transfer: Each peer sends its list to every peer in the supernode’s neighbors on level i + 1. Let
C be a supernode on level i + 1 and let A and B be its neighbors on level i. Each peer in C
computes listA and listB , respectively, by applying median to each set of lists sent by peers in
A and B, respectively.

(b) Check: If a list received from level i contains a numv > 2is, set list to ∅.
(c) Combine: Each peer on level i + 1 revises its list as follows: listp = sum(listA, listB) where

A and B are its neighbors on level i.

4. Final Step: For each item v, each peer divides num(v) by k. As a single peer may have several values
for num(v) depending on which supernode it is in, it selects the median value as its final value.

2.2.1 ANALYSIS OF THE PROTOCOL USING SUPERNODES

We provide a brief sketch of the analysis of our protocol by presenting key definitions and lemmas. All
proofs are included in Appendix A.
Definition 2.8 A supernode is good if it has at least a majority of good peers.

7

Definition 2.9 A good path is a path through the butterfly network from a top supernode to a bottom su-
pernode all of whose supernodes are good supernodes.
Definition 2.10 For any fixed γ > 0, a bottom supernode is γ-expansive if there exist γn/ log n good paths
that end at this supernode.
Observation 2.11 If the majority of peers in two supernodes transfer num’s in the range [a, b] and [c, d] to
the peers in some supernode C, then the good peers in C have num’s in the range [a+ c, b+ d].

The following lemmas hold with high probability in a our network with n peers, where the adversary
controls t ≤ n/3 peers. Recall that s = k log n is the number of peers in each supernode in our network.
Lemma 2.12 For any δ > 0, for k and n sufficiently large, all but δn/ log n bottom supernodes are (1 −
(δt/n))-expansive with probability 1−O(1/n2).
Lemma 2.13 Let δ, ε be fixed constants where 0 < δ < 1/2, and ε > 0. Let the number of bad supernodes
in middle levels be no more than δ2t/ log n; let all but δn/ log n bottom supernodes be (1 − (δt/n))-
expansive; and let k and n be sufficiently large. Then if the frequency of item v is c(v) we can ensure that
there are (1−ε)(n−t) good peers that can determine a frequency of v in the range [c(v)−δt, c(v)+(1+δ)t].

3 The Existence of the Supernode Network
The static construction of the network is as follows. In Appendix B, we show how the network can be
dynamically maintained.

• Let t be the number of bad peers in the network and t < n/3. Let M be the threshold such that one
item can be considered as frequent item only if its number is greater than M , where M > t. We
choose the parameters 0 < ε < 1 and 0 < δ < 1/2. As a function of ε, δ, we determine constant k.
(See Theorem 1.1).

• Use random permutation to construct a random bipartite graph Gtop with n peers on the left side and
n/ log n top supernodes on the right side such that each peer has k neighbors on the right side and
each top supernode has k log n neighbors on the left side.

• Use random permutation to construct a random bipartite graph Gbottom with n peers on the left side
and n/ log n bottom supernodes on the right side such that each peer has k neighbors on the right side
and each bottom supernode has k log n neighbors on the left side.

• Use random permutation to construct a random k log n-regular bipartite graph Gmiddle with n peers
on the left side and n middle supernodes on the right side such that each peer has k log n neighbors
on the right side and each top supernode has k log n neighbors on the left side.

• Between two sets of peers associated with two supernodes connected in the butterfly network, we will
have a full bipartite graph between the peers of these two supernodes.

After the above construction, we can see that in the top and bottom levels, each peer is in exactly k
supernodes, and each supernode contains k log n peers.

4 Experiments
In this section, we present empirical results for our algorithm. Our goal is to measure the tradeoff between
(1) resource costs: namely, total bits sent and latency; and (2) accuracy: the fraction of frequent items that
are not properly identified as such.

8

4.1 Experimental Setup
Our focus is on data streams where frequency counts follow a Zipf distribution, i.e. the frequency of the
i-th most popular item occurs is proportional to i−z for some fixed value z. Numerous studies on real-world
data show that frequency counts typically follow such a distribution, with the exponent z usually in the range
from 2 to 3. In our experiments, we consider values of z ranging from 1 to 5. In every experiment, we set
the thresholdM , that determines whether or not an item is frequent to be t+1. This is the smallest threshold
possible, since if M ≤ t, it is possible for the adversarially controlled peers to overwhelm the network by
generating essentially an unbounded number of frequent items.

In all of our experiments, we consider the case where the total number of distinct items is 10n, where
n is the number of peers in the network, and we consider values of n up to 53, 248. To illustrate, consider
the case where n = 53, 248 and z = 2. Then, the number of times the k-th most frequent item occurs is

(1/ks)∑53248

i=1
(1/iz)

, where
∑53248

i=1 (1/iz) is approximately π2/6. Thus, the frequency with which the most popular

item occurs is about 61%, the frequency of the second most popular item is about 15%, and the frequency
of the third most popular item is about 6.8%.

Unfortunately, for typical values of z, the number of items that occur a large number of times is very
small. Thus, to more effectively test our algorithms, we add an additional 1, 000 “hidden” items that occur
with frequency distributed uniformly at random between M and n, and which are distributed uniformly
at random on the peers in the network. These hidden items could represent spam or the signature of an
epidemic process. Our experiments were performed using a simple variant of Algorithm 2, described in
Appendix E.1, that reduces the total number of bits sent via a thresholding function. The basic idea is to
throw out items with frequency counts that fall below a certain threshold, where the threshold increases
exponentially as the messages proceed down the butterfly network. We emphasize that although the total
number of distinct items is only 10n + 1000, the number of occurrences of items is actually much higher,
since a single distinct item can occur on a large number of peers.

We assume the following strategy for the adversary. The adversary takes over supernodes starting at the
top left of the butterfly network and moving right and then down. While the adversary still has peers that it
can take over, it takes over a majority of the peers in each supernode in order to control the entire supernode.
In this way, the adversary will be able to control at least O(n/ log n) supernodes. We experimented with
various other simple adversarial strategies (e.g. targeting random peers, targeting random supernodes) and
this seemed to be the most effective one for the adversary.

4.2 Results
Our empirical results are shown in Figures 2 and 3. Both plots in Figure 2, give results for Algorithm 2
with networks of size n = 53, 248; in both plots the y-axis measures the fraction of frequent items that
are not correctly identified as such by the algorithm. The left plot gives results when k = 4 (recall that k
is the robustness parameter for Algorithm 2) as the exponent z of the Zipf distribution varies from 1 to 5.
The fraction of nodes controlled by the adversary, t, forms the contours in the left plot. As expected, higher
values of z result in fewer errors, all else being equal. Moreover, our algorithm seems to do quite well even
for moderately high values of z. The right plot gives results for z = 2, when robustness parameter, k, varies
on the x-axis. Again different values of t form the contours in the plot. We note that z = 2 is smaller than we
might expect to see in practice. However, with larger values of z, our experiments showed that essentially
no frequent items are missing, so we used a smaller value of z to show the tradeoff between k and the error
rate.

Both plots in Figure 3 give results for Algorithm 2 with t = n/8 and z = 2. The left plot shows how the
total number of bits sent varies with n (x-axis), and k (contours). Without thresholding, for n = 53, 248,
our analysis predicts that the number of bits sent by a node would be roughly 48 ∗ 532480 ∗ k2 log2 n.
This follows since the maximum frequency for an item is n, and we assume each items needs 32 bits to be

9

0 5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

The parameter k

Th
e

fra
ct

io
n

of
 m

iss
in

g
fre

qu
en

t i
te

m
s

ov
er

 a
ll f

re
qu

en
t i

te
m

s

The fraction of missing frequent items over all frequent items as a function of k

t=n/8
t=n/10
t=n/12
t=n/14
t=n/16

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

The exponent z of Zipfian’s distribution

Th
e

fra
ct

io
n

of
 m

iss
in

g
fre

qu
en

t i
te

m
s

ov
er

 a
ll f

re
qu

en
t i

te
m

s

The fraction of missing frequent items over all frequent items as a function of z

t=n/8
t=n/10
t=n/12
t=n/14
t=n/16

Figure 2: Error Rates for Algorithm 2

identified, so the total bits to identify and count an item is log n + 32 = 48. This is multiplied by the total
number of items that are counted and by the k2 log2 n factor that comes from our algorithm. For k = 4,
the above formula predicts about 9 ∗ 109 bits will be sent without thresholding, while our experiments show
about 5 ∗ 107 bits or about 6 megabytes being sent per processor with thresholding. By way of comparison,
a one hour voice call on Skype requires from 10 to 56 megabytes [35]. In some situations, the bandwidth
cost of our algorithm may be significant. Some techniques to further reduce bandwidth, at the expense of
decreased accuracy, are discussed in Appendix E. The right plot shows the relationship between the latency
of our algorithm (number of hops) and the parameter n. The right plot is exactly same for different k. For
the right plot, our theoretical results predict a latency that is logarithmic in network size and this is also
approximately matched by our empirical results.

5 Conclusion and Future Work
We have described distributed algorithms for approximating frequency counts of popular items in a large-
scale peer-to-peer network. Our algorithms are attack-resistant in the sense that they functions correctly
even if a malicious adversary controls up to a constant fraction of the peers in the network. Our algorithms
are also scalable in terms of latency and bandwidth costs. We have proven that our algorithms are correct,
and have presented empirical evidence showing that their resource costs scale well.

