
Picking up the Pieces: Self-Healing in Reconfigurable Networks

Jared Saia ∗ Amitabh Trehan ∗

Abstract

We consider the problem of self-healing in networks
that are reconfigurable in the sense that they can change
their topology during an attack. Our goal is to maintain
connectivity in these networks, even in the presence of
repeated adversarial node deletion, by carefully adding
edges after each attack. We present a new algorithm,
DASH, that provably ensures that: 1) the network stays
connected even if an adversary deletes up to all nodes
in the network; and 2) no node ever increases its degree
by more than 2 log n, where n is the number of nodes
initially in the network. DASH is fully distributed; adds
new edges only among neighbors of deleted nodes; and
has average latency and bandwidth costs that are at
most logarithmic in n. DASH has these properties irre-
spective of the topology of the initial network, and is thus
orthogonal and complementary to traditional topology-
based approaches to defending against attack.

We also prove lower-bounds showing that DASH
is asymptotically optimal in terms of minimizing maxi-
mum degree increase over multiple attacks. Finally, we
present empirical results on power-law graphs that show
that DASH performs well in practice, and that it signif-
icantly outperforms naive algorithms in reducing maxi-
mum degree increase.

1. Introduction

On August 15, 2007 the Skype network crashed for
about 48 hours, disrupting service to approximately 200
million users [8, 13, 16, 19, 20]. Skype attributed this
outage to failures in their “self-healing mechanisms” [2].
We believe that this outage is indicative of a much
broader problem. Modern computer systems have com-
plexity unprecedented in the history of engineering: we
are approaching scales of billions of components. Such
systems are less akin to a traditional engineering enter-

∗Department of Computer Science, University of New Mexico, Al-
buquerque, NM 87131-1386; email: {saia, amitabh}@cs.unm.edu.
This research was partially supported by NSF CAREER Award
0644058, NSF CCR-0313160, and an AFOSR MURI grant.

prise such as a bridge, and more akin to a living organ-
ism in terms of complexity. A bridge must be designed
so that key components never fail, since there is no way
for the bridge to automatically recover from system fail-
ure. In contrast, a living organism can not be designed
so that no component ever fails: there are simply too
many components. For example, skin can be cut and still
heal. Designing skin that can heal is much more practi-
cal than designing skin that is completely impervious to
attack. Unfortunately, current algorithms ensure robust-
ness in computer networks through hardening individual
components or, at best, adding lots of redundant compo-
nents. Such an approach is increasingly unscalable.

In this paper, we focus on a new, responsive approach
for maintaining robust networks. Our approach is re-
sponsive in the sense that it responds to an attack (or
component failure) by changing the topology of the net-
work. Our approach works irrespective of the initial
state of the network, and is thus orthogonal and comple-
mentary to traditional non-responsive techniques. There
are many desirable invariants to maintain in the face of
an attack. Here we focus only on one of the simplest
and most fundamental invariants: maintaining network
connectivity.

The responsive approach will only work on networks
that are reconfigurable, in the sense that the topology
of the network can be changed. Not all networks have
this property. However, many large-scale networks are
reconfigurable. For example, peer-to-peer and overlay
networks are reconfigurable, as are wireless and mo-
bile networks. More generally, many social networks,
such as a company’s organizational chart; infrastructure
networks, such as an airline’s transportation network;
and biological networks, such as the human brain, are
also reconfigurable. The increasing importance of these
types of networks calls for new mathematical and algo-
rithmic methods to study and exploit their flexibility.

Our Model: We now describe our model of attack and
network response. We assume that the network is ini-
tially a connected graph over n nodes. We assume that
every node knows not only its neighbors in the network
but also the neighbors of its neighbors i.e. neighbor-
of-neighbor (NoN) information. In particular, for all

1

nodes x,y and z such that x is a neighbor of y and y
is a neighbor of z, x knows z. There are many ways
that such information can be efficiently maintained, see
e.g. [14, 18].

We assume that there is an adversary that is attacking
the network. This adversary knows the network topol-
ogy and our algorithm, and it has the ability to delete
carefully selected nodes from the network. However, we
assume the adversary is constrained in that in any time
step it can only delete a small number of nodes from the
network1. We further assume that after the adversary
deletes some node x from the network, that the neigh-
bors of x become aware of this deletion and that they
have a small amount of time to react.

When a node x is deleted, we allow the neighbors of
x to react to this deletion by adding some set of edges
amongst themselves. We assume that these edges can
only be between nodes which were previously neighbors
of x. This is to ensure that, as much as possible, edges
are added which respect locality information in the un-
derlying network. We assume that there is very limited
time to react to deletion of x before the adversary deletes
another node. Thus, the algorithm for deciding which
edges to add between the neighbors of x must be fast
and localized.
Our Results: We introduce an algorithm for self-
healing of reconfigurable networks, called DASH (an
acronym for Degree based Self-Healing). DASH is
locality-aware in that it uses only the neighbors of
the deleted node for reconnection. We prove that
DASH maintains connectivity in the network, and that
it increases the degree of any node by no more than
O(logn). During reconnection of nodes, our algorithm
uses only local information, therefore, it is scalable and
can be implemented in a completely distributed man-
ner. Algorithm DASH is described as Algorithm 1 in
Section 2. The main characteristics of DASH are sum-
marized in the following theorem that is proved in Sec-
tion 2.

Theorem 1. DASH guarantees the following properties
even if up to all the nodes in the network are deleted:

• The degree of any vertex is increased by at most
2 log n.

