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Abstract

We present two new algorithms, Arc Length and Peer Count, for choos-
ing a peer uniformly at random from the set of all peers in Chord [24].
We show analytically that, in expectation, both algorithms have latency
O(log n) and send O(log n) messages. Moreover, we show empirically that
the average latency and message cost of Arc Length is 10.01 log n and that
the average latency and message cost of Peer Count is 20.02 log n. To the
best of our knowledge, these two algorithms are the first fully distributed
algorithms for choosing a peer uniformly at random from the set of all
peers in a Distributed Hash Table (DHT). Our motivation for studying
this problem is threefold: to enable data collection by statistically rig-
orous sampling methods; to provide support for randomized, distributed
algorithms over peer-to-peer networks; and to support the creation and
maintenance of random links, and thereby offer a simple means of improv-
ing fault-tolerance.

Key Words: Peer-to-peer, Distributed Hash Table, Chord, Randomized Algo-
rithms, Distributed Algorithms, Data Collection, Attack-resistance

1 Introduction

In this paper, we address the problem of choosing a peer uniformly at random
from the set of all peers in Chord [24]. Random sampling is a fundamental
statistical operation; a function which chooses a random peer can be used for
many types of applications, including the following:

• Collecting Data: By randomly sampling peers, we can quickly collect the
following types of useful information: peer opinions, e.g., on popular con-
tent; physical properties of network nodes, e.g., for measurement studies
like [23, 22]; and environmental data, e.g., for sensor networks.
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• Providing an Algorithmic Building Block: An algorithm for randomly sam-
pling a peer can be used as a building block for other distributed algo-
rithms. For example, there are at least two currently published algorithms
for peer-to-peer networks which require an algorithm for choosing a ran-
dom peer. The first algorithm ensures good load-balancing of computa-
tional tasks across the peers in a network [10]. The second algorithm pro-
vides a scalable solution to the Byzantine agreement problem [14]. While
both results critically rely on the existence of an algorithm to choose a
random peer, they only suggest heuristics to solve this problem.

• Making Networks More Robust: An algorithm that randomly samples
peers can be used to create more robust networks. Consider a network
where every node has a small number of links to other random nodes.
Adding these random links will turn the network into an expander [18]. A
network which is an expander is known to be robust in the sense that it
will stay well-connected even in the face of a sudden, massive number of
adversarial node deletions [18]. An algorithm for choosing a random peer
allows for simple creation and maintenance of random links, and thus can
provide an extra measure of robustness.

1.1 Problem Statement

A Distributed Hash Table (DHT) is a distributed, scalable indexing scheme for
peer-to-peer networks. A DHT is typically used to provide for efficient storage
and lookup of large numbers of data items. Many DHTs have been proposed in
the literature [1, 2, 3, 24], but one of the most popular is Chord [24] .

We now describe Chord. Chord has a key space which is scaled so it is
in the range (0, 1]. We can think of the key space of Chord as a circle with
unit circumference, which we will call the unit circle. We assume that n peers
participate in Chord and that these peers are mapped to locations on the unit
circle which we call peer points. The n peer points are assumed to be distributed
uniformly at random on the unit circle. In particular, there is a base hash
function which maps peers, based on their IDs1, to points on the unit circle and
Chord makes the random oracle assumption [7] about this base hash function,
i.e. that it maps IDs to essentially random locations on the unit circle.

Chord provides two basic operations: h and next. For a point x on the unit
circle, h(x) is the peer whose peer point is closest in clockwise distance to x. For
a given peer p, next(p) returns the peer whose peer point is closest in clockwise
distance to p’s peer point. Single applications of h and next have latencies of
log n and 1, respectively, and require log n and 1, respectively, messages to be
sent2.

Our problem then is to design a scalable, distributed algorithm which chooses
a peer uniformly at random from the set of all peers in the Chord. We want
this algorithm to use only the basic operations h and next and we want it to be

1e.g. IP-addresses
2Throughout the paper, we will use log to represent log base 2.
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Figure 1: Probability of selecting a peer using the simple heuristic. Note
that there is significant bias toward peers that have large counter-clockwise
arc lengths. The dashed line is the uniform distribution, which is achieved by
the algorithms presented in this paper.

scalable in the sense that latency and bandwidth will be at most polylogarithmic
in n.