Several open problems remain including the following. First, can we further reduce bandwidth costs
without sacrificing accuracy? Second, can use the techniques described in this paper for designing robust
distributed algorithms for other computational problems? Finally, would it be possible to deploy these
algorithms to solve the problem of approximating frequency counts in an actual distributed network?

10

0 1 2 3 4 5 6
x 104

0

0.5

1

1.5

2

2.5

3

3.5
x 108

The number n of total nodes

Th
e

nu
m

be
r o

f b
its

 s
en

t b
y

ea
ch

 n
od

e

The number of bits sent by each node as a function of n

0 1 2 3 4 5 6
x 104

6

7

8

9

10

11

12
The max number of hops that a message traverses as a function of n

The number n of total nodes

Th
e

m
ax

 n
um

be
r o

f h
op

s
th

at
 a

 m
es

sa
ge

 tr
av

er
se

s

k=4
k=6
k=8
k=10

Figure 3: Resource Costs for Algorithm 2

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings of the Inter-

national Conference on Very Large Databases, 2002.

[2] Noga Alon and Joel Spencer. The Probabilistic Method, 2nd Edition. John Wiley & Sons, 2000.

[3] B. Awerbuch and C. Scheideler. Towards a Scalable and Robust DHT. In Symposium on Parallel
Algorithms and Architecture (SPAA), 2006.

[4] Hari Balakrishnan and David Karger. Spam-I-am: A Proposal for Spam Control using Distributed
Quota Management. In 3rd ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), San
Diego, CA, November 2004.

[5] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. In Proceedings
of the ACM International Conference on Management of Data (SIGMOD), 1999.

[6] P. Oscar Boykin and Vwani P. Roychowdhury. Leveraging social networks to fight spam. IEEE
Computer, 38(4):61–68, Apr 2005. cond-mat/0402143.

[7] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams.
In Proceedings of the International Colloquium on Automata, Languages and Programming(ICALP),
2002.

[8] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed approximate query
tracking. In Proceedings of the International Conference on Very Large Data Bases Conference
(VLDB), 2005.

[9] G. Cormode and M. Garofalakis. Streaming in a connected world: Querying and tracking distributed
data streams. In Proceedings of the International Conference on Management of Data (SIGMOD),
2006. Tutorial Session.

11

[10] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a networked
world: distributed tracking of approximate quantiles. In Proceedings of the International Conference
on Management of Data(SIGMOD), 2005.

[11] Manuel Costa, Jon Crowcroft, Miguel Castro, Anthony Rowstron, Lidong Zhou, Lintao Zhang, and
Paul Barham. Vigilante: End-to-end containment of internet worms. In Symposium on Operating
System Principles (SOSP), 2005.

[12] Drew Cullen. Dutch smash 100,000-strong zombie army, 2005. The Register.

[13] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. P2p-based collaborative
spam detection and filtering. In Proceedings of the Fourth International Conference on Peer-to-peer
Computing, 2004.

[14] C. Estan and G. Verghese. New directions in trafc measurement and accounting: Focusing on the
Elephants, Ignoring the Mice. ACM Transactions on Computer Systems (TOCS), 21(3):270–313, 2003.

[15] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content addressable networks. In Pro-
ceedings of the Thirteenth ACM Symposium on Discrete Algorithms (SODA), 2002.

[16] Amos Fiat, Jared Saia, and Maxwell Young. Making Chord Robust to Byzantine Attacks. In Proceed-
ings of the European Symposium on Algorithms(ESA), 2005.

[17] Joanna Glasner. I’m the Blue Security Spammer, May 2006. Wired Magazine.

[18] Shafi Goldwasser, Elan Pavlov, and Vinod Vaikuntanathan. Fault-tolerant distributed computing in
full-information networks. In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 15–26, 2006.

[19] Google. Google zeitgeist - search patterns, trends, and surprises according to google.
http://www.google.com/press/zeitgeist.htm.

[20] J. Han, J. Pei, G. Dong, and K. Wang. Bottom-up computation of sparse and iceberg cubes. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD), 2001.

[21] H. Kim and B. Karp. Autograph: Toward automated, distributed worm signature detection. In Pro-
ceedings of the 13th Usenix Security Symposium (Security 2004), 2004.

[22] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Proceedings of
the Symposium on Discrete Algorithms(SODA), 2006.

[23] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards secure and scalable computation
in peer-to-peer networks. In To Appear in Foundations of Computer Science(FOCS), 2006.

[24] David J. Malan and Michael D. Smith. Host-based detection of worms through peer-to-peer coopera-
tion. In ACM Workshop on Rapid Malcode, 2005.

[25] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in dis-
tributed data streams. In Proceedings of the International Conference on Data Engineering (ICDE),
2005.

[26] G. Manku and R. Motwani. Approximate frequency counts over data streams. In Proceedings of the
International Conference on Very Large Databases Conference(VLDB), 2002.

12

[27] S. Muthukrishnan. Data Streams: Algorithms and Applications. Now Publishers, Inc, 2005.

[28] Moni Naor and Udi Wieder. A simple fault tolerant distributed hash table. In Proceedings of the
Second International Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[29] Ramachandran, N. Feamster, and S. Vempala. Filtering spam with behavioral blacklisting. In Proc.
ACM Conference on Computer and Communications Security (CCS), 2007.

[30] Jared Saia and Maxwell Young. Reducing communication costs in robust peer-to-peer networks. In-
formation Progressing Letters, 2007.

[31] Peter Sayer. Cisco buys Netsift, June 2005. Infoworld.

[32] C. Scheideler. How to Spread Adversarial Nodes? Rotate! In Proceedings of the Thirty-Seventh
Annual ACM Symposium on Theory of Computing(STOC), 2005.

[33] Richard Segal. Combining global and personal anti-spam filtering. In Proceedings of the 4th Confer-
ence on Email and Anti-Spam(CEAS2007), 2007.

[34] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm fingerprinting.
In Proceedings of the 6th ACM/USENIX Symposium on Operating System Design and Implementation
(OSDI), 2004.

[35] skype. https://support.skype.com/faq/fa151/how-much-bandwidth-does-skype-use-while-i-m-in-a-
call.

[36] V. Vlachos, S. Androutsellis-Theotokis, and D. Spinellis. Security applications of peer-to-peer net-
works. Computer Networks, 45(2):195–205, 2004.

[37] Michael Walfish, J.D. Zamfirescu, Hari Balakrishnan, David Karger, and Scott Shenker. Distributed
quota enforcement for spam control. In Proceedings of 3rd USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2006.

[38] Zhe Wang, William Josephson, Qin Lv, Moses Charikar, and Kai Li. Filtering image spam with near-
duplicate detection. In Proceedings of the 4th Conference on Email and Anti-Spam(CEAS2007), 2007.

[39] Cloudmark Website. http://cloudmark.com/.

13

APPENDIX
A Proofs
A.1 Proof Overview

Technically, our proofs make extensive use of random constructions and the Probabilistic Method[2]. The overview
of the proof is as follows. First, in Section A.2, we show that for an arbitrarily small constant δ, all but δ2t/ log n
supernodes are good with high probability. Second, we show that all but δn/ log n bottom supernodes are (1−(δt/n))-
expansive with high probability in Section A.3. This implies that each of these expansive bottom supernodes has at
least (1 − (δt/n))(n/ log n) good paths starting from (1 − (δt/n))(n/ log n) good top supernodes. Third, in Sec-
tion A.4, we show that with high probability, at least (1− ε)(n− t) good peers appear in these (1− (δt/n))(n/ log n)-
expansive bottom supernodes at least k/2 times. Finally, we show that with high probability, for any item v, if the
frequency of v in the network is c(v), at least (1− ε)(n− t) good peers can determine the frequency of the item v in
the range [c(v)− δt, c(v) + (1 + δ)t].

A.2 Good Supernodes
The three lemmas in this section establish Claim 2.7. In fact, for technical reasons, they establish a slightly stronger
result.
Lemma A.1 Let n be the number of peers. Let t < n/3 be the number of bad peers. Let δ, k be constants where 0 <
δ < 1/2. Consider the random bipartite graphGtop(Gbottom) with n peers on the left side L and n/ log n top(bottom)
supernodes on the right side R constructed in Section 3. Each peer participates in k random top(bottom) supernodes
and each top(bottom) supernode contains exactly k log n peers in it. Then with probability at least 1 − 1/n2, all but
δ2t/(3 log n) top(bottom) supernodes have at least (2/3)k log n good peers.
Proof. Let |L| = l, |R| = r. Let L′ be the set of bad peers, R′ be the set of top(bottom) supernodes with at least
(k/3) log n bad peers, where |L′| = l′ and |R′| = r′. Thus l = n, l′ = t and r = n/ log n. Assume r′ = δ2t/(3 log n),
then we will fix a set L′ ⊂ L of size l′ and a set R′ ⊂ R of size r′ and compute the probability that all peers in R′ have
more than k log n/3 neighbors in L′. If this occurs then the total number of edges shared between R′ and L′ must be
more than (δ2tk)/9. To do this, we will make use of the random graph Gtop(Gbottom) defined in the following way.

