
Faster Agreement via a Spectral Method for Detecting Malicious

Behavior

Valerie King ∗ Jared Saia †

Abstract

We address the problem of Byzantine agreement, to
bring processors to agreement on a bit in the presence of
a strong adversary. This adversary has full information
of the state of all processors, the ability to control
message scheduling in an asynchronous model, and the
ability to control the behavior of a constant fraction of
processors which it may choose to corrupt adaptively.

In 1983, Ben-Or proposed an algorithm for solv-
ing this problem with expected exponential amount of
communication. In 2013, the algorithm was improved
to expected polynomial communication time, but still
an exponential amount of computation per individual
processor was required. In this paper, we improve that
result to require both expected polynomial computation
and communication time.

We use a novel technique for detecting malicious be-
havior via spectral analysis. In particular, our algorithm
uses coin flips from individual processors to repeatedly
try to generate a fair global coin. The corrupted pro-
cessors can bias this global coin by generating biased
individual coin flips. However, we can detect which pro-
cessors generate biased coin flips by analyzing the top
right singular vector of a matrix containing the sums of
coin flips generated by each processor. Entries in this
singular vector with high absolute value correspond to
processors that are trying to bias the global coin, and
this information can be used to blacklist malicious pro-
cessors.

1 Introduction

Random bits are used in computing to break symmetry,
ensure load-balancing, find a representative sample,
maximize utility, and foil an adversary. Unfortunately,
randomness is difficult to guarantee, especially in a
decentralized model where not all agents are guaranteed

∗Department of Computer Science, University of Victoria.

This research was partially supported by an NSERC grant and
PIMS; email: val@uvic.ca.
†Department of Computer Science, University of New Mexico.

This research was partially supported by NSF CAREER Award
0644058 and NSF CCR-0313160; email: saia@cs.unm.edu.

to be reliable. What happens if a hidden cabal generates
bits that are not truly random? Can we detect and
neutralize such behavior?

In this paper, we address this question in the
context of a classic problem in distributed computing:
Byzantine agreement. In the Byzantine agreement
problem, n agents, each with a private input, must
agree on a single common output that is equal to some
agent’s input. Randomization is provably necessary and
sufficient to solve this problem, but past randomized
algorithms required expected exponential time, in the
model we consider.

Our model: We consider Byzantine agreement in the
challenging classic asynchronous model. There is a
bound t on the total number of processors that the
adversary can take over. The adversary is adaptive:
it can take over processors at any point during the
protocol, up to the point of taking over t processors.1

Communication is asynchronous: the scheduling of the
delivery of messages is set by the adversary, so that
the delays are unpredictable to the algorithm. Finally,
the adversary has full information: it knows the states
of all processors at any time, and is assumed to be
computationally unbounded. Such an adversary is also
known as “strong” [3]. The major constraint on the
adversary is that it cannot predict future coinflips, and
we assume that each processor has its own fair coin and
may at any time flip the coin and decide what to do
next based on the outcome of the flip.

Communication Time in this model is defined to
be the maximum length of any chain of messages (see
[11, 3]), and sending a message over the network is
counted as taking 1 unit of communication time. In
addition, we consider computation time by individual
processors, which is measured in the usual way.

Our Result: In 2013 [17], the authors gave the
first algorithm in this model with expected polynomial
communication time. However, this algorithm required
exponential computation per processor. We improve
that result to require expected polynomial computation

1This is in contrast to a non-adaptive adversary that chooses
the t processors to take over at the beginning of the algorithm.

and communication. Specifically, our main result is as
follows.

Theorem 1.1. Let n be the number of processors, then
there is a t = Θ(n) such that the following holds in the
asynchronous message passing model with an adaptive,
full-information adversary that controls up to t proces-
sors. Byzantine Agreement can be solved in expected
O(n3) communication time, expected polynomial compu-
tation time per processor, and expected polynomial bits
of communication.

Neutralizer-Detector Game (simplified) We can
describe the computational problem we solve here, by
a novel game between a neutralizer N and and detector
D. We sketch a simplified version here and give a more
exact description in Section 5. An improvement to
the exact version would result in a speed-up to our
Byzantine agreement protocol.

The game starts with an m × n matrix, where
m = Θ(n), and proceeds in epochs on m× n′ matrices,
with n′ monotonically decreasing. Let c < 1 be a fixed
constant. In each epoch, N must pick the values in
its columns so that the sum of each row of the matrix
is neutralized, i.e., the absolute value of each sum of
each row of the matrix is less than cn. Let t be a
small constant fraction of n. Each epoch consists of
the following phases.

Phase 1: N may claim columns, provided that the total
number of columns claimed during the game is less
than t.
Phase 2: All entries in unclaimed columns are indepen-
dently set to the sum of n independent fair coinflips of
value +1 and -1.
Phase 3: N sets the values in its columns.
Phase 4: D may remove columns, provided that the
total number of columns removed during the game is
no greater than 2t.

The game ends when N fails to neutralize a row.
We show that D has a strategy with computational cost
of O(n3) time per epoch, and that this strategy ends
the game in an expected O(n) epochs.

Note that the game may be viewed as being played
over a weighted bipartite graph with node set (R,C).
The nodes in R correspond to the rows in the matrix,
and the nodes in C correspond to the columns in the
matrix. The weights on edges incident to unclaimed
nodes in C are set randomly and the weights on other
edges are fixed by the adversary (N). The algorithm
(D) must find a small superset of the claimed nodes.
Our solution involves identifying a subgraph where the
weights are higher than expected. Thus the problem

is related to an iterated version of finding a weighted
planted bipartite subgraph. See Section 2 for details.

1.1 Technical Overview In our algorithm, each
processor p maintains a set Vp of processors that p
accepts coinflips from. Initially Vp contains all n
processors. The algorithm proceeds in epochs, where
each epoch is composed of m iterations of a variant of
Ben-Or’s algorithm. In each iteration, each processor
broadcasts n coinflips, where heads is +1 and tails is -1.
At the end of every epoch in which agreement does not
occur, each processor p creates a m× |Vp| matrix, Mp,
where Mp(i, j) is the sum of the coinflips received in
iteration i from processor j. This matrix will be used
to detect bad processors, as described in Section 1.1.1.
To show how this is done, we first must describe two
important properties of the matrix.

• Property 1: For any good processor q, let s(i, q)
be the sum of coinflips broadcast by q in iteration
i. Then for any processor p, such that q ∈ Vp,
|Mp(i, Iq) − s(i, q)| ≤ 3, where Iq is the index
associated with processor q.

• Property 2: There exists a set of Θ(n) good
processors P ′, such that for every p ∈ P ′, the
following holds for a set, R, |R| = Θ(m), of the
rows ofMp. For all i ∈ R, |

∑
j∈IBMp(i, j)| ≥ kn,

where k is a fixed constant, and IB is the set of
indices associated with bad nodes.

Property 1 derives from our coin flipping algo-
rithm, GLOBAL-COIN, from Section 3.2; see also
Lemma C.5. This algorithm has been modified slightly
from the algorithm in [17] so that each processor now
performs only polynomial computation.

Property 2 holds via the following argument. In
each iteration, the sign (“direction”) of the sum of the
individual coinflips is used to generate a global coinflip
for our variant of Ben-Or’s algorithm (Algorithm 4).
Ben-Or’s algorithm has the property that, in each
iteration, there is a fixed direction such that, if the
global coinflip is in this direction, all processors reach
agreement in the next iteration. We call this the
“correct” direction. In any iteration, with constant
probability, the absolute value of the sum of the coinflips
of all good processors is more than 2kn and the sum is
in the correct direction. When this event occurs in an
iteration, we say that the iteration is “good”.

In any good iteration, the adversary must decrease
the absolute value of the sum by 2kn in order to prevent
agreement from being reached. At most kn of this
decrease can occur via the asynchronous scheduler. The
remaining kn of the decrease must occur via strategic

setting of the coinflips of the bad processors. Intuitively,
the set R in Property 2 is the set of good iterations for
processor p. See Lemma 4.1 for a detailed argument.

Properties 1 and 2 were shown to hold in [17]. Our
main contribution is to describe a new polynomial time
algorithm PROCESS-EPOCH that uses these prop-
erties to detect bad processors from the accumulated
coinflips. We next sketch this algorithm.