• The number of messages any node of initial de-
gree d sends out and receives is no more than
2(d + 2 log n) lnn with high probability2 over all

1Throughout this paper, for ease of exposition, we will assume that
the adversary deletes only one node from the network before the al-
gorithm responds. However, our main algorithm, DASH, can easily
handle the situation where any number of nodes are removed, so long
as the neighbor-of-neighbor graph remains connected.

2Throughout this paper, we use the phrase with high probability
(w.h.p) to mean with probability at least 1− 1/nC for any fixed con-
stant C.

node deletions.

• The latency to reconnect is O(1) after attack; and
the amortized latency to update the state of the
network over θ(n) deletions is O(log n) with high
probability.

We also prove (in Section 3) the following lower bound
that shows that DASH is asymptotically optimal.

Theorem 2. Consider any locality-aware algorithm
that increases the degree of any node after an attack by
at most a fixed constant. Then there exists a graph and a
strategy of deletions on that graph that will force the al-
gorithm to increase the degree of some node by at least
log n.

We also present empirical results (in Section 4) show-
ing that DASH performs well in practice and that it sig-
nificantly outperforms naive algorithms in terms of re-
ducing the maximum degree increase. Finally (in Sec-
tion 4) we describe SDASH, a heuristic based on DASH
that we show empirically both keeps node degrees small
and also keeps shortest paths between nodes short.

Related Work: There have been numerous papers that
discuss strategies for adding additional capacity and
rerouting in anticipation of failures [7, 9, 12, 17, 21, 22].
Here we focus on results that are responsive in some
sense. Médard, Finn, Barry, and Gallager [15] propose
constructing redundant trees to make backup routes pos-
sible when an edge or node is deleted. Anderson, Bal-
akrishnan, Kaashoek, and Morris [1] modify some exist-
ing nodes to be RON (Resilient Overlay Network) nodes
to detect failures and reroute accordingly. Some net-
works have enough redundancy built in so that separate
parts of the network can function on their own in case
of an attack [11]. In all these past results, the network
topology is fixed. In contrast, our algorithm adds edges
to the network as node failures occur. Further, our al-
gorithm does not dictate routing paths or specifically re-
quire redundant components to be placed in the network
initially. In this paper, we build on earlier work done in
[5, 6], which proposed a simple line algorithm for self-
healing to maintain network connectivity.

Table of Contents: The rest of our paper is organized as
follows. Section 2 describes the algorithm DASH, and
its theoretical properties. Section 3 gives a lower bound
on locality-aware algorithms. Section 4 gives empirical
results for DASH, and several other simple algorithms
on random power-law networks. It also describes and
gives results for SDASH. We conclude and give areas
for future work in Section 5.

2. DASH: An Algorithm for Self-Healing

In this Section, we describe DASH and prove cer-
tain properties about it. In brief, when a deletion occurs,
DASH asks the neighbors of the deleted node to recon-
nect themselves into a certain kind of complete binary
tree. Then messages are propagated so that the nodes
can keep track of which connected component they be-
long to.

Let the actual network at a particular time step be
G(V,E). Let E′ be the edges (i.e. healing edges), that
have been added by the algorithm up to that time step
(note E′ ⊆ E). Let G′ = (V,E′). We show that G′ is a
forest in Lemma 1.

2.1. DASH: Degree based Self-Healing

As the acronym suggests, DASH employs informa-
tion of previous degree increase to control further degree
increase for a node. When a deletion occurs, we assume
the neighbors of the deleted node are able to detect the
deletion. Then they employ DASH to heal. To maintain
connectivity, DASH connects the neighbors of a deleted
node as a binary tree. The tree is structured so that the
vertices which have incurred the maximum degree in-
crease previously get to be leaves and thus not increase
their degree in this round. Notice that at least half the
vertices in a binary tree are leaves. The nodes main-
tain information about the virtual network and their con-
nected component in this network. The algorithm tries
to use only a single node from each component during
reconnection and thus adds only a low number of new
edges during healing.

To describe DASH we give some definitions. Let
N(v,G) be the neighbors of vertex v in the graphG rep-
resenting the real network. Let N(v,G′) be the neigh-
bors of vertex v in graph G′ consisting of the edges
added by the healing algorithm. Let δ(v) be the degree
increase of the vertex v compared to its initial degree.
Note that this is not the same as the degree of v in G′.

When a node v is deleted, partition on the basis of
their ID all the neighbors of v inG (not having the same
ID as v). Let UN(v,G) (Unique Neighbors) be the set
having one representative from each of the partitions. If
there is more than one node as a possible representative
from a partition, we include the one with the lowest ini-
tial ID.

Note thatUN(v,G)∩N(v,G′) = φ andUN(v,G)∪
N(v,G′) ⊆ N(v,G) . The ID of a node allows us to
keep track of which connected component in G′ it be-
longs to. The lowest ID of any node in that component
is broadcast and all the nodes in the component take on
this ID.

Algorithm 1 DASH: Degree-Based Self-Healing
1: Init: for given network G(V,E), Initialize each ver-

tex with a random number ID between [0,1] se-
lected uniformly at random.

2: while true do
3: If a vertex v is deleted, do
4: Nodes in UN(v,G) ∪ N(v,G′) are reconnected

into a complete binary tree. To connect the tree,
go left to right, top down, mapping nodes to
the complete binary tree in increasing order of δ
value.