The process of constructing such a random bipartite graphGtop(Gbottom) is equivalent to the process of construct-
ing a random 1-regular bipartite graph G′top(G

′
bottom) with two set of peers A and B, each of size n′ = Cn (making

each peer C replicas and each top(bottom) supernode C log n replicas).
The construction of graph G′top(G

′
bottom) is as follows. Define a set, X1, X2, . . . , Xn′ , of independent random

variables which determine the matching. For all i between 1 and n′, Xi takes on an integer value between i and
n′, each with equal probability. These random variables determine a permutation in the following way. Start with
the ordered list 1, 2, . . . , n′, then perform the following swaps on the list: For each i between 1 and n′, swap the
element at the i-th position in the list with the element at the Xi-th position in the list. Let the resulting permutation
be P = (p1, p2, . . . , pn′). The matching is built by creating an edge between each peer i ∈ B and peer pi ∈ A.

In the random 1-regular bipartite graph G′top(G
′
bottom) with two sets of peers A and supernodes B, we let A′

be the set of peers in G′top(G
′
bottom) that corresponds to the set L′ in Gtop(Gbottom) and B′ be the set of peers in

G′top(G
′
bottom) that corresponds to the set R′ in Gtop(Gbottom).

Let X be a random variable giving the number of edges shared between L′ and R′, then X is also the random
variable giving the number of edges shared between A′ and B′. We consider the following two cases.

1. Case 1: t = o(n).
Consider the probability that a single edge falls from B′ in A′. Since there are always at most kt peers in A that
are bad, and there are always at least kn− k log n(δ2t/(3 log n)) = kn− (δ2kt)/3 peers left in A that can be
chosen by the peers in B′, the probability that a single edge falls from B′ in A′ is less than

kt

kn− δ2tk
3

=
3t

3n− δ2t
≤ 9t

8n
.

The inequality in the above follows since t < n/3 and 0 < δ < 1/2.
The total number of all edges from B′ is

δ2t

3 log n
k log n =

δ2kt

3
.

14

The number of ways to choose a set of more than δ2kt/9 edges from δ2kt/3 is(
δ2kt

3
δ2kt

9

)
≤ (3e)

δ2kt
9 .

Thus we can say that:

Pr
(
X ≥ δ2kt

9

)
≤ (3e)

δ2kt
9

(
9t
8n

) δ2kt
9

=
(

8n
27et

)− δ2kt9

.

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l
′

and the number of ways
to choose a set R′ of the appropriate size is no more than (re/r′)r

′
. So the probability that for any set L′ of

size t, there exists one subset R′ of size δ2t/(3 log n) such that all supernodes in R′ share more than k log n/3
neighbors in L′ is no more than

(
le

l′

)l′ (re
r′

)r′ (n

27et

)− δ2kt9
=
(ne
t

)t(3ne
δ2t

) δ2t
3 logn

(
8n

27et

)− δ2kt9

.

Below we solve for appropriate k such that this probability is less than 1/n2:

(ne
t

)t(3ne
δ2t

) δ2t
3 logn

(
8n

27et

)− δ2kt9

≤ 1
n2
.

Isolating k in the above equation, we get that:

k ≥ 9
δ2 log

(
8n

27et

) (log
(ne
t

)
+

δ2

3 log n
log
(

3ne
δ2t

)
+

2 log n
t

)
.

Since t < n/3, the right side of the above inequality is no more than a fixed constant k0, then k can be a
constant greater than or equal to k0.

2. Case 2: t = Θ(n)
The probability that a single edge from L′ falls inR′ is r′/r = δ2t/(3n) so by linearity of expectation,E(X) =
r′l′k/r = (δ2kt2)/(3n). In graph G′, let g be a function such that X = g(X1, X2, . . . , X|B|). We note that g
satisfies the Lipchitz condition, i.e. |g(X1, X2, . . . , Xj , . . . , X|B|)− g(X1, X2, . . . , Xj′ , . . . , X|B|)| ≤ 1.
Hence, we can use Azuma’s Inequality to say that for any fixed positive λ:

Pr(X − E(X) ≥ λE(X)) ≤ e−
λ2E2(X)

2|B| .

Let
λ =

n− 3t
3t

,

then

Pr(X ≥ δ2kt

9
) = Pr(X − E(X) ≥ λE(X))

≤ e−
(n−3t)2

9t2
δ4t4k2

9n2
1

2kn

= e−
δ4kt2(n−3t)2

162n3 .

15

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l
′
, and the number of ways

to choose a set R′ of the appropriate size is no more than (re/r′)r
′
.

So the probability that for any set L′ of size t, there exists one subset R′ of size δ2t/(3 log n) such that all
supernodes in R′ share more than k log n/3 neighbors in L′ is no more than

(
le

l′

)l′ (re
r′

)r′
e−

δ4kt2(n−3t)2

162n3 =
(ne
t

)t(3ne
δ2t

) δ2t
3 logn

e−
δ4kt2(n−3t)2

162n3 .

Below we solve for appropriate k such that this probability is less than 1/n2

(ne
t

)t(3ne
δ2t

) δ2t
3 logn

e−
δ4kt2(n−3t)2

162n3 ≤ 1
n2
.

Isolating k in the above equation, we get that

k ≥ 162n3

δ4t2(n− 3t)2

(
t log

(ne
t

)
+
δ2t log

(
3ne
δ2t

)
3 log n

+ 2 log n

)
.

Since t < n/3 and t = Θ(n), the right side of the above inequality is no more than a fixed constant k0, then k
can be a constant greater than or equal to k0.

Thus with probability at most 1/n2, after controlling any setL′ of t peers, there exists one subsetR′ of size δ2t/(3 log n)
such that all supernodes in R′ have more than k log n/3 neighbors in L′. Thus with probability at least 1− 1/n2, con-
trolling any set of t peers by the adversary still leaves all but δ2t/(3 log n) top(bottom) supernodes all with at least
2k log n/3 good peers.

ut

Lemma A.2 Let n be the number of peers. Let t be the number of bad peers. Let δ, k be constants where 0 < δ < 1/2.
Consider the random k-bipartite graph Gmiddle with n peers on the left side L and n middle supernodes on the right
side R constructed in Section 3: each peer participates in k random middle supernodes and each middle supernode
contains exactly k log n peers in it. Then with probability at least 1−1/n2, controlling any set of t peers by adversary
still leaves all but δ2t/(3 log n) middle supernodes with at least k log n/2 good peers.
Proof. Let |L| = l, |R| = r. Let L′ be the set of bad peers, R′ be the set of bad supernodes with at least k log n/2
bad peers, where |L′| = l′ and |R′| = r′. Thus l = n, l′ = t and r = n. Assume r′ = δ2t/(3 log n), then we will first
fix a set L′ ⊂ L of size l′ and a set R′ ⊂ R of size r′ and compute the probability that all peers in R′ have more than
k log n/2 neighbors in L′. If this occurs then the total number of edges shared between R′ and L′ must be more than
(δ2tk)/6. To do this, we will make use of the random graph Gmiddle defined in the following way.

The process of constructing such a random C log n-regular bipartite graph Gmiddle is equivalent to the pro-
cess of constructing a random 1-regular bipartite graph G′middle with two sets of peers A and B, each of size
n′ = Cn log n(make each peer C log n replicas and each middle supernode C log n replicas).

The construction of graph G′middle is as follows. Define a set, X1, X2, . . . , Xn′ , of independent random variables
which determine the matching. For all i between 1 and n′, Xi takes on an integer value between i and n′, each
with equal probability. These random variables determine a permutation in the following way. Start with the ordered
list 1, 2, . . . , n′, then perform the following swaps on the list: For each i between 1 and n′, swap the element at
the i-th position in the list with the element at the Xi-th position in the list. Let the resulting permutation be P =
(p1, p2, . . . , pn′). The matching is built by creating an edge between each peer i ∈ B and peer pi ∈ A.

In the random 1-regular bipartite graph G′middle, we let A′ be the set of peers in G′middle that corresponds to the
set L′ in Gmiddle and B′ be the set of peers in G′middle that corresponds to the set R′ in Gmiddle.

Let X be a random variable giving the number of edges shared between L′ and R′, then X is also the random
variable giving the number of edges shared between A′ and B′. Now we consider the following two cases.

1. Case 1: t = o(n).
Consider the probability that a single edge falls from B′ in A′. Since there are always at most kt log n peers in

16

A that are bad, and there are always at least kn log n− k log n(δ2t/(3 log n)) = kn log n− (δ2kt)/3 peers left
in A that can be chosen by the peers in B′, the probability that a single edge falls from B′ in A′ is less than

kt log n
kn log n− δ2tk

3

=
3t log n

3n log n− δ2t
≤ 9t

8n
.

The inequality in the above follows since t < n/3 and 0 < δ < 1/2.
The total number of all edges from B′ is

δ2t

3 log n
k log n =

δ2kt

3
.

The number of ways to choose a set of more than δ2kt/6 edges from δ2kt/3 is(
δ2kt

3
δ2kt

6

)
≤ (2e)

δ2kt
6 .

Thus we can say that:

Pr
(
X ≥ δ2kt

6

)
≤ (2e)

δ2kt
6

(
9t
8n

) δ2kt
6

=
(

9et
4n

) δ2kt
6

=
(

4n
9et

)− δ2kt6

.