1.1.1 Detecting Bad Processors Imagine permut-
ing the columns of Mp so that Mp = [BpGp], where Bp
is a m × |B ∩ Vp| matrix consisting of the columns in
Mp corresponding to the bad processors, and Gp is a
m × |G ∩ Vp| matrix consisting of the columns corre-
sponding to the good processors. From Property 2, we
can prove that for all p ∈ P ′, the 2-norm of the matrix
Bp will be at least c1n for some constant c1 (Lemma 6.3).
By a standard result on the 2-norm of a matrix of ran-
dom variables [1], and by Property 1, we can show that,
w.h.p., the 2-norm of the matrix Gp will be at most c2n
for a constant c2 < c1 (see Corollary 6.1 and Lemma 6.1
for details). The gap between c2 and c1 can be made
arbitrarily large as the ratio t/n decreases (Lemma 6.2).

Our technique for detecting the bad processors
relies on this gap between c1 and c2. Specifically, let
rp be the top right singular vector of Mp. We show
that if the gap between c1 and c2 is sufficiently large,
the values r2p[i] for i associated with bad processors, will

tend to be larger than the values r2p[j] for j associated
with good processors. In particular, we can ensure
that

∑
i∈IG r2p[i] < (1/2)

∑
i∈IB r2p[i], where IG is the

set of indices whose columns map to good processors,
and IB is the set of indices whose columns map to bad
processors.

The algorithm that each processor p uses to de-
tect bad processors then is simple. Initially, p sets
cumdevp(q) to 0 for all processors q. Then at the end
of each epoch, p computes a matrix Mp for that epoch
as described above. If the 2-norm ofMp is at least c1n,
then, for each processor q, p increases cumdevp(q) by
r2p[q], where rp is the top right singular vector of Mp.
For all processors q such that cumdevp(q) now exceeds
1, p removes q from Vp.

We show that, for any processor p, w.h.p., no
more than t good processors are ever removed from
Vp (see proof of Lemma 6.5). Once it is the case
that for every good processor p, all bad processors are
removed from Vp, and no more than t good processors
are removed from Vp, agreement is reached within an
expected constant number of iterations. We can make
the entire algorithm Las Vegas by ensuring that for
every processor p, all cumdevp values are reset to 0
and Vp is reset to all n processors, in the unlikely event

that more than 2t processors are added to p’s blacklist.

Paper Organization: The rest of this paper is or-
ganized as follows. In Section 2, we discuss related
work. In Sections 3.1, we present our modified ver-
sion of Ben-Or’s algorithm, MODIFIED-BEN-OR,
which calls upon a coinflip algorithm we call GLOBAL-
COIN. The GLOBAL-COIN procedure is presented in
Section 3.2. In Section 4, we analyze properties of the
coinflips generated and broadcast during the multiple
calls to GLOBAL-COIN in an epoch. In Section 5 we
describe in more detail two versions of the Neutralizer-
Detector game, such that a winning strategy for D gives
an algorithm for the processors in Byzantine agreement.
In Section 6, we describe PROCESS-EPOCH and an-
alyze the spectral properties of the matrices Mp de-
scribed above. Section 7 discusses future directions and
open problems.

Throughout this paper, we will use the phrase with
high probability (w.h.p.) to mean with probability
1− 1/nc for any fixed constant c.

2 Related work

Spectral Methods: Spectral methods have been used
frequently to identify trustworthy and untrustworthy
agents in decentralized systems. Perhaps one of the
most prominent applications is identifying trustworthy
web pages. The PageRank algorithm, of Page et al. [22]
(which was inspired by the spectral-based Clever algo-
rithm of Kleinberg [18, 10]) is well-known as the basis by
which Google ranks web documents. PageRank ranks
web pages based on the top eigenvector of a stochas-
tic matrix that describes a random walk over the web
graph. This eigenvector corresponds to the station-
ary distribution of the random walk, and pages that
have high probabilities in this stationary distribution
are considered to be “authoritative” web pages. It is
known that PageRank is relatively robust to adversar-
ial attempts to thwart it by adding a small number of
spurious links to the web graph [24, 4].

The idea of PageRank is the basis of the eigentrust
algorithm [15] (see also [23, 13, 24]). Eigentrust calcu-
lates the stationary distribution (the top eigenvector)
of a random walk in a trust graph, where an edge from
processor i to processor j has weight wi,j that indicates
how much processor i trusts processor j. Processors
with high probabilities in this stationary distribution
are considered trustworthy. Eigentrust also provides
some protection against collusion by bad processors.

We note that, in a sense, our approach is the
opposite of eigentrust. In our algorithm, processors
with high absolute values in the top singular vector
are not trustworthy. Intuitively, this is because in
our algorithm, good processors have random coinflips,

and so over time, the columns associated with these
processors will have little “structure”, which translates
to a small absolute value in the singular vector.

Our neutralizer detector game shares some simi-
larities with the hidden clique detection problem. In
this problem, proposed independently by Jerrum [14]
and Kucera [19], a random G(n, 1/2) graph is chosen
and then a clique of size k is randomly placed in the
graph. Alon, Krivelivich and Sudakov [2] described a
spectral algorithm that can find a clique, w.h.p., when
k = Ω(

√
n) [2]. Roughly, this algorithm 1) finds the sec-

ond eigenvector of the adjacency matrix of G; 2) Sets W
to be the top k vertices when the vertices are sorted in
decreasing order by their absolute value in this eigenvec-
tor; and 3) Returns as the clique the set of all vertices
of G that have at least 3k/4 neighbors in W .

Byzantine agreement: The number of papers pub-
lished on Byzantine agreement numbers well into the
tens of thousands. We refer the reader to [3, 21] for a
general overview of the problem. For conciseness, we fo-
cus here only on the classic asynchronous model, where
the adversary is adaptive and has full information. We
note that the full-information assumption makes the
problem challenging. With cryptographic assumptions,
it is possible to achieve Byzantine agreement in O(1)
communication time and polynomial computation time,
even in the asynchronous model when the adversary is
adaptive (see e.g. [9]).

The Byzantine agreement problem was introduced
over 30 years ago by Lamport, Shostak and Pease [20].
In the model where faulty behavior is limited to
adversary-controlled stops known as crash failures, but
bad processors otherwise follow the algorithm, the prob-
lem of Byzantine agreement is known as consensus. In
1983, Fischer, Lynch and Paterson (FLP) showed that
a deterministic algorithm cannot solve the consensus
problem in an asynchronous model even with one faulty
processor [12].

In 1983, Ben-Or introduced randomization, where
each processor can flip a random private coin, as a way
to avoid the FLP impossibility result. His algorithm
solved Byzantine agreement in communication time
exponential in the number of processors, in the classic
asynchronous model described above. His algorithm
consists of multiple rounds in which each good processor
tosses a coin. The communication time is proportional
to the expected number of rounds before the number of
heads exceeds the number of tails by more than t. Thus,
in expectation, this algorithm has constant running time
if t = O(

√
n), but has exponential running time for t any

constant fraction of n, up to t < n/5.
The resilience (number of faulty processors toler-

ated) was improved to t < n/3 in 1984 by Bracha [5].

The communication time remained exponential. This
resilience is the best possible [16].

In 2013, King and Saia gave the first algorithm
for the classic asynchronous model running in expected
polynomial communication time. Their algorithm re-
quired O(n2.5) expected communication time and tol-
erated t < n/500. Unfortunately, the computation
time was exponential. In this paper, we achieve ex-
pected polynomial communication and computation
time. However, there is a cost. Our expected com-
munication time increases to O(n3) and our resilience
decreases to t < .000028n.

3 The BYZANTINE-AGREEMENT Algorithm

The main algorithm, BYZANTINE-AGREEMENT
uses two procedures. The first, MODIFIED-BEN-
OR, is a modified version of Ben-Or’s 1983 expo-
nential expected time Byzantine agreement. This
achieves agreement in constant expected time if there
are no bad processors. If there are bad processors
then MODIFIED-BEN-OR is rerun until agreement
is achieved.

Let V be the set of all processors. After each
m = O(n) iterations of MODIFIED-BEN-OR (an
epoch), each processor p uses the second procedure,
PROCESS-EPOCH, to analyze data from that epoch
to assign “badness” in the form of cumdevp(v) to
processors v. Using these values, p maintains a subset of
the remaining possibly good processors Vp ⊆ V . Only
coinflips from processors in Vp are used by p in future
epochs.

After c1n epochs, where c1 is a constant, if no
agreement is reached, the sets Vp are reinitialized to
V , and the algorithm is restarted from scratch.