5: Let MINID be the minimum ID of any node
in UN(v,G)∪N(v,G′). Propagate MINID to
all the nodes in the tree of UN(v,G) ∪N(v,G′)
in G′. All these nodes now set their ID to
MINID.

6: end while

Our main results about DASH are stated in Theo-
rem 1.

Theorem 1. DASH is a distributed algorithm with the
following properties:

• The degree of any vertex is increased by at most
2 log n.

• The latency to reconnect is O(1).

• The number of messages any node of degree d sends
out and receives is no more than (2d+2 log n) lnn
with high probability over all node deletions.

• The amortized latency for ID propagation is
O(logn) with high probability over all node dele-
tions.

2.2. Proof of Theorem 1

For analysis, we use the following definitions:

• Let T (x, y) be the tree in G′ − y that contains x.

• Each vertex v will have a weight, w(v). The weight
of a vertex will start at 1 and may increase during
the algorithm. If v is deleted, w(v) is added to an
arbitrarily chosen neighbor in G′.

• Let W (S) =
∑
v∈V

w(v), for a graph S(V,E) i.e.

the sum of the weights of all vertices in S.

• For vertex v, let rem(v) =∑
u∈N(v,G′)

W (T (u, v))− max
u∈N(v,G′)

(W (T (u, v))) +w(v).

We will show that as the degree of a vertex in-
creases in our algorithm, so will the rem value of
that vertex. Intuitively rem(v) is large when re-
moving v from its tree in G′ gives rise to many
connected components with large weight.

Lemma 1. The edges added by the algorithm, E′, form
a forest.

Proof. We prove this by induction on the number of
nodes deleted.

Base Case: Initially, G′ is a forest because E′ is empty.

We note that E′ and G′ change only when a deletion
occurs. Consider the ith deletion and let v be the node
deleted.
Let v belong to tree Tv in G′ just prior to the deletion
of v. Now, for all x, y ∈ N(v,G′) x and y are not con-
nected in E′ since that would have implied the existence
of a cycle through v contradicting the Inductive Hypoth-
esis. Note also that for all z ∈ UN(v,G), z /∈ Tv . Since
we select only 1 node from each tree Ti in which v had
a neighbor, no pair of nodes in UN(v,G) ∪ N(v,G′)
are connected in G′. We reconnect all the nodes in
UN(v,G)∪N(v,G′) in a Binary Tree and propagate the
minimum ID. Since we are adding edges between nodes
which previously were in separate connected compo-
nents inG′, no cycles are introduced. Hence,G′ remains
a forest.

Lemma 2. For any vertex v, rem(v) is non-decreasing
over any vertex deletion where v has not been deleted.

Proof. By Lemma 1, every vertex v in G′ belongs to
some tree, which we will call Tv . For every Tv in G′,
W (Tv) is the sum of the weights of all vertices in Tv .

By definition, rem(v) =∑
u∈N(v,G′)

W (T (u, v)) − max
u∈N(v,G′)

(W (T (u, v))) + w(v).

Therefore,
rem(v) = W (Tv)− max

u∈N(v,G′)
W (T (u, v))

Observe first that W (Tv) cannot decrease even when
there is a deletion in Tv because the deleted vertex’s
weight is not “lost”, but added to some member of Tv .

Since W (Tv) cannot decrease, rem(v) can only de-
crease if the maximum subtree weight increases more
than W (Tv). Since the maximum subtree is a subset of
the tree, Tv , any increases or decreases in the maximum
subtree is also counted in W (Tv). Thus, rem(v) cannot
decrease.

Lemma 3. For any node v, for all nodes q ∈ N(v,G′)
, W (T (v, q)) ≥ rem(v).

m

r

l

v

Figure 1. W (T (v,m)) ≥ rem(v).

Proof. For all nodes q,

W (T (v, q)) =
∑

u∈N(v,G′)
u 6=q

W (T (u, v)) + w(v)

≥
∑

u∈N(v,G′)

W (T (u, v))

− max
u∈N(v,G′)

W (T (u, v)) + w(v)

= rem(v)

For example, in figure 1, W (T (V,M)) =
W (T (L, V)) +W (T (R, V)) + w(v) ≥ rem(v).

Lemma 4. For any node v, rem(v) ≥ 2δ(v)/2, where
δ(v), as defined earlier, is the degree increase of the ver-
tex v in G.

Proof. Let t be the number of rounds of healing where
a round is a single adversarial deletion followed by
self-healing by DASH. We prove this lemma by
induction on t.
Let G′t, remt(v) and δt(v) be G′, rem(v) and δ(v)
respectively at time t.

Base Case: t = 0: In this case, all nodes v have
δ(v) = 0; rem(v) = 1. Thus, rem(v) ≥ 20.

Inductive Step: Consider the network at round t. We
assume by the inductive hypothesis that for all nodes v
in G′, remt−1(v) ≥ 2δt−1(v)/2. Our goal is to show that
remt(v) ≥ 2δt(v)/2.

Suppose node x was deleted at round t. According
to our algorithm, some or all of the neighbors of x will
be reconnected as a binary tree. Let us call this tree RT
(short for Reconstruction Tree). Let T (x, y) be the tree
in G′t−1 − y that contains x, and T ′(x, y) be the tree in
G′t − y that contains x.