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l
′

and the number of ways
to choose a set R′ of the appropriate size is no more than (re/r′)r

′
. So the probability that for any set L′ of

size t, there exists one subset R′ of size δ2t/(3 log n) such that all supernodes in R′ share more than k log n/2
neighbors in L′ is

(
le

l′

)l′ (re
r′

)r′ (4n
9et

)− δ2kt6

=
(ne
t

)t(3ne log n
δ2t

) δ2t
3 logn

(
4n
9et

)− δ2kt6

.

Below we solve for appropriate k such that this probability is less than 1/n2:

(ne
t

)t(3ne log n
δ2t

) δ2t
3 logn

(
4n
9et

)− δ2kt6

≤ 1
n2
.

Isolating k in the above equation, we get that:

k ≥ 6
δ2 log

(
4n
9et

) (log
(ne
t

)
+

δ2

3 log n
log
(

3ne log n
δ2t

)
+

2 log n
t

)
.

Since t < n/3, the right side of the above inequality is no more than a fixed constant k0, then k can be a
constant greater than or equal to k0.

2. Case 2: t = Θ(n)
The probability that a single edge from L′ falls in R′ is r′/r = δ2t/(3n log n) so by linearity of expectation,
E(X) = r′l′k log n/r = (δ2kt2)/(3n). In graph G′, let g be a function such that X = g(X1, X2, . . . , X|B′|).

17

We note that g satisfies the Lipchitz condition, i.e. |g(X1, X2, . . . , Xj , . . . , X|B′|)−g(X1, X2, . . . , Xj′ , . . . , X|B′|)| ≤
1.
Hence, we can use Azuma’s Inequality to say that for any fixed positive λ:

Pr(X − E(X) ≥ λE(X)) ≤ e−
λ2E2(X)

2|B′| .

Let
λ =

n− 2t
2t

,

then

Pr(X ≥ δ2kt

6
) = Pr(X − E(X) ≥ λE(X))

≤ e−
(n−2t)2

4t2
δ4t4k2

9n2
3

δ2tk

= e−
δ2kt(n−2t)2

12n2 .

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l
′
, and the number of ways

to choose a set R′ of the appropriate size is no more than (re/r′)r
′
.

So the probability that for any set L′ of size t, there exists one subset R′ of size δ2t/(3 log n) such that all
supernodes in R′ share more than k log n/2 neighbors in L′ is no more than

(
le

l′

)l′ (re
r′

)r′
e−

δ2kt(n−2t)2

12n2 =
(ne
t

)t(3en log n
δ2t

) δ2t
3 logn

e−
δ2kt(n−2t)2

12n2 .

Below we solve for appropriate k such that this probability is less than 1/n2

(ne
t

)t(3en log n
δ2t

) δ2t
3 logn

e−
δ2kt(n−2t)2

12n2 ≤ 1
n2
.

Isolating k in the above equation, we get that

k ≥ 12n2

δ2t(n− 2t)2

t log
(ne
t

)
+
δ2t log

(
3en logn
δ2t

)
3 log n

+ 2 log n

 .

Since t < n/3 and t = Θ(n), the right side of the above inequality is no more than a fixed constant k0, then k
can be a constant greater than or equal to k0.

Thus with probability at most 1/n2, after controlling any set L′ of t peers, there exists one subset R′ of size
δ2t/(3 log n) such that all peers in R′ have more than k log n/2 neighbors in L′. Thus with probability at least
1 − 1/n2, controlling any set of t peers by the adversary still leaves all but δ2t/(3 log n) middle supernodes all with
at least k log n/2 good peers.

ut

Lemma A.3 Let n be the number of peers. Let t be the number of bad peers. Let δ, k be values where 0 < δ < 1/2.
Let k, n be sufficiently large. Consider the butterfly network constructed in Section 3. Then after controlling any set
of t peers by the adversary, all but δ2t/ log n supernodes are good with probability 1−O(1/n2).
Proof. Since k is sufficiently large, we can use k in Lemma A.1, then we know that no more than δ2t/(3 log n) top
supernodes and no more than δ2t/(3 log n) bottom supernodes have less than 2k log n/3 good peers in them. Next
using k into Lemma A.2 gives no more than δ2t/(3 log n) middle supernodes have less than k log n/2 good peers in
them. Thus in the butterfly network no more than δ2t/ log n supernodes are bad with probability 1−O(1/n2).

ut

18

A.3 Expansive Bottom Supernodes
Lemma A.4 Let n be the number of peers. Let t be the number of bad peers. Let δ, k be values where 0 < δ < 1/2.
Let k, n be sufficiently large. Consider the butterfly network constructed in Section 3. Then after controlling any set
of t ≤ n/3 peers, all but δn/ log n bottom supernodes are (1− (δt/n))-expansive with probability 1−O(1/n2).
Proof. Assume that for some particular k more than δn/ log n bottom supernodes are not (1 − (δt/n))-expansive.
Then each of these not (1− (δt/n))-expansive bottom supernodes has more than (δt/n)(n/ log n) = δt/ log n paths
that are not good. So the total number of paths that are not good is more than

δt

log n
δn

log n
=

δ2nt

log2 n
.

Since k be sufficiently large, then we know by Lemma A.3 that with high probability 1 − O(1/n2), there are no
more than δ2t/ log n supernodes that are bad. We also know that each of these bad supernodes which causes at most
n/ log n paths in the butterfly to be bad. Hence the number of paths that are not good is no more than δ2nt/ log2 n
which is what we wanted to show. ut

A.4 Good Peers in (1− (δt/n))-Expansive Bottom Supernodes
Lemma A.5 Let n be the number of peers. Let t be the number of bad peers. Let ε, δ, k be constants where 0 < ε < 1
and 0 < δ < 1/2. Consider the random bipartite graph Gbottom constructed in Section 3: each peer participates in k
random bottom supernodes and each bottom supernode contains exactly k log n peers in it. Then after controlling any
set of t peers, with probability 1−O(1/n2), in any (1−δ)n/ log n bottom supernodes, there are at least (1−ε)(n− t)
good peers appearing more than k/2 times.
Proof. Controlling any set of t peers will still leave remaining n − t good peers. Consider the bipartite subgraph
Gsubbottom of graphGbottom: Gsubbottom consists of n−t good peers on the left sideL and n/ log n bottom supernodes
on the right side R. Then we can consider that the corresponding bipartite subgraph G′subbottom of graph G′bottom:
G′subbottom consists of two sets A, B, where A corresponds to the set L in Gsubbottom and B corresponds to the set R
in Gsubbottom.

We will fix a set R′ ⊂ R of size δn/ log n and a set L′ ⊂ L of size ε(n − t) and compute the probability that all
peers in L′ have more than k/2 neighbors in R′. If this occurs, then the total number of edges shared between L′ and
R′ must be more than εk(n− t)/2.

In the bipartite subgraph G′subbottom, we let A′ be the set of peers in G′subbottom that corresponds to the set L′

in Gsubbottom and B′ be the set of peers in G′subbottom that corresponds to peers in R′ in Gsubbottom. Let X be a
random variable giving the number of edges shared between L′ and R′, then X is also the random variable giving the
number of edges shared between A′ and B′. The probability that a single edge from A′ falls in B′ is δ so by linearity
of expectation, E(X) = δ(ε(n− t)k) = δεk(n− t).

In graph G′subbottom, let g be a function such that X = g(X1, X2, . . . , X|B|). We note that g satisfies the Lipchitz
condition, i.e. |g(X1, X2, . . . , Xj , . . . , X|B|) − g(X1, X2, . . . , Xj′ , . . . , X|B|)| ≤ 1. Hence, we can use Azuma’s
Inequality to say that for any fixed positive λ:

Pr(X − E(X) ≥ λE(X)) ≤ e−
λ2E2(X)

2|B| .

Let
λ =

1
2δ
− 1 =

1− 2δ
2δ

,

then

Pr(X ≥ εk(n− t)
2

) = Pr(X − E(X) ≥ λE(X))

≤ e−
(1−2δ)2ε2k(n−t)2

8n

≤ e−
(1−2δ)2ε2kn

16 .

The last line in the above follows since t < n/3.

19

The number of ways to choose a set L′ of the appropriate size is no more than (e/ε)ε(n−t), and the number of ways
to choose a set R′ of the appropriate size is no more than (e/δ)δn/ logn. So the probability that in graph Gsubbottom,
for any set R′ of size δn/ log n, there exists a set L′ of size ε(n − t) such that all peers in L′ have more than k/2
neighbors in R′ is no more than: (e

ε

)ε(n−t) (e
δ

) δn
logn

e−
(1−2δ)2ε2kn

16 .

The number of ways to remove any set of t peers is no more than (ne/t)t. So the probability that after controlling
any set of t peers, for any set R′ of size δn/ log n, there exists a set L′ of size ε(n − t) such that all peers in L′ have
more than k/2 neighbors in R′ is no more than:(ne

t

)t (e
ε

)ε(n−t) (e
δ

) δn
logn

e−
(1−2δ)2ε2kn

16 .

Below we solve for appropriate k such that this probability is less than 1/n2:(ne
t

)t (e
ε

)ε(n−t) (e
δ

) δn
logn

e−
(1−2δ)2ε2kn

16 ≤ 1
n2
.

Isolating k in the above equation, we get that:

k ≥ 16
(1− 2δ)2ε2

(
log
(
ne
t

)
n
t

+
ε (n− t) log

(
e
ε

)
n

+
δ log

(
e
δ

)
log n

+
2 log n
n

)
.