Algorithm 1 BYZANTINE-AGREEMENT

1: while there is no decision, repeat do
2: For each v ∈ V , cumdevp(v)← 0
3: Vp ← the set of all processors
4: for e = 1 to c1n {“p runs epoch e”} do
5: for i = 1 to m do
6: Run iteration i of MODIFIED-BEN-OR
7: end for
8: Run PROCESS-EPOCH
9: end for

10: end while

3.1 MODIFIED-BEN-OR In Ben-Or’s 1983
algorithm, a global coin with exponentially small prob-
ability is created when each processor flips one coin and
their values all coincide. Following [17], we replace these
individual coin tosses with a routine GLOBAL-COIN

involving up to n coin tosses per processor. Below is a
sketch of the algorithm. The complete MODIFIED-
BEN-OR algorithm is found in [17] and in the Ap-
pendix B.

We refer to each iteration of the while-loop as an
iteration of MODIFIED-BEN-OR. Note that some
processors may participate in GLOBAL-COIN even
though they do not use its outcome, to ensure full
participation by good processors. In MODIFIED-
BEN-OR, vp is initialized to be the processor p’s input
bit for Byzantine agreement.

Algorithm 2 MODIFIED-BEN-OR (sketch)

1: while not decided do
2: For a constant number of rounds, exchange initial

bits and messages about information received;
3: Let x be the number of messages of support for

bit b received:
a) CASE x > g(n): decide b;
b) CASE f(n) < x ≤ g(n): run
GLOBAL-COIN but set vp ← b;
c) CASE x ≤ f(n): vp ← GLOBAL-COIN.

4: end while

Lemma 3.1. ([6, 17]) In an iteration of
MODIFIED-BEN-OR with t < n/5:

1. Either there is agreement in the current or next
iteration, or all good processors run in GLOBAL-
COIN.

2. If greater than 4n/5 good processors start with the
same bit value v, then every good processors will
decide on v in that iteration. In particular, if
GLOBAL-COIN returns b (from Step 3(b)) to
4n/5 good processors then every good processor
comes to agreement in the next iteration.

3.2 GLOBAL-COIN The goal of GLOBAL-
COIN (given in the Appendix, Section C) is to generate,
with constant probability, a fair coinflip that is agreed
upon by a large fraction of good processors, or to
provide data which, after O(n) iterations, will enable
individual processors to identify bad processors.

The algorithm requires each processor to repeatedly
perform a coinflip where heads is +1 and tails is -1, and
broadcast up to n of these coinflips. Upon receiving
sufficiently many coinflips, each processor p computes
the sum of coinflips received from each processor q ∈ Vp,
and then decides on the sign of the total sum of coinflips
received.

The coinflipping occurs in n “rounds”. Each proces-
sor flips no more than one coinflip per round, and does

so after receiving confirmation that its coinflip from the
previous round was received by sufficiently many pro-
cessors. The round number is incremented only if a suf-
ficiently large majority of processors receive the same
coinflips for that round from the same large set of pro-
cessors. The algorithm follows the one in [17] except
that the process for incrementing the round number in
that paper potentially involves a non-polynomial time
computation. We replace that process by the efficiently
computable “Spread” protocol in [7]. The full algorithm
appears in the Appendix C.

The results of this section are summarized in the
following lemma.

Lemma 3.2. ([17]) If t < n/11 then GLOBAL-COIN
has the following properties:

1. There is a set S of n − 4t good processors which
receive n coinflips generated by each of at least
n − 2t good processors and receives all but 2 of
the coinflips generated by the remaining t good
processors, before deciding on the sign of the sum.
We use the term “common coins” to refer to this
set of at least n(n−2t)+(n−2)t coinflips generated
by good processors that are received by all members
of S.

2. All good processors p decide on a sum of the
coinflips generated by each processor q ∈ Vp which
is within 3 of the actual sum of coinflips generated
by q, before deciding on the sum of all the coinflips.

3. W.h.p. the absolute value of the sum of coinflips
generated by any one good processor is less than
c3n

.5 lnn − 3 and if any processor p receives coin-
flips generated by a processor q with absolute value
at least c3n

.5 lnn, p removes q from from Vp, for c3
a constant.

4 Detection of Deviation

We describe the information recorded by each processor
p after all the iterations of MODIFIED-BEN-OR in an
epoch have been completed (Step 7 of BYZANTINE-
AGREEMENT) by a matrix. Let Mp denote the
m×|Vp|matrix such thatMp(i, j) is the sum of coinflips
received in the i-th iteration of MODIFIED-BEN-OR
from processor j ∈ Vp.

Below we set α =
√

2n(n− 2t), β = α − 2t. The
following lemma is essentially the same as a lemma in
[17], except with a small improvement in the constants.
The full proof is in the Appendix D

Lemma 4.1. Assume that:

1. t < n/36;

2. for each good processor p, the number of good
processors in V \ Vp is no more than t; and

3. agreement is not achieved in an epoch e.

Then, w.h.p., there is a set of .026n good processors P ′

such that for every processor p ∈ P ′, there is a set of
bad processors Bp,e ⊂ Vp and a set of iterations Ip,e,
|Ip,e| ≥ m′ = .002m, such that for every i ∈ Ip,e,∣∣ ∑

j∈Bp,e

Mp(i, j)
∣∣ > β/2.

This leaves the computational problem for each
processor in P ′ of identifying a suitably sized submatrix
each of whose columns sum to a number whose absolute
value exceeds β/2. Finding such a set of processors with
the requisite sums does not imply that the processors in
the set are all bad, but it is a first step used in [17], where
that problem is solved in exponential computational
time.

In Section 6, we give a polynomial time algorithm
for p to measure a processor’s contribution to these sums
as a means of deciding whether to remove that processor
from Vp.

5 The Complete Neutralizer-Detector Game

We now describe two versions of the Neutralizer-
Detector game. Both versions are sufficient in the sense
that any strategy for D provides a successful strategy
for the Byzantine agreement protocol. The second ver-
sion is particularly limiting for the algorithm–the ad-
versary may fail in preventing Byzantine agreement in
ways other than those that provide a winning strategy
for D in the game. The advantage of the second ver-
sion is that it gives us a way to design and analyze a
polynomial time strategy.

Recall the simplified version of the game. The game
begins on an m × n matrix and m = Θ(n), and it
proceeds in epochs with newly generated matrices on
a monotone decreasing subset of columns. Let c be a
fixed constant. For each epoch, N must pick the values
in its columns so that the sum of each row of the matrix
is neutralized, i.e., the absolute value of each sum of each
row of the matrix is less than cn. After each epoch D
can remove columns so that N will eventually fail. Let
t be a small constant fraction of n. Initially, N has no
columns. Each epoch consists of the following phases.

Phase 1: N may claim over columns, provided that the
total number of columns claimed during the game is less
than t.
Phase 2: All entries in unclaimed columns are indepen-
dently set to the sum of n independent fair coinflips of
value +1 and -1;

Phase 3: N sets the values in its columns.
Phase 4: D may remove columns (for the next epochs),
provided that the total number of columns removed dur-
ing the game is no greater than 2t.

The game ends when N fails to neutralize a row.
The complete versions of the game keep the same
framework, but there are some additional specifications
described below.

5.1 General Version In the most general version,
there are n − t players which each independently play
the game as D against an adversary N. For each epoch
i and all players, there is one m×n matrixMi and one
set of columns claimed by N for all n−t instances of the
game. However, each player p seesMi,p which contains
a possibly different version of Mi, depending on the
columns the player has removed, and the differences
described below.

1. All unclaimed entries are generated by the sum of
up to n fair coinflips ∈ {+1,−1}.

2. Fix an epoch i. Let inS(p, r) be a Boolean function
determined by N which, for any row r, is true for
all p in some subset of n−2t players. For any row r
ofMi and for any player p, if inS(p, r) is true, the
following holds. Let x be the number of columns
removed by p. Then there are at least n − 2t − x
entries in row r, in unclaimed columns, such that
these entries in Mip equal the entries in Mi. The
remaining up to t values in row r inMip are within
plus or minus 2 of the values of Mi. If inS(p, r) is
false, or a column is claimed by N , then the entry
in Mi,p for that row and column is within plus or
minus 3 of the entry in Mi.

3. A row in Mi may be in the right direction. This
is decided independently for each row, by a coinflip
with probability 1/2. The results of these coinflips
are known to N ahead of time, but not to any
player.