Consider a surviving vertex v. If v is not a part of RT,
then by a simple application of lemma 2, our induction
holds. If v is a part of RT, there are 3 possibilities:

1. v is a leaf node in RT

The degree of v did not change. Thus, δt(v) =
δt−1(v). By Lemma 2, remt(v) ≥ remt−1(v).
Thus, using the induction hypothesis, remt(v) ≥
2δt(v)/2.

2. v is the root of RT

w1

w2
v

z

x

H

v

z

w1 w2

H’

Figure 2. node v is the root, with 2 children

If v has only one child in RT, then this is the same
as the previous case with the parent and child role
reversed and the induction holds. Let us consider
the case when v has two children in RT. Now,
δt(v) has increased by 1. Let z be the neighbor
of v such that W (T (z, v)) is the largest among all
neighbors of v except x. Note that W (T ′(z, v)) =
W (T (z, v)), since this subtree was not involved in
the reconstruction. Consider the possibly empty
subtree of v rooted at z. Let the two children of
v in RT be w1 and w2, as illustrated in figure
2. By our algorithm, we know that δt−1(w1) ≥
δt−1(v) and δt−1(w2) ≥ δt−1(v). Thus, using the
inductive hypothesis and lemma 3, we have that
W(T(w1, x)) ≥ remt−1(w1) ≥ 2δt−1(w1)/2 and
W(T(w2, x)) ≥ remt−1(w2) ≥ 2δt−1(w2)/2. By
lemma 2, this implies that in G′t,

W (T′(w1, v)) ≥ 2δt−1(w1)/2 ≥ 2δt−1(v)/2

W (T′(w2, v)) ≥ 2δt−1(w2)/2 ≥ 2δt−1(v)/2

Assume without loss of generality that
W(T′(w1, v)) ≤ W(T′(w2, v)). There are
two cases:

(a) W(T(z, v)) < W(T′(w1, v))
In this case remt−1(v) did not include
W(T(x, v)). But remt(v) will include
W(T′(w1, v)) Hence,

remt(v) ≥ remt−1(v) + W(T′(w1, v))
≥ 2δt−1(v)/2 + 2δt−1(v)/2

= 2(δt−1(v)+2)/2

= 2(δt(v)+1)/2

(b) W(T(z, v)) ≥W(T′(w1, v))
In this case remt(v) will include
W(T′(w1, v)) and the smaller of
W(T′(w2, v)) and W(T′(z, v)). Note that by
Lemmas 3 and 2, the inductive hypothesis,
and the fact that δt−1(w1) ≥ δt−1(v),
W(T ′(w1, v)) ≥ remt(w1) ≥ remt(w1) ≥
2δt−1(w1)/2 ≥ 2δt−1(v)/2.
Also, since by assumption W(T ′(w2, v)) ≥
W(T ′(w1, v)), we know that
W(T ′(w2, v)) ≥ 2δt−1(v)/2.
Further, since W(T ′(z, v)) = W(T (z, v)) ≥
W(T ′(w1, v)) we know that W(T ′(z, v)) ≥
2δt−1(v)/2.
Hence,

remt(v) ≥ 2δt−1(v)/2 + 2δt−1(v)/2

= 2(δt−1(v)+2)/2

= 2(δt(v)+1)/2

3. v is an internal node in T ′

v
x

H H’

c1

c2

p

c1

p

c2

p2
v

Figure 3. Internal node v with 1 child

v
x

c1

c2

p

c1

v

p

c2

H H’

Figure 4. Internal node v with 2 children

For node v to become an internal node, the deleted
neighbor xmust have at least three other neighbors.
Three neighbors of x are shown as C1, C2 and P
in the figures 3 and 4. Also, now v’s degree can
increase by 1, as illustrated in figure 3, or by 2, as
illustrated in figure 4. Let us consider these cases
separately:

(a) δt(v) = δt−1(v) + 1
This can only happen when v has a parent and
a single child in RT as in figure 3. Let P be
the parent of v and C1 the child of v. C1 has
to be a leaf node since the tree is complete
and v has only one child. Observe that there

exists at least one leaf node besides C1 in the
tree, accessible to v only via P . Let this node
be C2 and let P2 be its parent. Note that P2
and P may even be the same node. In our
algorithm, any leaf node in RT has a δ value
no less than the δ value of any internal node.
Thus,

δt−1(C1) ≥ δt−1(v); and
δt−1(C2) ≥ δt−1(v)

These inequalities, Lemmas 2 and 3, and the
Inductive Hypothesis, imply that

W(T′(C1, v)) ≥ remt(C1)
≥ remt−1(C1)
≥ 2δt−1(v)/2;

W(T′(C2, P2)) ≥ remt(C2)
≥ remt−1(C2)
≥ 2δt−1(v)/2;

W(T(v, x)) ≥ remt(v)
≥ remt−1(v)
≥ 2δt−1(v)/2.

Since remt(v) can exclude at most one
of W (T ′(C1, v)), W (T ′(C2, P2)) and
W (T (v, x)),

remt(v) ≥ 2δt−1(v)/2 + 2δt−1(v)/2

= 2(δt(v)+1)/2

(b) δt(v) = δt−1(v) + 2
In this case v has two children in RT, C1 and
C2, as illustrated in figure 4. The analysis is
similar to the case above. The value remt(v)
can exclude at most one of W (T ′(C1, v)),
W (T ′(C2, v)) and W (T (v, x)) and we can
show that all three of these values are at least
2δt−1(v)/2. Thus, remt(v) ≥ 2(δt(v))/2.

Hence, the induction holds.