Since t < n/3, the right side of the above inequality is no more than a fixed constant k0, then k can be a constant
greater than or equal to k0.

Thus, with probability at most 1/n2, after controlling any set of t peers, for any set R′ of δn/ log n bottom
supernodes there exists one set L′ of ε(n− t) good peers such that all good peers in L′ have more than k/2 neighbors
in R′. Hence, with probability at least 1−O(1/n2), after controlling any set of t peers, in any (1− δ)n/ log n bottom
supernodes, there are at least (1− ε)(n− t) good peers appearing more than k/2 times. ut

Recall that s = k log n is the size of a supernode in our network, and that there are n peers total, t < n/3 of which
are bad.
Lemma A.6 Let δ, ε be fixed constants where 0 < δ < 1/2, and 0 < ε < 1. Let the number of bad supernodes in
middle levels be no more than δ2t/ log n; let all but δn/ log n bottom supernodes be (1− (δt/n))-expansive; and let
k and n be sufficiently large. Then if the frequency of item v is c(v) we can ensure that there are (1− ε)(n− t) good
peers that can determine a frequency of v in the range [c(v)− δt, c(v) + (1 + δ)t].
Proof. Let s be the size of a supernode. We first prove the following claim.

Claim: For any level i > 0, let p be a peer in a supernode C on level i such that there are no more than r bad paths
passing from level 0 to C, the total number of times the item v appears in a list of a good peer in level 0 supernodes
on good paths to C is d(v), and the number of bad peers in the top supernodes having paths to C is t′, then when p
computes num(v) in C, num(v) ∈ [d(v)− sr, d(v) + sr + t′].

The proof of the claim is by induction on the level i of C. With the initial transfer from 2 supernodes on level 0
to level 1, each good peer on level 1 receives a (v, 1) from every good peer which has v and possibly t′ extra (v, 1)’s,
from the bad peers in the supernodes. Hence every good peer on level 1 has a num(v) in the range [d′(v), d′(v) + t′]
where d′(v) is the number of good peers in the supernodes which hold v, and t′ is the number of bad peers in the
supernodes.

Let C be a supernode on level i > 1 with fewer than r bad paths passing through it, and t′ bad peers in the top
supernodes having paths to C. Then there are links from supernodes A,B on level i − 1 to C, with r′, r” bad paths
passing through A,B respectively, and r′ + r” < r. Also there are t′1, t

′
2 bad peers in the top supernodes having paths

to supernodes A,B, respectively. By induction, for any good peer in A,B, num(v) ∈ [d′(v)− sr′, d′(v) + sr′ + t′1],
num(v) ∈ [d”(v) − sr”, d”(v) + sr” + t′2], respectively. If both A and B are good supernodes, then the median
num(v) for each is also in these ranges. Hence for each peer in C, when the sum is calculated, it is in the range
[d′(v) + d”(v) − s(r′ + r”), d′(v) + d”(v) + s(r′ + r”) + (t′1 + t′2)] ⊆ [d(v) − sr, d(v) + sr + t′]. Assume A
is a bad supernode, then r′ is equal to 2i, the upper bound of the range does not need to count t′1, and each peer

20

in C by default sets the value of num(v) from the bad supernode to be in the range of [0, s2i], giving a sum of
[d”(v) − sr”, d”(v) + s(2i + r”) + t′2] ⊆ [d(v) − sr, d(v) + sr + t′]. The analysis for the case where B or both A
and B are bad is similar and omitted. This concludes the proof of the Claim.

Following the proof for the theorem for the standard butterfly network, there are no more than δ2t/ log n bad
supernodes in the middle. Then no more than δn/ log n supernodes on the bottom level have more than δt/ log n
paths containing at least one bad supernode. The remaining supernodes are (1 − δt/n)-expansive. Each bad path
can affect the count of s good peers in a single level 0 supernode. Thus each peer represented in more than k/2
expansive supernodes receives a value in the range [d(v) − s(δt/ log n), d(v) + s(δt/ log n) + kt]. Dividing by k
yields [c(v) − δt, c(v) + (1 + δ)t]. There can be more than (1 − ε)(n − t) peers appearing more than k/2 times in
(1− δ)n/ log n supernodes on the bottom level which are (1− δt/n)-expansive. Hence, (1− ε)(n− t) peers receive
values in this range. ut

A.5 Putting it All Together
Now, we give the proof of Theorem 1.1.
Proof. By Lemma A.6, for any item v, if the frequency of item v is c(v), there are (1 − ε)(n − t) good peers which
can determine a frequency of v is in the range [c(v)− δt, c(v) + (1 + δ)t].

Each peer requires 2k log n links for each of the kn top supernodes it plays a role in; 2k log n links for each of
the C log n middle supernodes it plays a role in. So each peer has O(log2 n) neighbors in the network. Algorithm 2
will transmit the value in parallel and each of these paths has less than log n hops in it so the latency of Algorithm 2 is
O(log n).

Each supernode contains exactly k log n peers and each peer in top supernodes and middle supernodes will send
2k log nmessage. So the total number of messages transmitted in Algorithm 2 is no more than (2k log n)(k log n)(n−
n/ log n) = 2kn log2 n− 2kn log n. Hence, for each peer, it only needs to send and receive O(log2 n) messages. ut

B Dynamic Networks
In a real-world peer-to-peer network, nodes are constantly entering and leaving the system, which is a dynamic net-
work. Therefore, it will be very useful to solve the problem in dynamic network. We make use of the cuckoo rule in
[3] to handle the situation that peers join and leave the network. At first, we will construct three networks with help
of the cuckoo rule and the three networks correspond to the top level of butterfly network, middle levels of butterfly
network and bottom level of butterfly network respectively. Secondly, we are able to apply the algorithm in the statistic
network to solve the problem in the dynamic network.

B.1 Cuckoo Rule for Dynamic Network
Cuckoo rule is introduced in [3]. In the dynamic network, assume at any time, n is the maximum number of good
nodes and εn is the maximum number of bad nodes for some ε < 1. A region is an interval of size 1/2r in [0, 1) for
some integer r that starts at an integer multiple of 1/2r. A k − region is a region of size (closet from above to) k/n,
and for any point x ∈ [0, 1), the k-region Rk(x) is the unique k − region containing x.

Cuckoo rule is described as follows: if a new node v wants to join the network, pick a random x ∈ [0, 1). Place v
into x and move all nodes inRk(x) to points in [0, 1) chosen uniformly and independently at random(without replacing
any further nodes). In our method, an interval I ⊂ [0, 1) of size log n/n can be considered as a supernode.

With the above definition, we will have the following theorem in [3].
Theorem B.1 Let n be the maximum number of good nodes in the network and εn is the maximum number of bad
nodes. Let ε < 1 and k be constant with ε < 1 − 1/k. For each interval I of size log n/n(I is considered as a
supernode), with high probability 1− 1/n, the cuckoo rule with parameter k satisfies the following two conditions for
a polynomial number of rounds, with any adversarial strategy:

1. Balancing condition: I contains Θ(|I| ∗ n) nodes.

2. Majority condition: the good nodes in I are in the majority.

Therefore, we can make use of cuckoo rule to construct the following networks: the network Ntop corresponds to
the top level of the butterfly network, the network Nmiddle corresponds to the middle level of the butterfly network,
and the network Nbottom corresponds to the bottom level of the butterfly network.

21

Consider the network Ntop, the number of nodes is n and each node makes C replicas. Thus the total number
of nodes is Cn if we consider each replica as a node. Notice that each node will have C replicas, so the algorithm
needs to use cuckoo rule to handle each replica joining the network. ε is the fraction of the bad nodes. We can choose
an interval of size log n/n such that for each interval I of size log n/n, with high probability 1 − 1/n, the cuckoo
rule with parameter k satisfies Balancing condition and Majority condition for a polynomial number of rounds, with
any adversarial strategy. Each interval is considered as a supernode, thus the number of supernodes in Ntop is just
n/ log n. Moreover, each supernode will contain Θ(log n) nodes. Also, the network Nbottom can be constructed by
the same process.

Consider the network Nmiddle, the number of nodes is n and each node makes C log n replicas. Thus the total
number of nodes is Cn log n if we consider each replica as a node. Notice that each node will have C log n replicas,
so the algorithm needs to use cuckoo rule to handle each replica joining the network. ε is also the fraction of the bad
nodes. LetN = n log n. This time, we can choose an interval of size logN/N , and for each interval I of size logN/N ,
with high probability 1− 1/N , the cuckoo rule with parameter k satisfies Balancing condition and Majority condition
for a polynomial number of rounds, with any adversarial strategy. Each interval is considered as a supernode, thus
the number of supernodes in Nmiddle is just N/ logN = n log n/ log(n log n) = n. Moreover, each supernode will
contain Θ(log n) nodes.

With the networksNtop, Nbottom, andNmiddle, we can construct the butterfly networkB consisting of these three
networks. Therefore, we can make use of Algorithm 2 to count the frequencies of items in the butterfly network. When
some peer joins the network, we make use of cuckoo rule to handle it; when some peer leaves the network, we just let
it leave freely. With Theorem B.1, all the supernodes satisfy the balancing condition and majority condition with any
adversarial strategy.