4. N fails if 2n/3 + 1 good players agree on the sign of
the sum of a row that is in the right direction.

5.2 Specific Version In the specific version, we use
properties of the distribution to arrive at a restriction
of the game which makes the design and analysis of a
strategy simpler.

1. Fix an epoch i. N selects a set of .026n “special”
processors in that epoch. For every special proces-
sor, p, there is a subset Rp of at least .002n rows,
with properties described below.

2. If a processor p is special then: 1) inS(p, r) is true
(see above) for all r ∈ Rp; 2) the sum of the entries
of unclaimed columns in Mi,p have absolute value
> α− β/2− 2t = β/2; and 3) N must neutralize to
0 (or reverse the sign of the sum) for all row r ∈ Rp
for p, or else N fails.

3. Processor p’s strategy in epoch i can depend only
on Mi′,p, for all i′ ≤ i. In particular, p does not
know if it’s special for an epoch, or the values of
the function inS, or which rows are in Rp.

4. Each positive (resp. negative) entry a in any
matrix, is replaced by min{n.5 log n, a} (resp.,
max{−n.5 log n, a}).

There will be many epochs, possibly all, in which p
is not special. Additionally, p’s strategy must depend
only on the values in the Mi,p. We show that each
player has a strategy with computation cost of O(n3)
time per epoch, which ends the game in an expected
O(n) epochs. The communication cost of the Byzantine
agreement protocol is O(n2) per epoch or O(n3) overall.

6 Spectral Analysis of Coinflips

Algorithm 3 PROCESS-EPOCH

1: if |Mp| ≥ (β/2)
√
m′/t then do then

2: Let rp be the right singular vector of Mp

3: For each 1 ≤ i ≤ n, increase cumdev(i) by
(rp[i])2

4: For each 1 ≤ i ≤ n remove processor i from Vp
5: end if

Throughout this section, we will be using the 2-
norm of vectors and matrices. The 2-norm of a vector
v is |v|2 =

√∑
i v

2
i . The 2-norm of a matrix M is

|M|2 = max|u|2=1 |Mu|2. We will drop the subscript 2
from all norms for notational clarity.

Recall that β/2 =
√

2n(n− 2t)/2 − t. From
Lemma 4.1, let m be the number of iterations in an
epoch, let P ′ be the set of processors p such that p
receives all the common coins and for each p there exists
a set of m′ “good” iterations in the epoch such that the
sum of coinflips r − received from bad processors in Vp
exceeds β/2.

The following is a restatement of Theorem 3 from
Achlioptas and McSherry [1].

Theorem 6.1. [1] Let M be a random m by n matrix
such that M(i, j) = rij where {rij} are independent
random variables and for all i, j : rij ∈ [−K,K],
E(rij) = 0 and V ar(rij) ≤ σ2. For any γ ≥ 1, ε > 0

and m+ n ≥ 20, if

K ≤
(

4ε

4 + 3ε

)3
σ
√
m+ n

log3(m+ n)

then

Pr(|M| > (2 + γ + ε)σ
√
m+ n) < (m+ n)−γ

2

The remaining lemmas in this section hold for any
fixed epoch e.

Let G be a m by n− t matrix based on all coinflips
broadcast by the good processors. Specifically, G(i, j) is
the sum of the coinflips broadcast in the i-th iteration
by the j-th good processor, if the absolute value of this
sum deviation does not exceed cn.5 lnn; else it is 0.

Corollary 6.1. For every ε > 0, for n sufficiently
large,

Pr(|G| > (3 + ε)
√
n(m+ n− t)) < (m+ n− t)−1.

Proof. Note that G(i, j) = rij where rij are indepen-
dent random variables with rij ∈ [−cn.5 lnn, cn.5 lnn],
E(rij) = 0 and V ar(rij) = σ2 ≤ n. Let α = 1 and ε > 0
in Theorem 6.1. Then for any positive constant ε, for
n sufficiently large, the precondition of Theorem 6.1 is
satisfied and the result follows.

For every good processor p, let Gp be a m by |G∩Vp|
matrix, where Gp(i, j) is the sum of the coinflips r-
received by p in the i-th iteration from the j-th good
processor in Vp.

Lemma 6.1. Assume |G| ≤ (3 + ε)
√
n(m+ n− t)).

Then for all p, |Gp| ≤ (6 + ε)
√
n(m+ n− t).

Proof. Fix a processor p and let G′p be the m by |Vp|
matrix obtained by omitting columns for j /∈ Vp from
the matrix G. It is easy to see that |G′p| ≤ |G|. By
Lemma C.5, |sump(q)−sum(q)| ≤ 3. Hence Gp = G′p+A
where all entries of A are integers between -3 and 3.
Clearly, |A| ≤ 3

√
mn. We thus have |Gp| = |G′p +A| ≤

|G′p| + |A| ≤ |G| + 3
√
mn and the result follows by

Corollary 6.1.

For a given processor p, let Bp be an m by |Vp ∩B|
matrix where Bp(i, j) is the sum of coinflips r-received
by p in the i-th iteration from the j-th bad processor in
Vp.

For the remainder of the paper, we assume t
is sufficiently small so that (6 + ε)

√
n(m+ n− t) <

(1/k)(β/2)
√
m′/t, e.g., t < β2m′

4(6+ε)2k2nm , where k = 5.45

and ε any constant.

Lemma 6.2. Assume |G| ≤ (3 + ε)
√
n(m+ n− t). Let

k > 0. Then for any processor p such that |Bp| ≥
(β/2)

√
m′/t, we have |Gp| ≤ (1/k)|Bp|.

Proof. By Lemma 6.1, |Gp| ≤ (6 + ε)
√
n(m+ n− t).

Then we have:

|Gp| ≤ (6 + ε)
√
n(m+ n− t)

≤ (1/k)(β/2)
√
m′/t

≤ (1/k)|Bp|

Lemma 6.3. For any processor p ∈ P ′, let tp be the
number of bad processors in Vp. Then

|Bp| ≥ (β/2)
√
m′/tp.

If |G| ≤ (3 + ε)
√
n(m+ n− t), then |Gp| ≤ (1/k)|Bp|.

Proof. Let x be a length tp unit vector, where all entries
equal 1/

√
tp. Consider the vector y = Bx. Note

that for at least m′ entries of y, the square of the
value of that entry is at least (β/2)2/tp. Hence |y| ≥
(β/2)

√
m′/tp ≥ (β/2)

√
m′/t. The second inequality

follows from Lemma 6.2.

Recall that Mp is the m by |Vp| matrix such
that Mp(i, j) is the sum of the coinflips r-received by
processor p in the i-th iteration from the j-th processor
in Vp. For simplicity of analysis, we assume that the
columns ofMp are arranged so that the columns for the
tp bad processors in Vp are to the left of the columns
for the np − tp good processors. We note that this
rearrangement is equivalent to multiplying Mp by a
permutation matrix and so will not effect the singular
values of M.

We thus let Mp = [BpGp]. Now let `p and rp be
the top left and right singular vectors ofMp. Note that

by definition, |Mp| = `p
TMprp.

Our analysis will focus on rp. Let bp be defined
such that for all 1 ≤ i ≤ t bp[i] = r[i] and all other
entries of bp are 0. Similarly, define gp such that for all
t+ 1 ≤ i ≤ n, gp[i] = r[i] and all other entries of gp are
0. Note that by construction, rp = bp + gp.

Lemma 6.4. Assume |G| ≤ (3 + ε)
√
n(m+ n− t)).

Then for every processor p such that |Mp| ≥
(β/2)

√
m′/t, |gp|2 < |bp|2/2. In particular, this holds

for all p ∈ P ′.

Proof. Assume by way of contradiction that |gp|2 ≥
|bp|2/2. Note that |gp|2 + |bp|2 = |rp|2 = 1. Thus,
we have

1 = |gp|2 + |bp|2

≥ |bp|2/2 + |bp|2

= 3/2|bp|2

This implies that |bp|2 ≤ 2/3 or |bp| ≤
√

2/3. We
further note that |gp|2 ≤ 1, so |gp| ≤ 1.

Now Mprp = [BpGp](bp + gp) = Bpbp + Gpgp.
Hence |Mprp| ≤ |Bp||bp|+ |Gp||gp|.