Lemma 5. For all vertices v, rem(v) is always no more
than n.

Proof. No vertex is counted twice in a rem value since
the subtrees of a vertex are disjoint. Since the number of
vertices in the subtrees cannot be more than the number
of vertices remaining, the rem value is always no more
than the sum of the weights of all undeleted vertices in
G′.

Define W ∗ to be the sum of weights of all undeleted
vertices in G′. After initialization, W ∗ = n, since there
are n vertices. At each step of the algorithm, W ∗ = n ,
since the weight of the deleted vertex is added to one of
the remaining vertices. Thus, for node v, rem(v) ≤ n.

Lemma 6. DASH increases the degree of any vertex by
at most O(log n).

Proof. Every vertex v starts with rem(v) = w(v) = 1.
We know that rem(v) ≥ 2δ(v)/2 by Lemma 4. since
rem(v) is at most n, 2δ(v)/2 ≤ n . Taking log of both
sides, δ(v)/2 ≤ log n. Solving for δ(v) gives δ(v) ≤
2 log n.

Lemma 7. The latency to reconnect the network in
DASH is O(1).

Proof. During the reconnection process, DASH re-
quires communication only between nodes one hop
away, thus, the latency is just O(1).

Lemma 8. The number of messages any node of ini-
tial degree d sends out and receives is no more than
2(d + 2 log n) lnn with high probability over all node
deletions.

Proof. In DASH, after the reconnections have been
made, messages are sent out by nodes when the mini-
mum ID has to be propagated. With similarity to the
record breaking problem [10], it is easily shown that
w.h.p., a node has its ID reduced no more than 2 lnn
times, where the record is the node’s ID. These are
the only messages the node needs to transmit or re-
ceive. Each time its ID changes, the node sends this
message to all its neighbors, Thus, it sends or receives
O((d + log n) lnn) messages, since the final degree of
the node is at most d+ 2 log n.

Lemma 9. The amortized latency for ID propagation is
O(log n) with high probability over all node deletions.

Proof. Again, with similarity to the record breaking
problem, a node sends messages to its neighbors (neigh-
bors, by definition, are a single hop away) onlyO(log n)
times with high probability. Thus, messages are trans-
mitted O(n log n) times over all the nodes. Over O(n)
deletions, this implies that the amortized latency for
messages (involving ID propagation) is only O(log n)
.

2.3. Proof of Theorem 1

The proof of Theorem 1 now follows immediately
from Lemmas 6, 7, 8 and 9.

3 Lower bounds on Locality-aware algo-
rithms

3.1. Necessity of Component tracking for
healing strategies

To begin with, we give an insight as to why a healing
strategy might need to keep track of connected compo-
nents.

Lemma 10. For a tree, deletion of a node of degree d
increases the sum total of degrees of its neighbors by
d− 2 for a locality-aware acyclic healing strategy.

Proof. A locality-aware acyclic healing strategy will re-
connect the neighbors of a deleted node without cre-
ating any cycles. If there were no cycles in the origi-
nal graph involving the neighbors and not involving the
deleted node, then such a strategy can only reconnect
these neighbors as a tree to maintain their connectivity.

A node of degree d has d neighbors. Since it was
part of a tree, this node and its neighbors also constitute
a tree. Let us call this the immediate subtree. The im-
mediate subtree had d edges and a total of 2d degrees.
These d neighbors are now reconnected as a tree with
d− 1 edges and 2(d− 1) degrees. Each of these neigh-
bors lost a single degree due to the deletion of their edge
to the deleted node. Thus, the total degrees gained on
reconstruction are 2(d− 1)− d = d− 2.

It is reasonable to assume that an efficient healing al-
gorithm adds close to the minimum possible edges at
each step to maintain connectivity of the neighbors of
the deleted node. In G′, if a deleted node v had two
neighbors which had an alternate path between them-
selves not involving v, then the algorithm may need to
use only one of them for reconnection to other nodes.
By extension, if there were many neighbors which had
alternate connections between them, the algorithm may
need to use only one of these nodes. This is equiva-
lent to stating that the algorithm may need to use only
one node from a connected component. Knowing that
certain nodes are in the same component would allow
the algorithm to do this. G′ is comprised only of edges
added by the healing algorithm, and is always a forest. If
the adversary mainly deletes nodes with degree greater
than 2 and the algorithm does not use the component in-
formation, the sum total of degrees of the neighbors of
the deleted nodes will increase by (d − 2) i.e. at least
1, at each step. After many (O(n)) deletions, only a few
nodes will be left, and these will have O(n) degree in-
crease.

3.2 A lower bound on healing by
Degree-bounded locality-aware
healing algorithms

We now prove our result regarding the lower bounds
for locality-aware algorithms in Theorem 2. Our lower
bound occurs on graphs that are originally trees. To state
the proof, we need to prove some other lemmas.

First, we define the following operation that the ad-
versary can perform on trees, where we assume self-
healing is applied after every deletion:

Prune (r,s) : For a node r and its subtree headed by
node s, the Prune operation on s leads to deletion
of all the nodes in that subtree including s. This op-
eration can be accomplished by repeatedly deleting
leaf nodes in the subtree till all the nodes including
s are deleted.

d

v

c

h b

a

x
v

a

x

d
d

v

x

Figure 5. Steps in Prune(v,x). Leaf nodes
are deleted at each step.

Lemma 11. Deletion of a node with degree at least 3
increases the degree of at least one node by degree 1, no
matter how the healing occurs.