B.2 Proofs for Dynamic Network
In the dynamic network, we can relax the requirement that each supernode have exactly k log n peers in it as follows.
Lemma B.2 Let l, r, r′, d, β′ and n be any positive values where l′ ≤ l, β′ > 1 and

d ≥ 4r
r′l(β′ − 1)2

(
r′ ln

(re
r′

)
+ 2 lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and each node
in L has edges to d random neighbors in R. Then with probability at least 1 − 1/n2, there is no set R′ ⊂ R, where
|R′| = r′ such that all nodes in R′ have degree greater than β′ld/r.
Proof. We will again use the probabilistic method to show this. We will first fix a set R′ ⊂ R of size r′ and compute
the probability that all nodes in R′ have degree greater than β′ld/r. If this bad event occurs then the total number of
edges shared between L and R′ must be at least β′r′ld/r. Let X be a random variable giving the number of edges
shared between L and R′. The probability that a single edge from L falls in R′ is r′/r so by linearity of expectation,
E(X) = r′ld/r.

We can then say that:

Pr
(
X ≥ β′r′ld

r

)
= Pr(X ≥ (1 + δ)E(X)) ≤ e−E(X)δ2/4.

Where δ = β′ − 1 and the last equation follows by Chernoff bounds if 1 < β′ < 2e− 1.
The number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r

′
. So the probability that

no subset R′ of size r′ has this bad event occur is(re
r′

)r′
· e− r

′l′dδ2
4r .

Below we solve for appropriate d such that this probability is less than 1/n2.

(re
r′

)r′
· e− r

′ldδ2
4r ≤ 1/n2 (1)

r′ ln
(re
r′

)
− r′ldδ2

4r
≤ −2 lnn (2)

4r
r′l(β′ − 1)2

(
r′ ln

(re
r′

)
+ 2 lnn

)
≤ d

22

We get step (2) from step (1) in the above by taking the logarithm of both sides.
ut

Lemma B.3 Let β, δ′, n, k be values such that β > 1, δ′ > 0 and assume n is sufficiently large. Let each node
participate in k lnn of the middle supernodes, chosen uniformly at random. Then all but δ′ middle supernodes have
less than βk lnn participating nodes with probability at least 1− 1/n2.
Proof. For simplicity, we will assume there are n middle supernodes (we can throw out any excess supernodes and
the lemma will still hold). Let l = n, r = n, r′ = δ′, d = k lnn and β′ = β in Lemma B.2. Then the statement in this
lemma holds provided that:

k lnn ≥ 4
δ′(β − 1)2

(
δ′ · ln

(ne
δ′

)
+ 2 lnn

)
;

k ≥ 4
(β − 1)2 lnn

·
(
δ′ · ln

(ne
δ′

)
+ 2 lnn

)
.

The right hand side of this equation goes to some constant as n goes to infinity.
ut

Lemma B.4 Let β, δ′, n, k be values such that β > 1, δ′ > 0 and n is sufficiently large. Let each node participate
in k of the top (bottom) supernodes (chosen uniformly at random). Then all but δ′ top (bottom) supernodes consist of
less than βk lnn nodes with probability at least 1− 1/n2.
Proof. Let l = n, r = n/ lnn, r′ = δ′, d = k and β′ = β in Lemma B.2. Then the statement in this lemma holds
provided that:

k ≥ 4
δ′ lnn(β − 1)2

(
δ′ · ln

(ne

δ′ lnn

)
+ 2 lnn

)
.

The right hand side of this equation goes to some constant as n goes to infinity.
ut

We can see that the number of supernodes whose nodes is greater than βk lnn is very small. Thus we can make
use of βk lnn as threshold in Algorithm 2. In the butterfly network B, the Lemma A.1, Lemma A.2, Lemma A.4,
Lemma A.6, Lemma A.5 and Theorem 1.1 will hold.

Thus we have the following Lemma.
Lemma B.5 Let n be the number of peers. Let t be the number of bad peers, where t < n/3. Let δ, ε, k, β be
constants where 0 < δ < 1/2, 0 < ε < 1, and β > 1 . Let s = βk log n be the maximum size of a supernode. Let
δ2t/ log n be the total number of supernodes which are bad in middle levels. If the frequency of item v is c(v), then
there are (1−ε)(n− t) good peers which can determine a frequency of v is in the range [c(v)−δβt, c(v)+(1+δ)βt].
Proof. Let s be the maximum size of a supernode. We first prove the following claim.

Claim: For any level i > 0, let p be a peer in a supernode C on level i such that there are no more than r bad paths
passing from level 0 to C, the total number of times the item v appears in a list of a good peer in level 0 supernodes
on good paths to C is d(v), and the number of bad peers in the top supernodes having paths to C is t′, then when p
computes num(v) in C, num(v) ∈ [d(v)− sr, d(v) + sr + t′].

The proof of the claim is by induction on the level i of C. With the initial transfer from 2 supernodes on level 0
to level 1, each good peer on level 1 receives a (v, 1) from every good peer which has v and possibly t′ extra (v, 1)’s,
from the bad peers in the supernodes. Hence every good peer on level 1 has a num(v) in the range [d′(v), d′(v) + t′]
where d′(v) is the number of good peers in the supernodes which hold v, and t′ is the number of bad peers in the
supernodes.

Let C be a supernode on level i > 1 with fewer than r bad paths passing through it, and t′ bad peers in the top
supernodes having paths to C. Then there are links from supernodes A,B on level i − 1 to C, with r′, r” bad paths
passing through A,B respectively, and r′ + r” < r. Also there are t′1, t

′
2 bad peers in the top supernodes having paths

23

to supernodes A,B, respectively. By induction, for any good peer in A,B, num(v) ∈ [d′(v)− sr′, d′(v) + sr′ + t′1],
num(v) ∈ [d”(v) − sr”, d”(v) + sr” + t′2], respectively. If both A and B are good supernodes, then the median
num(v) for each is also in these ranges. Hence for each peer in C, when the sum is calculated, it is in the range
[d′(v) + d”(v) − s(r′ + r”), d′(v) + d”(v) + s(r′ + r”) + (t′1 + t′2)] ⊆ [d(v) − sr, d(v) + sr + t′]. Assume A
is a bad supernode, then r′ is equal to 2i, the upper bound of the range does not need to count t′1, and each peer
in C by default sets the value of num(v) from the bad supernode to be in the range of [0, s2i], giving a sum of
[d”(v) − sr”, d”(v) + s(2i + r”) + t′2] ⊆ [d(v) − sr, d(v) + sr + t′]. The analysis for the case where B or both A
and B are bad is similar and omitted. This concludes the proof of the Claim.

Following the proof for the theorem for the standard butterfly network, there are no more than δ2t/ log n bad
supernodes in the middle. Then no more than δn/ log n supernodes on the bottom level have more than δt/ log n
paths containing at least one bad supernode. The remaining supernodes are (1 − δt/n)-expansive. Each bad path
can affect the count of s good peers in a single level 0 supernode. Thus each peer represented in more than k/2
expansive supernodes receives a value in the range [d(v) − s(δt/ log n), d(v) + s(δt/ log n) + βkt]. Dividing by k
yields [c(v)− δβt, c(v) + (1 + δ)βt]. There can be more than (1− ε)(n− t) peers appearing more than k/2 times in
(1− δ)n/ log n supernodes on the bottom level which are (1− δt/n)-expansive. Hence, (1− ε)(n− t) peers receive
values in this range. ut

Thus the Algorithm 2 in the dynamic network can achieve the same result in the static network except that the
approximation guarantees on the estimated counts of each item will be weakened by a constant factor β.

C Lowerbound
Theorem C.1 In a peer-to-peer network, let n be the number of peers. Let t be the number of bad peers. Consider
any algorithm that solves the FindFrequentCounts problem. If in this algorithm, each peer has only O(logq n) links to
other peers, where q > 0 is some constant, then for any item v with frequency c(v) in the network, the adversary can
ensure that at most n−O(t/ logq n) peers get an estimate of the frequency of v in the range [c(v)−O(t/ logq n), c(v)+
O(t/ logq n) + t].
Proof. For any scalable algorithm, if all peers have only O(logq n) neighbors, the adversary can easily target a set,
T , of O(t/ logq n) peers and then delete all the peers that are neighbors of any peer in the set T . The peers in T will
then be completely isolated and unable to receive any messages. Similarly, the items held by these peers will not be
counted by any other peers. Consider the case where the adversary targets all peers that hold some item v. Then the
lower bound for the approximated frequency counts of item v is c(v)−O(t/ logq n). On the other hand, consider the
case where the adversary targets a set T where none of the peers in T hold the item v. Then, all the t bad peers can
pretend they have the item v and the adversary can pretend that all the peers in T have item v. In this way, the upper
bound for the approximated frequency count of item v is c(v) + O(t/ logq n) + t. Thus at most n − O(t/ logq n)
peers can get the frequency of item v in the range [c(v)−O(t/ logq n), c(v) +O(t/ logq n) + t] after an attack by the
adversary. ut

By Theorem C.1, we can see that Algorithm 2 is optimal up to a polylogarithmic factor among all algorithms that
are scalable, in the sense that the each peer has a polylogarithmic number of neighbors.

D Reducing the Number of Messages
In this section, we sketch how to improve message passing between two successive supernodes so that only Θ(log n)
messages are sent in expectation. This allows us to ensure that each peer in the network only needs to send Θ(log n)
in expectation. Our techniques in this section are based on past work by Saia and Young in [30].