Putting this together, we have:

|Bp| ≤ |Mp|
= `p

T (Mprp)

≤ |`p||Mprp|
≤ |Bp||bp|+ |Gp||gp|
≤ |Bp|(|bp|+ (1/k)|gp|) by Lemmas 6.2 and 6.3

≤ |Bp|(
√

2/3 + 1/k)

< |Bp|

which is clearly a contradiction. In the above inequal-
ities, the third line follows by the Cauchy-Schwartz in-
equality, and the last line follows for k >

√
3/(
√

3 −√
2) = 5.45.

Lemma 6.5. With probability at least 1/2, Algorithm 1
will terminate successfully in 84t epochs, each consisting

of m = 2n iterations, with resilience t < β2m′

4k2(6+ε)2nm =

2n ∗ .002m/(4 ∗ 30 ∗ 36nm) = .000028n. When
the algorithm terminates, all processors will achieve
Byzantine agreement. The algorithm is Las Vegas with
expected 2 ∗ 84tm < n2 iterations of modified Ben-Or’s
algorithm for a total of O(n3) rounds of communication
and polynomial time computation.

Proof. Note that with probability 1 − 1/(m + n − t) −
1/nc, every iteration in an epoch will be such that
|G| ≤ (3 + ε)

√
n(m+ n− t).

We first claim that no more than t good processors
are ever removed from Vp for any processor p. First,
observe that each processor v is removed from Vp when
cumdevp(v) ≥ 1. Each epoch can add no more
than 1 to this total for any processor. Hence, the
maximum cumdevp accrued by a processor before its
removal is less than 2. Assume to the contrary that
more than t good processors have been removed from
Vp, then

∑
i∈G cumdevp(i) > t. But in any epoch

where processor p adds to the cumdev values, it must
be the case that |bp|2 ≥ 2|gp|2, and so the increase
in cumdevp values for processors in B is twice the
increase of cumdevp values for processors in G. Thus,∑
i∈B cumdevp(i) > 2t. Since there are no more than

t bad processors, this implies that for at least one bad
processor i, cumdevp(v) > 2, giving a contradiction.

We next show that all bad processors will be re-
moved from each Vp for all p ∈ G in O(n) epochs. By
Lemma 6.3, w.h.p. in every epoch which does not termi-
nate, there are .052 ∗ .048n > .024n = Θ(n) processors

in P ′ such that |Mp| ≥ |Bp| ≥ β/2
√
m′/t, thus the

value of
∑
i cumdevp(i) must increase by 1 for each of

these processors in P ′. Thus,
∑
p

∑
i cumdevp(i) must

increase by .024n in each of these epochs. As shown
above, at most t good processors can be removed from
Vp. Thus, once

∑
p

∑
v cumdevp(v) > n2t all bad pro-

cessors are removed from each Vp for all p ∈ G. If
the conditions for Lemma 6.3 hold in each epoch that
does not terminate, then there will be 2tn/.024n ≤ 84t
epochs.

Set c1n = 84t as the number of epochs needed to
remove all bad processors and let m = 2n > 2c1n. Then
with probability at least 1− c1n/(m+n− t)− c′n/nc >
1/2, the entire algorithm will successfully run for c1n
epochs until all bad processors are removed. Then it
will succeed w.h.p. in the next epoch. If this fails
to occur, it will repeat until Byzantine agreement is
decided, making the algorithm Las Vegas. As each
epoch contains O(n) iterations of MODIFIED-BEN-
OR; each execution of MODIFIED-BEN-OR contains
one GLOBAL-COIN which in turn contains O(n+ 1)
rounds of communication, the total communication cost
is O(n3) expected time.

We can analyze computation time per processor
as follows. Each round of GLOBAL-COIN requires
O(n2) computation to process up to n coinflips and re-
ceived coinflip messages. After each epoch the com-
putation of the singular value decomposition requires
O(n3). Thus the total computation time is dominated
by the cost of MODIFIED-BEN-OR, for a total ex-
pected cost of O(n5).

This concludes the proof of Theorem 1.

7 Conclusion and Future Work

We have described an algorithm to solve Byzantine
agreement in polynomial expected communication time
and computation time. Our algorithm works in the
asynchronous message-passing model, when an adap-
tive and full-information adversary controls a constant
fraction of the processors. Our algorithm is designed
so that in order to thwart it, corrupted nodes must en-
gage in statistically deviant behavior that is detectable
by individual nodes. This suggests a new paradigm for
randomized distributed computing: the design of algo-
rithms which force attackers into behavior which a good
processor might possibly engage in but is statistically
unlikely, and which is detectable in polynomial time.

Our result leaves much room for improvement, in
terms of the resilience and expected communication
time. Can the resilience be increased to the optimal
bound of t < n/3? Can we decrease the expected
communication time to O(n2.5) as achieved in [17] but

with polynomial time computation? An intriguing open
question is whether the expected communication time
can be brought down to the known lower bound of Ω̃(n)
or whether Byzantine agreement is intrinsically harder
than consensus, in terms of time or step complexity.

A Appendix

The material here is substantially contained in [17], with
the exception of some improved constants, and the use
of the Spread routine from [7] in GLOBAL-COIN,
making it computable in O(n2) time.

B MODIFIED-BEN-OR algorithm

We now describe MODIFIED-BEN-OR, a slight mod-
ification of Ben-Or’s algorithm for Byzantine agreement
[6].

We refer to each iteration of the while-loop as an
iteration of MODIFIED-BEN-OR. The only change
to Ben-Or’s protocol is that instead of flipping a pri-
vate coin, a processor uses a coinflip generated by the
algorithm GLOBAL-COIN. The GLOBAL-COIN al-
gorithm takes as an argument the iteration number of
MODIFIED-BEN-OR and attempts to generate a fair
global coin for that iteration; we describe GLOBAL-
COIN later as Algorithm 5.

Note that some processors may participate in
GLOBAL-COIN even though they do not use its out-
come, to ensure full participation by good processors.
In MODIFIED-BEN-OR, vp is initialized to be the
processor p’s input bit for Byzantine agreement.

The following lemma follows from the result in [6].

Lemma B.1. (Ben-Or [6]) In an iteration of
MODIFIED-BEN-OR with t < n/5:

1. If greater than 4n/5 good processors have the same
vote value v, then every good processors will decide
on v in that iteration.

2. If a good processor sends (2, r, v,D), then no other
good processor sends (2, r, v′, D) for v′ 6= v.

3. If at least 2t+ 1 D-messages are sent by good pro-
cessors, then the outcome from GLOBAL-COIN
is not used and there is a decision in the next iter-
ation.

4. If no more than 2t D-messages are sent by good
processors then all good processors participate in
GLOBAL-COIN.

5. If GLOBAL-COIN(k) returns v to 4n/5 good
processors and no good processor has received at
least t + 1 messages (2, r, v′, D) for v′ 6= v, then
every good processor comes to agreement in the next
iteration.

Algorithm 4 MODIFIED-BEN-OR

1: k ← 1
2: while not decided do
3: send the message (1, k, vp) to all processors;
4: wait until messages of type (1, k, ∗) are received

from n− t processors;
5: if there are more than (n + t)/2 messages of the

form (1, k, v) then
6: send the message (2, k, v,D) to all processors;
7: else
8: send the message (2, k, ?) to all processors;
9: end if

10: wait until messages of type (2, k, ∗) are received
from n− t processors;

11: if there are more than (n + t)/2 D-messages of
the form (2, k, v,D) then

12: decide v;
13: else if there are at least t + 1 D-messages

(2, k, v,D) then
14: run GLOBAL-COIN(k) but set vp ← v;
15: else
16: vp ← GLOBAL-COIN(k);
17: end if
18: k ← k + 1;
19: end while

Proof. The proof follows from the correctness of Ben-
Or’s algorithm and the observation that if no more than
2t D-messages are sent by good processors, then no
more than 3t ≤ (n+ t)/2 D-messages are received by all
processors and lines 13-17 apply. Otherwise, if at least
2t+1 D-messages are sent by good processors, then each
processor receives at least t+ 1 D-messages and so only
lines 11-14 apply and the output of GLOBAL-COIN
is not used.

C GLOBAL-COIN

The algorithm makes use of the reliable broadcast
primitive from Bracha [8]. In this primitive, a single
player calls broadcast for a particularly message m, and
subsequently, all players may decide on exactly one
message. The reliable broadcast primitive guarantees
the following:

1. If a good player broadcasts a message m, then all
good players eventually decide m.

2. If a bad player p broadcasts a message then either
all good players decide on the same message or no
good players decide on a message from p.