Proof. Any reconnection of more than two nodes has
a 3-node line (as in figure 6) as a subgraph. Here the
internal node has a degree increase of 1. Thus, at least
one node increases it’s degree by at least 1.

Figure 6. An internal node in a 3-node line
reconnection suffers a degree increase.

For further discussion, we define the following:

Degree-bounded / M-degree-bounded : A healing al-
gorithm is degree-bounded or M-degree-bounded if
any node can increase its degree by at most M in a
single round of deletion and healing.

Lemma 12. Consider a M-degree-bounded locality-
aware healing algorithm used on a tree. In such a situa-
tion, deletion of a node v with degree at least M+3 leads
to degree increase for at least two neighbors of v. .

Proof. Node v hasM +3 neighbors. By Lemma 10, the
sum total of degree increase of neighbors isM+1, when
the graph is a tree. Since one node can get a maximum
degree increase of M , at least one node has to incur the
rest of the degree increase. Thus, at least two nodes have
to increase their degrees.

Figure 7. M+2 -ary Tree

Algorithm 2 LEVELATTACK: level-by-level attack on a
(M+2)-ary tree

1: Consider an (M+2)-ary tree T of depth D with lev-
els numbered 0 to D, the root being at level 0.

2: i← D − 1
3: while i ≥ 0 do
4: for each node v at level i do
5: if v has c > M + 2 children remove the excess

c− (M +2) nodes by deleting those with least
degree increases and their subtrees by using the
Prune operation, so that v now hasM +2 chil-
dren.

6: delete v.
7: end for
8: i← i− 1
9: end while

Here, we introduce a new attack strategy:

LEVELATTACK: This strategy is described in Algo-
rithm 2. In brief, the adversary deletes nodes one

level at a time beginning one level above the leaves
of a M + 2-ary complete tree going up to the root.
The reasoning behind the strategy is the following:
If the adversary deletes a node of degree M + 3 in
a tree, this ensures that a degree increase of at least
1 is passed to its children. What the adversary must
do is to ensure that logn of these degree increases
are credited to the same node.

Lemma 13. Assume a (M + 2)− ary tree T , a degree-
bounded locality-aware healing algorithm and the LEV-
ELATTACK adversarial strategy. Then, when LEVELAT-
TACK deleted a node at level i, 0 < i < D some leaf
node of the original tree increases its degree by at least
D − i.

Proof. The proof is by induction.
Base case: In the LEVELATTACK strategy, the nodes

at level D − 1 are deleted first. Thus, a deletion of a
node at D − 1 is our base case. A node at level D − 1
has M +3 neighbors. By lemma 12, there is at least one
leaf node that increases its degree by 1 or more. Thus,
the base case holds.

Inductive step: Assume the hypothesis holds for
nodes at level i+1. We now show that it holds for nodes
at level i. Consider a node, say X at level i ≥ 0 . It had
M +2 children at level i+1. By the inductive hypothe-
sis, each of these deletions led to at least one node with
degree D − (i + 1). Moreover, X is not among these
M + 2 nodes. Moreover, all of these are now neighbors
of X , since X itself was involved in each of these dele-
tions. The Prune algorithm in step 5 retains only these
M + 2 as children of X . Each of these children has de-
gree increase D− (i+ 1) and was originally a leaf node
of T . The adversary now deletes X . By lemma 12, at
least one of these children incurs a degree increase.

Theorem 2. Consider any locality-aware algorithm
that increases the degree of any node after an attack by
at most a fixed constant. Then there exists a graph and a
strategy of deletions on that graph that will force the al-
gorithm to increase the degree of some node by at least
log n.

Proof. It is sufficient to give a graph and an attack strat-
egy such that any degree-bounded locality-aware heal-
ing algorithm will have to increase a particular node’s
degree by log n. Let M be the constant degree increase
that is the maximum that the healing algorithm can im-
pose on any one node in the graph. Then, for a graph
which is a full (M+2)-ary tree (Figure 7), the adversary
uses LEVELATTACK.

Consider a (M+2)-ary tree T of depth D with levels
numbered 0 toD. By lemma 13, after the last deletion in
the adversary strategy, which is the deletion of the root

of T i.e. the node at level 0 there is at least one node left
which has a degree increase of D. Since D is O(logn),
this adversary strategy achieves a degree increase of at
least O(logn).

4. Experiments

We carried out a number of experiments to ascertain
the performance of various healing algorithms. We used
a number of attack strategies to measure how different
healing strategies performed with regard to degree in-
crease and stretch, where stretch is the maximum ratio
of distance increase in the healed network compared to
the original network, over all pairs of nodes. Our em-
pirical results on stretch and a heuristic for maintaining
low stretch are described in Section 4.6.

4.1. Methodology

Most of our experiments were conducted on random
graphs. These graphs were generated by the Preferen-
tial attachment model proposed by Barabasi [3, 4]. The
experimental approach was the following:

• For each graph size, for a particular deletion and
healing strategy, repeat for 30 random instances of
the graph:

– Repeat while there are nodes in the graph:

∗ delete a single node according to the
deletion strategy.
∗ repair according to the self-healing strat-

egy.
∗ measure the statistics (e.g. maximum

change of degree for any node) for the
graph.

• average the statistics for each graph size.