Assume that h1 is a function that maps a peer uniformly to an integer in the range 1 to log n and h2 is a function that
maps a peer to D integers selected uniformly and independently in the range 1 to log n for some constant D. Further
assume that h1 and h2 are known to all the peers in the network. Instead of having a full bipartite graph between two
supernodes connected in the butterfly network, we will have a constant degree bipartite expander between the peers of
these two supernodes(see Figure 4).

The method of constructing the constant degree bipartite expander between two successive supernodes is as fol-
lows. For any two neighboring supernodes Qi at level i and Qi+1 at level i+ 1, each peer q in Qi will link to peer p in

24

Figure 4: The constant degree bipartite expander graphs between supernodes.

Qi+1 if and only if h1(q) = h2(p). We can think of this process as assigning each peer q in Qi to a bin numbered be-
tween between 1 and log n whose number is given by h1(p), and each peer q in Qi+1 is assigned to D bins numbered
between 1 and log n whose numbers are given by h2(p).

In the whole butterfly network, we keep the same full bipartite graph between the peers on the top level 0 su-
pernodes and level 1 supernodes. However, we make use of the above constant degree bipartite expander between
all the other neighbored supernodes. The new protocol, which we refer to as Algorithm 2.1, is exactly the same as
Algorithm 2, except for the following single change. Let A and B be supernodes at level i, C be a supernode at level
i + 1 that is a neighbor of A and B in the butterfly, and p be a peer in C. During the Transfer protocol, instead of p
receiving messages from all peers in A and all peers in B, it receives messages only from the peers in A and the peers
inB that are neighbors in the bipartite expander graphs constructed above. The peer p ignores messages received from
all other peers. The rest of Algorithm 2.1 is equivalent to Algorithm 2. The following theorem follows from the results
in [30].
Theorem D.1 Let n be the number of peers. Let t be the number of bad peers and t < n/4. Then for any fixed
0 < ε < 1, 0 < δ < 1/2, Algorithm 2.1 solves the FindFrequentCounts problem, even in the case where an adaptive
adversary causes a up to t of the peers in the network to suffer Byzantine faults. Moreover, the resource costs required
by Algorithm 2.1 are as follows.

• Latency is O(log n)

• Every peer sends and receives O(log n) messages in expectation

• Every peer has O(log n) neighbors in expectation

E Reducing the Number of Bits
In Algorithm 2.1, the size of the messages increase as we progress down the butterfly network. We now analyze the
number of bits sent in Algorithm 2.1. If the total number of items is some constant, then the maximum number of
bits of any message is O(log n). Thus in this case, each peer sends O(log n) ∗ O(log n) = O(log2 n) bits. However,
consider the following worse case. Assume that initially, any peer in the network has at most some fixed constant
c items on it and every item has a constant number of bits. Then in each top supernode, there are at most ck log n
distinct items contained. Consider the messages generated at level i for all i = 1, . . . , log n − log log n levels of the
butterfly network. A message generated at level i can contain at most (2ick) log n items and their frequencies. Thus,
the number of bits in one message can be O(2i log n). Since for any level i, the number of messages transmitted from
level i to level i + 1 is O(n), the number of bits transmitted from level i to level i + 1 is O(2in log n). The total

25

number of bits transmitted from the top level to bottom level is thus O(n2 log n). Thus each peer sends O(n log n)
bits in this worse case. In this section, we try to reduce the number of bits sent to polylogarithmic even in the worse
case. We solve the problem in two different cases that are described in Section E.1 and Section E.2, respectively.

E.1 General Distribution and Constant Items Stored in Each Peer
In this section, we handle the case that the items in the network follows any general distribution and each peer contains
only constant distinct items. We can reduce the number of bits transmitted if we allow the user to introduce an error
tolerance threshold during transmission. In particular, instead of estimating counts in the range [c(v)− δt, c(v) + (1 +
δ)t], we will instead provide estimates that are in the range [c(v)− δ(t+M), c(v) + (1 + δ)t].

Therefore, we need to improve Algorithm 2.1: for any peer at level i, after receiving two messages from its
neighbors in the two supernodes above, it will generate a new message containing only a part of items with frequency
more than an error tolerance threshold other than generating a new message containing all the items and their frequency
in the two messages. In this way, we can reduce the number of bits during Algorithm 2.1. The crucial point is to find
a reasonable error tolerance threshold.

The construction of the butterfly network is the same as the one in Section D. For any supernode Q at level i, we
choose the error tolerance threshold for this supernode is (2iδkM log n)/n, so that only items with frequency more
than (2iδkM log n)/n can be transmitted to Q’s neighbors at level i + 1. The protocol for the supernode network is
similar to the Algorithm 2.1 for butterfly network with supernode except that we modify the function sum.

The new subroutine sum(listq, listr) is defined as follows:

• sum(listq, listr): for a peer p in a supernode Q at level i, where 1 ≤ i ≤ log n − log log n, it returns
{(v, numq(v) + numr(v)) |∀v s.t. numq(v) + numr(v) > 2iδkM logn

n }.
The new algorithm, which we call Algorithm 2.2 is equivalent to Algorithm 2.1 except it makes use of this new

subroutine sum. The properties of Algorithm 2.2 are described in Theorem E.1.
Theorem E.1 Let n be the number of peers. Let t be the number of bad peers and t < n/3. Let M be the threshold
such that one item can be considered as frequent item only if its frequency is greater than M , where M > t and M
is Θ(n). Then for any fixed 0 < ε < 1, 0 < δ < 1/2, we are able to solve the FindFrequentCounts problem, even
in the case where an adaptive adversary causes a 1/3 fraction of the peers in the network to suffer Byzantine faults.
Moreover, the resource costs required by our algorithm are as follows.

• Algorithm 2.2 has latency O(log n).

• Every peer sends and receives O(log n) messages.

• Every peer has O(log n) neighbors in the network.

• Every peer sends O(log2 n) bits.

Proof. The framework of proof for the Theorem E.1 is almost the same as that of Theorem D.1. However, in
Algorithm 2.2, for the message transmitted from any supernode Qi at level i to Qi+1’s neighbor at level i+ 1, it only
contains the items with frequency more than (2iδkM log n)/n. Thus for any item v, its frequency may loose during
the transmission. The maximum frequency lost in the transmission is 2iδkM logn

n
n

2i logn = δkM . Hence the frequency
of item v received by the good peers at the bottom level is in the range [c(v)− δ(t+M), c(v) + (1 + δ)t].

Since there are at most c distinct items in each peer, then there are at most ck log n total items in one top supernode.
Then for any supernodeQ at level i, the frequency of items it counts is at most 2ick log n. Note that the error tolerance
threshold forQ is (2iδkM log n)/n. Thus there are at most (2ick log n)/(2iδkM log n/n) = cn/(δM) distinct items
that can be transmitted to Q’s neighbor. Since the bits of one item and its frequency is at most O(log n), the number
of bits transmitted from Q to its neighbor is at most (cn/(δM))O(log n) = O(n logn

M). So the total number of bits

transmitted in Algorithm 2.2 is no more than n(2D)(C log n)O(n logn
M) = O(n

2 log2 n
M), where D is the constant

defined in Section D. For each peer, it only needs to send O(n log2 n
M) bits in expectation. Since M is Θ(n), each peer

only needs to send O(log2 n) bits. ut

E.2 Zipfian Distribution and Any Number of Items Stored in Each Peer
In this section, we consider an even worse case: the total number of distinct items is m and each peer can hold any
number of distinct items. However, in this case, the items in the network follow Zipfian distribution. Also, we define
another approximating frequent item problem as follows.

26

FindApproxTop (S,m, k, t, q, ε, δ)
Given: A set S of n peers; total m distinct items in the network; integers k and t, where t/n < 1/3; and positive reals
ε and δ. Each peer in S initially has as input up to any number items; an adaptive and omniscient adversary controls t
of these peers. For an item v, let c(v) be the number of good peers that have item v as an input.
Output: Each peer p has as output a set of items Fp with estimated frequencies cp(v) for all items v in Fp. For all but
εn of the good peers, the following is true: Fp contains all items v such that cp(v) ≥ (1− δ)c(vq)− t, where vq is the
top qth frequent item.

For a Zipfian distribution with parameter z, c(vq) = c
qz for some scaling factor constant c, where vq is the top qth

frequent item. We give an algorithm that uses hash function to transmit the frequency of the items so that if z > 1/2,
only O(log3 n + log2 n logm) bits are sent by each peer in expectation. The construction of the butterfly network is
also the same as the one in Section D. Our techniques in this section are based on past work in [30, 7].

Let r, b be parameters with values to be determined later. Let h1, . . . , hr be hash functions that map objects to an
integer in the range 1 to b, and s1, . . . , sr be hash functions that map objects to an integer −1 or 1. Then we will have
the following data structure: a CountSketch data structure C consists of these hash functions along with a r× b array
of counters, which will be interpreted as an array of r hash tables, each containing b bins. The data structure supports
two operations for ont item q:

• Add(C, q): for i ∈ [1, r], hi[q] += si[q].

• Estimate(C, q): return |median{hi[q]* si[q]}|.

In the new algorithm, the transmission between the peers in two successive supernodes is the same as Algo-
rithm 2.1. However, instead of transmitting the lists, each peer in the network will transmit the CountSketch to its
neighbors. Thus we need to make some changes as follows.