The algorithm assumes that all broadcasts are reli-
able broadcasts; we use the word broadcast to refer to

reliable broadcast, and the word r-received to refer to
deciding on a message which was reliably broadcast. In
addition, we define set-broadcast to have the properties
of reliable broadcast and also have the following addi-
tional property.

• A set-broadcast is not r-received by a processor p
unless p has received messages from n−t processors
participating in the set-broadcast.

The algorithm has the following types of messages.

• coinflip message (p, c, i): broadcast by processor p
when p generates its i-th coinflip that has value c

• received-coinflip message (p, q, c, i): broadcast by
processor p when p r-receives the coinflip message
(q, c, i)

• release message (p, i): sent by processor p only to
processor q after p r-receives n− t received-coinflip
messages of the form2 (∗, q, c, i)

• received-sum message (p): broadcast by processor
p once it completes the last round of the algorithm.
This message consists of n values: for each proces-
sor q, there is a value giving the sum of all coinflips
that p received for q

In the algorithm, ip is the number of coinflips p has
generated to completion, and jp is the number of rounds
which p has observed to completion.

C.1 Analysis of GLOBAL-COIN

Lemma C.1. In GLOBAL-COIN, every processor
will eventually decide a value of the global coinflip.

Proof. We prove this by induction on the number of
rounds. We will show that for all 0 ≤ j ≤ n, if all
good processors reach round j, then all good processors
will reach round j + 1. The lemma then follows since a
processor decides a value of the global coinflip as soon
as it reaches round n+ 1.

For any processor p, there are two conditions that
must be satisfied for p to advance from round j to round
j + 1. The first is that the processor is not waiting on
Step 1(d). The second condition is that the processor is
not waiting on Step 2(c).

The first condition will always eventually occur for
any processor p. To see this, note that if there is some
coinflip c, and some k ≤ j, and p has r-received at least
t + 1 received-coinflip messages of the type (∗, b, c, k),
then at least one good processor has r-received the

2The ∗ notation means that an argument can be any value

coinflip message (b, c, k). Thus eventually, p will r-
receive the coinflip message (b, c, k). Hence, for the
remainder of this proof, we focus solely on the condition
of Step 2.

Assume all good processors reach round x. We note
that if one good processor then reaches round x + 1,
that all good processors will eventually reach round
x + 1. To see this, let p be one of the good processors
that eventually reach round x + 1. This implies that p
satisfied the conditions of Step 2, namely, p r-received
sets which were set-broadcast by t+ 1processors and r-
received all the messages in the sets. Therefore every
message in these set will eventually be r-received by
every processor g and g will participate in the set-
broadcast of that set. Eventually every good processor
will r-receive the same sets and move to round x+ 1.

We now show that at least one good processor will
eventually reach round x + 1 ≤ n + 1, given that
all good processors have reached round x. Assume
not. Then all good processors are stuck in round x
indefinitely. While this is true, for any good processor
p that has broadcast coin flip i ≤ x, the coinflip
message (p, c, i) will eventually be r-received by every
good processor q. Then at least n − t processors q will
broadcast the received-coinflip message (∗, p, c, i), which
will eventually be received by all good processors q′,
which will send a release message (q′, i) to p. Thus, p
will eventually complete its i-th coin toss, for all i ≤ x.

Assume to the contrary that no processor has
completed round x < n + 1 and advanced to x +
1, and use what we have shown, that all processors
will eventually reach round x. Then the following
will occur: all good processors will broadcast their
x-th coinflip; the coinflip message (p, c, x) will be r-
received by all good processors; all good processors q
will broadcast the received-coinflip messages (∗, p, c, x);
and all processors will r-receive these coinflip messages
(p, c, x), and received-coinflip messages, (∗, p, c, x).

Lemma C.2. There is a set S of processors of size n−2t
such that n−2t good processors that r-receive n coinflips
from all processors in the set before they set their value
of the global coin.

Proof. By Lemma C.1, all processors eventually decide
the value of the global coin. Let p be the first good
processor to do so. By the condition of Step 2, p has
r-received t+1 sets, at least one set-broadcast by a good
processor. Since the good processors wait to participate
in a set-broadcast until they have r-received all the
messages in the set, and since set-broadcast requires
the participation of at least n − 2t good processors,
then n − 2t good processors r-received the nth round
coinflips by the same n − t processors (n − 2t of which

are good) whose coinflips are reported in that set before
p completed the round and set the global coin. A
processor which r-receives the nth round coin flipped
by a processor must also have r-received its previous
coins.

Lemma C.3. Consider the coinflip messages broadcast
by processors in the set V \ S, where S is as defined in
Lemma C.2. There is a set of n − 2t good processors
that r-receive, before they set their value of the global
coin, all but possibly two coinflip messages broadcast by
each good processor in V \ S.

Proof. Order the coinflip messages of good processors
by when their broadcasts are begun.

Let b1 and b2 be the last two coin flip messages
broadcast by processor B, where processor B is chosen
over all good processor to maximize the time t that b1
was broadcast.

Let t be the time of b1’s broadcast. Consider any
other good processor A which broadcasts at least three
coinflip messages. All but one of these were broadcast
at time no later than t. Let a1 and a2 be the last two
coinflip messages broadcast by A at time no later than
t. Let Sa1 and Sb1 be the sets of processors which
broadcast release messages for a1 (resp. b1) before
a1 (resp. b1) were completed. Let Rb1 be the set of
processors which broadcast received-coinflip messages
for b1.

Then since the broadcast of a2 occurred by time
at most t, every processor in Sa1 received receive-
coinflip messages for a1 from n − t processors by time
t. Clearly all broadcasts of received-coinflip messages
for b1 occurred after time t. Since |Sa1 | ≥ n − t and
|Rb1 | ≥ n− t, then |Sa1 ∩Rb1 | ≥ n−2t, of which at least
n− 3t are good processors.

Note that each processor in Sb1 received received-
coinflip messages for b1 from n−t processors in Rb1 , and
that there are at least n−3t good processors in Sa1∩Rb1 .
Thus, at least n−4t > t of the received-coinflip messages
for b1 that are received by each processor in Sb1 contain
the received-coinflip messages for a1 and all previous
coinflips by processor A since by Step 1, every broadcast
by a processor of a received-coinflip contains a set of all
coinflips which have been r-received by that processor,
and if this set includes a1, it include all previous coinflips
by A.

Therefore every processor in Sb1 will wait to r-
receive a coinflip message for a1 before computing its
sums. Hence all processors in Sb1 will r-receive all but
possibly two coinflip messages of every good processor.
This will occur before each of them sets their global
coinflip, as it occurs before they send a release message
for b1.

Fix a set S of n − 2t good processors from
Lemma C.2, and another set Sb1 of n − 2t good pro-
cessors from Lemma C.3. There are at least n−4t good
processors in the intersection of these two sets. This
new set of good processors has r-received all coinflips
of good processors which were r-received by any pro-
cessor, except possibly the last two generated by each
of 2t good processors. We call the coinflips in this set
common coins.

Lemma C.4. There are at least n(n − 2t) common
coins, and no more than 2t coins from good processors,
no more than 2 per processor, which are not common.
The common coins are known to n−4t good processors.

Lemma C.5. Let t < n/11. Then the following hold.

1. W.h.p. no good processor will be removed from Vp
for any p from Step 11.

2. For any good processor q, let sum(q) be the sum of
all the coin flips broadcast by q during the course
of GLOBAL-COIN. Then for any good processor
p, it must be the case that |sump(q)− sum(q)| ≤ 3.

3. For any bad processor q, let p1 and p2 be good
processors that have not eliminated q from Vp1 or
Vp2 in Step 3 of GLOBAL-COIN, then it must be
the case that |sump1(q)− sump2(q)| ≤ 2.

Proof. We begin with part (2). In step 3 of GLOBAL-
COIN, n− t received-sum messages are r-received, and
at least n − 2t such messages must come from good
processors. By Lemma C.5, w.h.p., there are no more
than 4t good processors which are not in S as defined
in the statement of that lemma. Thus, in step 3
of GLOBAL-COIN, each processor r-receives n − t
received-sum messages, at least n−5t of which are from
good processors that know the common coins.