4.2. Attack Strategies

The aim of the adversary is to collapse the network
by trying to overload a node beyond it’s maximum ca-
pacity. There are many possible attack strategies. One
strategy is to delete the node with the maximum degree.
We call this theMaxNodestrategy. It would seem that
a strategy that leads to additional burden on an already
high burden node would be a good strategy. For the
adversary, one good adversarial strategy is to continu-
ously attack/delete a randomly chosen neighbor of the
highest degree node in the network. We call this the
NeighborofMaxStrategy(NMS). This would also

seem plausible as in a real network or the kind of net-
works we are looking at, it would be reasonable that the
hubs or the high degree nodes would be more well pro-
tected and resilient to attack while their less significant
neighbors should be easy to take down.

4.3. Healing strategies

We attempted various locality-aware healing strate-
gies, some of which are the following:

• Graph heal: On each deletion, we reconnect the
neighbors of the deleted node in a binary tree re-
gardless of whether we introduced any cycles in the
graph formed by the new edges introduced for heal-
ing. This seems to be a naive algorithm since the
nodes use more edges than what are required for
maintaining connectivity.

• Binary tree heal: On each deletion, we reconnect
the neighbors of the deleted node in a binary tree
being careful not to introduce any cycles in the
graph formed by the new edges introduced for heal-
ing. This is done using random IDs which can then
be used to identify which tree a particular node be-
longs to. This is an improvement on the previous
algorithm but still naive since it does not take into
consideration the previous degree increase suffered
by nodes during healing.

• DASH (degree based binary tree heal): DASH is
smarter than the previous algorithms as borne out
by the results of the experiments. The DASH algo-
rithm has been earlier described in Section 2.1 and
stated as Algorithm 1.

• SDASH (Surrogate degree based binary tree heal):
(described in Section 4.6.2) A heuristic based on
DASH that tries to keep both node degrees and path
lengths small.

4.4. Degree increase

The NeighborofMaxStrategy consistently re-
sulted in higher degree increase, hence, we report results
for only this attack strategy. Our experimental results
clearly show that0 DASH and SDASH are good heal-
ing strategies. It performed well against both adversary
strategies. Figure 8 shows that DASH and SDASH have
much lower degree increase than the other more naive
strategies. Also, this degree increase was less than log n,
which is consistent with our theoretical results. SDASH
has the additional nice property that it keeps path lengths
small over multiple adversarial deletions.

Figure 8. Maximum Degree increase:
DASH vs other algorithms

4.5. Messages

Figure 9(a) shows that the number of time a nodes
ID changes is less than log n, as expected, for all heal-
ing strategies. Figure 9(b) shows the maximum number
of messages a node sent out for the different strategies.
Note that the number of messages a node sends out has
to be less than or equal to the number of times a node
changes ID times the degree of the node. Thus, algo-
rithms with higher degree increase perform poorly.

4.6. Heuristics and experiments involv-
ing Stretch

4.6.1 Stretch

Stretch is an important property we would also like our
self-healing algorithms to minimize. The stretch for any
two nodes is the ratio between their distance in the new
healed network and their distance in the original net-
work. Stretch for the network is the maximum stretch
over all pairs of nodes. Stretch is also closely related
to the diameter of the network. In some sense, maintain-
ing low degree increase and low stretch are contradictory
aims since a high-degree node will lead to shorter paths
and possibly lower stretch in the network.

(a) ID changes for nodes

(b) Number of messages exchanged for Component(ID) information
maintenance

Figure 9. ID changes and Messages ex-
changed per node

4.6.2 SDASH: a strategy with good empirical re-
sults

SDASH is an algorithm we have devised which em-
pirically has both low degree increase and low stretch.
During self-healing, we say a node surrogates if it re-
places its deleted neighbor in the network. i.e. it takes
all the connections of the deleted neighbor to itself. Sur-
rogation never increases stretch since the paths never in-

crease in length. In certain situations, it turns out that
surrogation can be done without degree increase. In such
situations, SDASH does surrogation else it simply ap-
plies DASH. SDASH is described in Algorithm 3.

Algorithm 3 SDASH: Surrogate Degree-Based Self-
Healing

1: Init: for given network G(V,E), Initialize each ver-
tex with a random number ID between [0,1] se-
lected uniformly at random.

2: while true do
3: If a vertex v is deleted, do
4: Let m ∈ UN(v,G) ∪ N(v,G′) be the node

with Maximum degree increase (δ) of all nodes
in UN(v,G) ∪N(v,G′).

5: if w ∈ UN(v,G) ∪ N(v,G′) and δ(w) +
|UN(v,G) ∪N(v,G′)| − 1 ≤ δ(m) then

6: connect all nodes in UN(v,G) ∪ N(v,G′) to
w.

7: else
8: Nodes in UN(v,G) ∪ N(v,G′) are recon-

nected into a complete binary tree. To connect
the tree, go left to right, top down, mapping
nodes to the complete binary tree in increasing
order of δ value.

9: end if
10: Let MINID be the minimum ID of any node

in UN(v,G)∪N(v,G′). Propagate MINID to
all the nodes in the tree of UN(v,G) ∪N(v,G′)
in G′. All these nodes now set their ID to
MINID.

11: end while

As can be seen in the figures that follow, SDASH
seems to allow a degree increase up to O(log n) and
stretch up to O(log n). We are working on proving the-
oretical properties of this algorithm.