We define Cp for a peer p to be a CountSketch data structure. Initially, each p is given a list of items, each with
num = 1. The following subroutine is used:

• sum(Cp, Cq): returns {Cp + Cq}, where + is the add operator on matrix.

The subroutine Initialize total is changed as follows:

• Initialize total: when the messages from level 0 supernodes are received, each peer in a level 1 supernode
constructs the CountSketch C by the operator Add(C, q) for each item q in the messages.

The subroutine median(A, i) is changed as follows:

• median(A, i): given a collection of CountSketch sent by peers in supernode A, {Cp | p ∈ A}, this function
returns the CountSketch f in which each element of f is the median value of the corresponding element over
all p ∈ A. The function sets 2is to any input values in which num(v) > 2is, where s is the number of peers in
a supernode.
We also need to define a new subroutine major topqlist(A) as follows:

• major topqlist(A): given a collection of top q frequent item lists sent by peers in supernode A, Atop =
{lp | p ∈ A}, and the number of elements in Atop is T this function returns a top q frequent item list lq in which
each jth frequent item of lq occurs in the jth frequent position of the top q frequent item lists more than T/2
times.

Lemma E.2 Let n be the number of peers and let m be the number of distinct items in the whole network, and let N
be the total frequency of all items in the whole network, where N is at most mn. Let α be a constant where α > 0. Let

r, b be the parameters for the CountSketch, where r is O(logN), and b ≥ 8k. Let β =

√∑m

q′=k+1
c2(vq′)

b , where vq′

is the top q′th frequent item. If there is no bad peer in the network, then after running Algorithm 3, we can get that with
high probability 1−α/N , for any item v, if the frequency of item v is c(v), then ||median{hi[v]si[v]}| − c(v)| ≤ 8β.

The proof of Lemma E.2 can be seen in [7].
Lemma E.3 Let n be the number of peers and let each peer have constant distinct items. Let m be the number of
distinct items in the netwrok. Let N be the total frequency of all items in the whole network, where N is at most mn.
Let t be the number of bad peers, where t < n/3. Let δ, ε, k be constants where 0 < δ < 1/2, and 0 < ε < 1. Let
s = k log n be the size of a supernode. Let α be a constant where 0 < α < 1/100. Let r, b be the parameters for the

27

Algorithm 3 FindApproxTop (with Supernodes)

1. Phase 1

(a) Each peer is assigned to a supernode in such a way that Claim 2.7 is satisfied (details of how this
is done are described in Section 3).

(b) Initialize total: Each peer on a level 0 supernode sends its list of items to each peer in the
supernode’s neighbors on level 1. When the messages from level 0 supernodes are received,
constructs the CountSketch C by the operator Add(C, q) for each item in the messages.

(c) For all level i, 1 ≤ i < log n− log logn, of the butterfly network, repeat
• Transfer: Each peer p sends its CountSketch to each of p’s neighbored peers in the su-

pernode’s neighbors on level i+ 1. Let Q be a supernode on level i+ 1 and let A and B be
its neighbors on level i. Each peer p in Q computes CA and CB , respectively, by applying
median to each set ofCountSketch sent by p’s neighbored peers inA andB, respectively.
• Check: If any element of CountSketch received from level i contains a numv > 2is, set

this element of the CountSketch to 2is.
• Combine: Each peer p in supernode Q on level i + 1 revises its list as follows: Cp =
sum(CA, CB), where A and B are Q’s neighbors on level i.

(d) Final Step:As a single peer may have several CountSketch with different value depending on
which supernode it is in, it selects the median value as its final CountSketch.

2. Phase 2

(a) Initialize: Each peer on a level 0 supernode sends its list of items to each peer in the supern-
ode’s neighbors on level 1. When the messages from level 0 supernodes are received, then makes
use of Estimate function on the CountSketch generated in phase 1 to determine the list lq of
the top q frequent items in all the items in the messages.

(b) For all level i, 1 ≤ i < log n− log logn, of the butterfly network, repeat
• Transfer: Each peer p sends its list lq of the top q frequent items to each of p’s peers in the

supernode’s neighbors on level i+ 1. Let Q be a supernode on level i+ 1 and let A and B
be its neighbors on level i. Each peer in Q computes lAq and lBq, respectively, by applying
major topqlist to each set of lists sent by peers in A and B, respectively.
• Filter: Each peer makes use of Estimate function on its CountSketch generated in phase

1 to determine the list lq of the top q frequent items in the two lists lAq and lBq.
(c) Final Step:As a single peer may have several different top q frequent items list depending on

which supernode it is in, it applies major topqlist to the set of lists it received at bottom level
supernodes.

28

CountSketch, where r is O(logN), and b ≥ 8k. Let β =

√∑m

q′=k+1
c2(vq′)

b , where vq′ is the top q′th frequent item.
If the frequency of item v is c(v), then there are (1 − ε)(n − t) good peers which can determine that v’s frequency
cp(v), and −8β − δt ≤ cp(v)− c(v) ≤ 8β + (1 + δ)t
Proof. By Lemma E.2, if there is no bad peer in the network, then ||median{hi[v] ∗ si[v]}| − c(v)| ≤ 8β, i.e.
−8β ≤ |median{hi[v] ∗ si[v]}| − c(v) ≤ 8β. Now consider the t bad peers. By Lemma A.6, if there are t bad
peers controlled by the adversary in the network, then cp(v) will be in the range [|median{hi[v] ∗ si[v]}| − δt,
|median{hi[v] ∗ si[v]}| + (1 + δ)t], i.e. −δt ≤ cp(v) − |median{hi[v] ∗ si[v]}| ≤ (1 + δ)t. Thus we can get that
−8β − δt ≤ cp(v)− c(v) ≤ 8β + (1 + δ)t. ut

Lemma E.4 Let n be the number of peers and let m be the number of distinct items in the whole network. Let N be
the total frequency of all items in the whole network, where N is at most mn. Let t be the number of bad peers, where
t < n/3. Let δ, ε, k be constants where 0 < δ < 1/2, and 0 < ε < 1. Let s = k log n be the size of a supernode.

Let β =

√∑m

q′=k+1
c2(vq′)

b , where vq′ is the top q′th frequent item. Let r, b be the parameters for the CountSketch,

where r is O(log n), and b ≥ max

(
8k,

256
∑m

q′=k+1
c2(vq′)

(δc(vq)−2δt)2

)
. Then there are (1 − ε)(n − t) good peers which can

get the estimated top q items occurring at least (1− δ)c(vq)− t times in the network.
Proof. By Lemma E.3,for any item v, the estimate for the frequencies are within an additive factor of the true
frequencies, which is in the range [c(v)− 8β − δt, c(v) + 8β + (1 + δ)t]. Thus for two items whose true frequencies
differ by more than 16β+(1+2δ)t, the estimates correctly identify the more frequent item. By setting 16β+(1+2δ)t ≤
δc(vq) + t, we ensure that the only items that can replace the true most frequent items in the estimated top q list are
items with true frequencies at least (1− δ)c(vq)− t.

16β + (1 + 2δ)t = 16

√∑m
q′=k+1 c

2(vq′)
b

+ (1 + 2δ)t ≤ δc(vq) + t.

Isolating b in the above equation, we get that:

b ≥
256

∑m
q′=k+1 c

2(vq′)
(δc(vq)− 2δt)2

.

Thus, we have proved the lemma. ut

Theorem E.5 Let n be the number of peers. Let t be the number of bad peers and t < n/3. Let m be the number of
distinct items in the whole network, and let N be the total frequency of all items in the network, where N is at most

mn. Let r, b be the parameters for the CountSketch, where r is O(logN), and b ≥ max
(

8k,
256
∑m

q′=k+1
c2(vq′)

(δc(vq)−2δt)2

)
.

Assume that the items in the network distribute in Zipfian distribution with parameter z > 1/2, c(vq) = c
qz for some

scaling factor constant c, where vq is the top qth frequent item. Then for any fixed 0 < ε < 1, 0 < δ < 1/2, we are
able to solve the FindApproxTop problem, even in the case where an adaptive adversary causes a 1/3 fraction of the
peers in the network to suffer Byzantine faults. Moreover, the resource costs required by our algorithm are as follows.

• Algorithm 3 has latency O(log n).

• Every peer sends and receives O(log n) messages.

• Every peer has O(log n) neighbors in the network.

• Every peer sends O(log3 n+ log2 n logm) bits.

Proof. We only need to prove the number of bits sent by every peer is O(log3 n + log2 n logm). For the Zipfian
distribution with parameter z > 1/2, we can get that

m∑
q′=k+1

c2(vq′) =
m∑

q′=k+1

1
(q′)2z

=
{
O(logm), z = 1

2
O(k1−2z), z > 1

2

29

Thus if z > 1/2, b = k. In Phase 1 of Algorithm 3, the size of the CountSketch is r × b ≤ O(logN ∗ k) ≤
O(log(mn)) and the number of bits of each element in CountSketch is O(log n). Thus the number of bits for
each CountSketch is O(log n ∗ log(mn)). Each peer is assigned to O(log n) supernodes, thus each peer sends
O(log n ∗ log(mn) ∗ logn) = O(log2 n log(mn)) = O(log3 n+ log2 n logm) bits in the first phase. In Phase 2, each
peer only sends q items to its neighbors at the successive level, thus each peer sends O(log n) bits in the second phase.

Therefore, in Algorithm 3, each peer sends O(log3 n+ log2 n logm) bits. ut

30