Now fix a good processor q and let c`−1 and c` be
the last two coinflips of processor q. By Lemma C.4,
there are no more than two coins per processor that
are not common and the common coins are known
by all but 4t good processors. Thus, by the above
paragraph, votep(q, sum(q)) + votep(q, sum(q) − c`) +
votep(q, sum(q)− c`− c`−1) ≥ n− 5t. Now assume that
at the end of Algorithm 5, processor p sets sump(q) to be
some value x such that |sum(q)−x| ≥ 3. Then by step 3,
votep(q, x − 1) + votep(q, x) + votep(q, x + 1) ≥ n − 5t.
But since x − 1, x and x + 1 are disjoint from sum(q),
sum(q)−c`, sum(q)−c`−c`−1, this implies there are at
least 2n−5t votes distributed across these 6 values. This
is a contradiction since 2n− 5t > n provided t < n/10.

We now show part (1) of the lemma. Let X be
the sum of at most n coinflips. The Chernoff bound

given in Fact 1 in the following section shows that

Pr(|X| ≥ −3 + c3n
.5 lnn ≤ 2e(

(3−c3n.5 lnn)2

2n) = n−c for
any c where c3 is a constant dependent on c. Thus,
by part (2) of the lemma, it must be the case that
|sump(q)| ≤ c3n.5 lnn.

We now prove part (3). Assume p1 and p2 are
good processors that have not removed q from Vp1 or
Vp2 in Step 3 of the algorithm. Let x1 = sump1(q)
and x2 = sump2(q) be the values set in Step 3 by p1

and p2 respectively. It must be the case that both
votep1(q, x1−1)+votep1(q, x1)+votep1(q, x1+1) ≥ n−5t
and votep2(q, x2−1)+votep2(q, x2)+votep2(q, x2 +1) ≥
n− 5t.

Assume by way of contradiction that |x1 − x2| ≥ 3.
Then the integer values x1−1, x1 x1+1, x2−1, x2 x2+1
are all disjoint. We know that the n− t good processors
each send the same received-sum message for q to both
p1 and p2. Hence, votep1(q, x1 − 1) + votep1(q, x1) +
votep1(q, x1 + 1) + votep2(q, x2 − 1) + votep2(q, x2) +
votep2(q, x2 + 1) ≤ n + t. Thus, we have the following
inequality 2n − 10t ≤ n + t. This is a contradiction
provided that t < n/11.

Lemma 3.2 follows immediately from the lemmas
above.

D Analysis of Deviation

The deviation of a stream of coinflips generated by a set
of processors is the absolute value of the sum of #1’s and
#-1’s in the stream. We refer to the sign of the deviation
as its direction. Below we set α =

√
2n(n− 2t) and

β = α− 2t.
We first analyze the deviations of the coinflips

generated by the processors.

D.1 Useful lemmas about the distribution of
coinflips We use the following facts about distributions
of random coinflips:
Fact 1: (Chernoff): Let X be the sum of N
independent coinflips. Then for any positive a,
Pr(X ≥ a) ≤ e−a2/2N .
Fact 2: Let X be the sum of N independent
coinflips. Let Φ(a) = 1/

√
2π
∫ a
−∞ e−1/2y2dy.

Then Pr(X > a
√
X) converges to 1 − Φ(a) >

(1/a − 1/a3)(1/
√

2π)e−a
2/2 [Feller in AC]. E.g.,

Pr(X >
√

2
√
N) > 1/20.

By Fact 2 and the symmetry of +1’s and -1’s:

Lemma D.1. A set of at least n(n − 2t) good coinflips
has a deviation of α =

√
2n(n− 2t) in any specified

direction with probability at least 1/20.

Lemma D.2. A set of no more than nt good coinflips
has a deviation of more than β/2 =

√
2n(n− 2t)/2− t

with probability at most e−(β/2)2/2tn. If t < n/36,
then β/2 > 23n/36 and this probability is at most

e(−.638n)2/(2n2(1/36)) < e−11.

D.2 No agreement implies unusual deviation
by bad processors In this subsection, we assume no
more than t good processors have been removed from
Vp for any p and show that w.h.p., a failure to come
to agreement over a large number of iterations implies
there is a large subset of iterations where there are
coinflips broadcast by bad processors with unusually
high deviation.

For each iteration of MODIFIED-BEN-OR, there
is a particular value for the global coin toss (1 or -
1) which will result in agreement. We call this the
correct direction. We now show that for a large majority
of processors p, there are many iterations with high
deviation of coinflips by good processors in Vp in the
correct direction.

Lemma D.3. Assume that the number of good proces-
sors in V \ Vp is no greater than t for all processors p.
Then, with probability at least 1− e−Ω(n), in m ≥ n it-
erations of MODIFIED-BEN-OR, there are at least
m′ = .048m iterations I with the following property.
For each iteration i ∈ I:
(i) the deviation of coinflips of all good processors in it-
eration i is at least α in the correct direction; and
(ii) there is a set of good processors S′ of size greater
than .99n − t such that for all p ∈ S′, the set of good
processors in V \ Vp generate coinflips with deviation
less than β/2 in the correct direction.

Proof. Fix a processor p. Since V \ Vp has less than t
good processors, Lemma D.2 shows the probability that
the deviation of the coinflips of these good processors in
V \Vp exceeds β/2 is less than e−11 in any fixed iteration.
Hence, in any fixed iteration, the expected number of
processors p such that the good processors in V \ Vp
have deviation exceeding β/2 is less than (n− t)e−11.

Consider the event that at least ne−5 < .01n
processors p have good processors in V \ Vp with
deviation exceeding β/2 in one iteration. By Markov’s
Inequality, the probability of this event is less than e−6.
Hence the expected number of iterations in which this
event occurs is at most me−6. Let X be the number of
iterations in which the event occurs. Since each iteration
is independent, we can use Chernoff bounds to bound
X: Pr(X ≥ (1 + e−2)me−6) = e−me

−10/3. This implies
Pr(X ≥ .003m) ≤ e−Ω(n).

Let Y be the number of iterations in which all good
processors have deviation in the correct direction of at
least α. From Lemma D.1, E(Y) is at least m/20. Using

Chernoff bounds, Pr(Y < (1−e−4)m/20) = e−me
−8/40.

This implies Pr(Y < .049m) ≤ e−Ω(n). Then by a union
bound, Pr(X < .003m) and Y ≥ .049m) is 1− e−Ω(n).
But if both X < .003nm and Y ≥ .049m, then there are
at least Y −X > .048m iterations satisfying conditions
(i) and (ii).

The next lemma shows that if the conditions above
hold, and the deviation of the coinflips by bad processors
is low, agreement will result.

Lemma D.4. Fix an iteration of MODIFIED-BEN-
OR. Let S be the set from Lemma 3.2 of good processors
which receive the common coins in the execution of
GLOBAL-COIN in that iteration. Let G ⊆ S with
|G| > 4n/5. If:
(i) the coinflips of all good processors have deviation at
least α in the correct direction; and
(ii) for every p ∈ G, the coinflips of good processors
in V \ Vp have deviation less than β/2 in the correct
direction; and
(iii) for every p ∈ G the coinflips which are r-received by
p and broadcast by bad processors in Vp have deviation
less than β/2;
then the processors in G will agree on a global coin in
the correct direction, and all processors will come to
agreement in the next iteration of MODIFIED-BEN-
OR.

Proof. We assume without loss of generality that the
correct direction for the global coin is +1, which corre-
sponds to the bit value 1 in MODIFIED-BEN-OR.

By Statement (1) of Lemma 3.2, the processors in
G will receive all coinflips generated by good processors
except at most 2 coinflips from each of as many as t
good processors. Hence the adversary may cause at
most a 2t change in deviation in the distribution of
these otherwise random coinflips r-received from good
processors. If in addition, the deviation of the coins
from good processors in V \ Vp is less than β/2, and
the deviation of the coins from bad processors which
each processor in G r-receives is less than β/2, then the
sum of the coinflips which each processor in G uses to
compute the global coin is greater than α− β − 2t = 0.

Thus, the global coin will be in the correct direction
for all processors in G. Hence each processor p ∈ G will
either ignore the global coin and set vp = 1, or will set
vp to the outcome of GLOBAL-COIN which is also 1.
Since |G| > 4n/5, the next iteration of MODIFIED-
BEN-OR will result in Byzantine agreement.

The next lemma gives processors a tool for singling
out processors which are exhibiting unusually high
deviation.