4.6.3 Stretch: empirical results

Figure 10 shows the performance of some of our
algorithms for stretch. We determined that the
MaxNodestrategy is most effective for the adversary
when trying to maximize stretch and so our results in
Figure 10 are against that adversarial strategy. The more
naive degree-control healing strategies do a good job of
minimizing stretch. However, it is important to keep in
mind that these more naive algorithms increase the node
degrees to a point where they are unlikely to be use-
ful for many applications. In contrast, our experiments
show that SDASH does a good job of minimizing both
stretch and degree increase.

Figure 10. Stretch for various algorithms

5. Conclusions and future work

We have studied the problem of self-healing in net-
works that are reconfigurable in the sense that new
edges can be added to the network. We have described
DASH, a simple, efficient and localized algorithm for
self-healing, that provably maintains network connec-
tivity, even while increasing the degree of any node by
no more than O(log n). We have shown that DASH is
asymptotically optimal in terms of minimizing the de-
gree increase of any node. Further, we have presented
empirical results on power-law networks showing that
DASH significantly outperforms the naive algorithms
for this problem.

Several interesting problems remain open including
the following: Can we not only maintain connectivity,
but also provably ensure that lengths of shortest paths in
the graph do not increase by too much? Can we remove
the need for propagating IDs in order to maintain con-
nected component information, or is such information
strictly necessary to keep the degree increase small?
Can we use the self-healing idea to protect invariants
for combinatorial objects besides graphs? For example,
can we provide algorithms to rewire a circuit so that it
maintains essential functionality even when multiple
gates fail?

5.1 Acknowledgments

We gratefully acknowledge the help of Iching Bo-
man, Dr. Deepak Kapur and his class Introduction to

Proofs, Logic and Term-rewriting and the UNM Com-
puter Science Theory Seminar in writing this paper.

References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Mor-
ris. Resilient overlay networks. SIGOPS Oper. Syst.
Rev., 35(5):131–145, 2001.

[2] V. Arak. What happened on August 16, August 2007.
[3] A.-L. Barabasi and R. Albert. Emergence of scaling in

random networks. Science, 286:509, 1999.
[4] A.-L. Barabási and E. Bonabeau. Scale-free networks.

Scientific American, pages 50–59, 2003.
[5] I. Boman, J. Saia, C. T. Abdallah, and E. Schamiloglu.

Brief announcement: Self-healing algorithms for re-
configurable networks. In Symposium on Stabilization,
Safety, and Security of Distributed Systems(SSS), 2006.

[6] I.-C. C. Boman. Algorithms for self-healing networks.
M.S. Thesis, Computer Science, University of New Mex-
ico., 2006.

[7] R. D. Doverspike and B. Wilson. Comparison of ca-
pacity efficiency of dcs network restoration routing tech-
niques. J. Network Syst. Manage., 2(2), 1994.

[8] K. Fisher. Skype talks of ”perfect storm” that caused
outage, clarifies blame, August 2007.

[9] T. Frisanco. Optimal spare capacity design for vari-
ous protection switchingmethods in atm networks. In
Communications, 1997. ICC 97 Montreal, ’Towards the
Knowledge Millennium’. 1997 IEEE International Con-
ference on, volume 1, pages 293–298, 1997.

[10] N. Glick. Breaking records and breaking boards. In The
American Mathematical Monthly, volume 85, pages 2–
26, January 1978.

[11] S. Goel, S. Belardo, and L. Iwan. A resilient network
that can operate under duress: To support communi-
cation between government agencies during crisis situ-
ations. Proceedings of the 37th Hawaii International
Conference on System Sciences, 0-7695-2056-1/04:1–
11, 2004.

[12] R. R. Iraschko, M. H. MacGregor, and W. D. Grover.
Optimal capacity placement for path restoration in stm
or atm mesh-survivable networks. IEEE/ACM Trans.
Netw., 6(3):325–336, 1998.

[13] O. Malik. Does Skype Outage Expose P2Ps Limita-
tions?, August 2007.

[14] G. S. Manku, M. Naor, and U. Wieder. Know thy neigh-
bor’s neighbor: the power of lookahead in randomized
p2p networks. In Proceedings of the 36th ACM Sympo-
sium on Theory of Computing (STOC), 2004.

[15] M. Medard, S. G. Finn, and R. A. Barry. Redundant trees
for preplanned recovery in arbitrary vertex-redundant
or edge-redundant graphs. IEEE/ACM Transactions on
Networking, 7(5):641–652, 1999.

[16] M. Moore. Skype’s outage not a hang-up for user base,
August 2007.

[17] K. Murakami and H. S. Kim. Comparative study on
restoration schemes of survivable ATM networks. In IN-
FOCOM (1), pages 345–352, 1997.

[18] M. Naor and U. Wieder. Know thy neighbor’s neighbor:
Better routing for skip-graphs and small worlds. In The
Third International Workshop on Peer-to-Peer Systems
(IPTPS), 2004.

[19] B. Ray. Skype hangs up on users, August 2007.
[20] B. Stone. Skype: Microsoft Update Took Us Down, Au-

gust 2007.
[21] B. van Caenegem, N. Wauters, and P. Demeester. Spare

capacity assignment for different restoration strategies
in mesh survivable networks. In Communications, 1997.
ICC 97 Montreal, ’Towards the Knowledge Millennium’.
1997 IEEE International Conference on, volume 1,
pages 288–292, 1997.

[22] Y. Xiong and L. G. Mason. Restoration strategies
and spare capacity requirements in self-healing atm net-
works. IEEE/ACM Trans. Netw., 7(1):98–110, 1999.