Definitions: Let isump(v, i) be the sum of coinflips by
v r-received by p in iteration i. We define the direction
in an iteration i for a set X of processors and a processor
p as follows: dirp(X, i) is 1 if

∑
v∈X isump(v, i) ≥ 0,

and −1 otherwise.
We define processor p’s view of the deviation in an

iteration i for a set X of processors as follows:

idevp(X, i) = |
∑
v∈X

isump(v, i)| =
∑
v∈X

isump(v, i)dirp(X, i)

Lemma D.5. Assume that: t < n/36; for each good
processor p, the number of good processors in V \Vp is no
more than t; and agreement is not achieved in an epoch
e. Then, w.h.p., there is a set of .026n good processors,
P ′ such that for every processor p ∈ P ′, there is a set
of bad processors Bp,e ⊂ Vp and a set Ie of greater than
m′ = .002m of “good” iterations in epoch e such that for
every iteration i ∈ Ie, idevp(Bp,e, i) ≥ β/2. Also there
is at least one processor which observes this in .004n
iterations.

Proof. By Lemma D.3, w.h.p., there is a set J of .048m
iterations which satisfy precondition (i) of Lemma D.4
and for each such iteration, there is a set S′ of more than
.99n− t good processors which satisfy precondition (ii)
of Lemma D.4. By Lemma 3.2 part (1), there are no
more than 4t good processors which are not in S as
defined in the statement of that lemma. Thus for each
iteration j ∈ J , there is a set Gj ⊆ S ∩ S′, of more
than .99n − t − 4t = .99n − 5t good processors such
that precondition (ii) of Lemma D.4 is satisfied for all
p ∈ Gj .

By the above argument, if there has been no
decision made in m iterations, then precondition (iii) of
Lemma D.4 must not hold for any iteration in J . Thus,
for every iteration j ∈ J , there must be a set Tj ⊆ Gj ,
|Tj | ≥ (.99n − 5t) − 4n/5 ≥ .052n for t < n/36, such
that for every p ∈ Tj , the coinflips broadcast by bad
processors in Vp have deviation at least β/2 in iteration
j.

We use an averaging argument to show this. For
at least .026n good processors p, p observes deviation
of at least β/2 for coinflips by a set of bad processors,
Bp,e in Vp in at least .026|J | iterations. The argument
is as follows: There are .052n|J | processor-iteration
pairs in which a processor observes β/2 deviation in the
iteration. Hence there is at least one processor which
observes β/2 deviation in .052|J | > .002m iterations.
The maximum number of pairs in containing fewer

than .026n different processors is less than .026n|J |.
Assume by contradiction that the remaining less than
n processors each appear in fewer than .026n|J | pairs.
Then the total number of pairs is less than .026n|J | +
n((.026|J |) = (.052 ∗ .048)n2. In the statement of the
lemma, setting P ′ to be this set of good processors
completes the proof.

References

[1] D. Achlioptas and F. McSherry. Fast computation of
low rank matrix approximations. In Proceedings of
the thirty-third annual ACM symposium on Theory of
computing, pages 611–618. ACM, 2001.

[2] N. Alon, M. Krivelevich, and B. Sudakov. Finding a
large hidden clique in a random graph. In Proceedings
of the ninth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 594–598. Society for Industrial
and Applied Mathematics, 1998.

[3] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics (2nd
edition). John Wiley Interscience, 2004.

[4] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia.
Spectral analysis of data. In Symposium on Theory of
Computing (STOC), 2001.

[5] M. Bellare and P. Rogaway. Random oracles are prac-
tical: a paradigm for designing efficient protocols. In
The First ACM Conference on Computer and Commu-
nications Security, pages 62–73, 1993.

[6] M. Ben-Or. Another advantage of free choice (Ex-
tended Abstract): Completely asynchronous agree-
ment protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed comput-
ing, pages 27–30. ACM New York, NY, USA, 1983.

[7] M. Ben-Or and R. El-Yaniv. Resilient-optimal inter-
active consistency in constant time. Distributed Com-
puting, 16(4):249–262, 2003.

[8] G. Bracha. Asynchronous byzantine agreement pro-
tocols. Journal of Information and Computation,
75(2):130–143, 1987.

[9] C. Cachin, K. Kursawe, and V. Shoup. Random oracles
in constantipole: practical asynchronous byzantine
agreement using cryptography. In (PODC), 2000.

[10] S. Chakrabarti, B. E. Dom, S. R. Kumar, P. Raghavan,
S. Rajagopalan, A. Tomkins, D. Gibson, and J. Klein-
berg. Mining the web’s link structure. Computer,
32(8):60–67, 1999.

[11] B. Chor and C. Dwork. Randomization in Byzantine
agreement. Advances in Computing Research, 5:443–
498, 1989.

[12] M. Fischer, N. Lynch, and M. Paterson. Impossibility
of distributed consensus with one faulty process. Jour-
nal of the ACM (JACM), 32(2):374–382, 1985.

[13] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. In Proceedings of

the 13th international conference on World Wide Web,
pages 403–412. ACM, 2004.

[14] M. Jerrum. Large cliques elude the metropolis process.
Random Structures & Algorithms, 3(4):347–359, 1992.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management in
p2p networks. In Proceedings of the 12th international
conference on World Wide Web, pages 640–651. ACM,
2003.

[16] A. Karlin and A. Yao. Probabilistic lower bounds
for byzantine agreement and clock synchronization.
Unpublished manuscript.

[17] V. King and J. Saia. Byzantine agreement in polyno-
mial expected time. In Proceedings of the ACM Sym-
posium on Theory of Computing (STOC), 2013.

[18] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM), 46(5):604–
632, 1999.

[19] L. Kučera. Expected complexity of graph partitioning
problems. Discrete Applied Mathematics, 57(2):193–
212, 1995.

[20] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4(3):401, 1982.

[21] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.,
1999.

[23] L. Xiong and L. Liu. Peertrust: Supporting
reputation-based trust for peer-to-peer electronic com-
munities. Knowledge and Data Engineering, IEEE
Transactions on, 16(7):843–857, 2004.

[24] H. Zhang, A. Goel, R. Govindan, K. Mason, and
B. Van Roy. Making eigenvector-based reputation
systems robust to collusion. In Algorithms and Models
for the Web-Graph, pages 92–104. Springer, 2004.

Algorithm 5 GLOBAL-COIN

Assumptions: Below, i, j are understood to mean ip and jp. Initially i, j ← 0. Let c3 be a constant which we
set in the proof of Lemma C.5.

1: {Coinflip:}
a) Whenever i ≤ j and p has not yet initiated the ith coinflip, then p flips a coin c and broadcasts the coin
flip message (p, c, i) {“p initiates the ith coinflip”} and all the coinflips it has previously r-received.
b) p does not participate in a coinflip broadcast (q, c, i′) unless it has r-received (q, c, i”) for all i” < i′.
c) Whenever p r-receives a coinflip message (q, c, i′), then p broadcasts the received-coinflip message (∗, q, c, i′)
and a list of all the received-coinflip messages it has r-received in any round.
d) For every received-coinflip message (q, c, i′) included on t+1 lists which p receives, p waits until it r-receives
(q, c, i′).
e) Whenever p r-receives n − t received-coinflip messages (∗, q, c, i′), then p sends to q the release message
(p, i′).

2: {Round:}
a) For round j, when there are n− t processors q such that p has r-received n− t received-coinflip messages
(∗, q, c, j) for the jth round coinflip message sent by each q, p broadcasts these messages as a set.
b) p participates in the set-broadcast of a set sent by other processors only if p r-received every one of its
messages.
c) p waits until it r-receives sets from t+ 1 processors such that for every message in these sets, p r-received
the same message. Then p increments j. {“p completes a round”}

3: {Terminate:} If j = n+ 1 then
a) p broadcasts a received-sum message containing for each processor q, the sum of the coin flips that p
received from q and waits until receiving such messages n− t other processors.
b) p broadcasts a received-sum message containing for each processor q, the sum of the coin flips that p
received from q.
c) p waits to r-receive received-sum messages from n− t other processors.
d) For each processor q and value x between −n and n, p sets votep(q, x) to the number of processors from
the previous step that claim that the sum of coinflips they received from processor p is equal to x.
e) For each processor q, p determines if there is a value −c3n.5 lnn ≤ x ≤ c3n

.5 lnn such that votep(q, x −
1) + votep(q, x) + votep(q, x + 1) ≥ n − 5t. If so, sump(q) ← x, for the smallest such x. If not, q is removed
from the set Vp.
f) p sets the value of the global coinflip to the sign of the sum of the values sump(q) over all processors q ∈ Vp.
Then p stops broadcasting messages, but continues to participate in the reliable broadcast of messages sent
by other processors.