A simple heuristic for this problem is to choose a random point x on the
unit circle and return h(x). While this simple heuristic may be useful when only
approximation to uniform sampling is needed, the heuristic can have significant
bias as we now show. The probability that a peer p is chosen by this heuristic
is proportional to the length of the arc between the peer point for p and the
closest counter-clockwise peer point. The lengths of these arcs vary widely.
With high probability3, the longest arc is of length Θ(log n/n) [24] and the
shortest arc is of length Θ(1/n2) [12]. Thus, the peer with the longest arc will
be chosen Θ(n logn) times more frequently than the peer with the shortest arc.
Figure 1 shows empirically that this heuristic has significant bias. This plot
represents the results of using the simple heuristic on 100 random DHTs, each
consisting of 10, 000 peers. The peers in each DHT are sorted on the x-axis
of the plot according to their arc lengths, which are computed as described
above. The y-axis gives the fraction of the time each peer was selected over
5, 000, 000 executions of the simple heuristic (averaged over trials on each of the
100 DHTs). This plot shows that there is significant bias not only for the peers
with minimum and maximum arc length but for many of the other peers as well.
To remove this bias, we require a more sophisticated algorithm.

3Throughout this paper, we will use the phrase “with high probability” to mean with

probability 1 − n−c for some fixed constant c greater than 1.
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1.2 Our Results

Our main theoretical result is stated in the following theorem which is proven
in Section 3.

Theorem 1. Assume n peers are distributed uniformly at random on the unit
circle of Chord. Then with probability 1−3/n, both Arc Length and Peer Count
have the following properties every time they are called by any peer in Chord. 4

• They choose each peer with probability exactly 1/n;

• In expectation, they have latency O(log n) and send O(log n) messages;

• With high probability, they have latency O(log2 n) and send O(log2 n) mes-
sages.

Both Arc Length and Peer Count have the same asymptotic resource costs.
However, the hidden constants in these asymptotic bounds can be quite differ-
ent. For this reason, we turn to empirical analysis to compare the performance
of these two algorithms in practice.

Our main empirical results are given in Section 4. In that section, we em-
pirically test both Arc Length and Peer Count and show that both algorithms
perform well in practice. In particular, we show that in practice, for n ≥ 10, 000,
the average latency and message cost of a single call to Arc Length is 10.01 logn
and the average latency and message cost of a single call to Peer Count is
20.02 logn. This means, for example, that for a DHT containing one million
peers, Arc Length has latency and message cost less than 220 while Peer Count
has latency and message cost less than 400.

A preliminary version of Peer Count appeared in [12]. In this paper, we
present a new simpler version that tightens some of the parameters of the prelim-
inary version in order to improve empirical performance. This paper introduces
the algorithm Arc Length.

1.3 Related Work

Gkansidis et. al. address the problem of choosing a random peer in a peer-to-
peer system [9]. They show that random walks can provide a good approxi-
mation to uniform sampling for networks where the gap between the first and
second eigenvalues of the transition matrix is constant. Their result only approx-
imates uniform sampling and the closeness of the approximation is impossible to
formally state without knowledge of the second eigenvalue of the network. See
also Law and Siu [13] who also use random walks to sample peers approximately.

There are several results on adding load-balancing extensions to the basic
DHT model. These results seek to more equitably map the function h across
the peers. See [24] for a technique involving virtual nodes in which each peer

4In particular, for any base hash function of Chord, with probability 1−3/n, our algorithms

have these properties every time they are called by any peer.

4



maps to O(log n) peer points on the unit circle and [8, 6, 20, 11] for other
techniques. Generally these techniques work by dynamically “reassigning” hash
space among the peers to ensure that no peer is ever responsible for too large a
portion of the unit circle.

We have assumed a standard DHT which has no load-balancing extensions.
We make this assumption for two reasons. First, we would like our protocols
to be applicable for a wide range of DHTs and there is currently no consensus
about the best way to add load-balancing extensions to a DHT. Also the results
we have for the basic Chord model can be easily adapted to a DHT which
has load-balancing extensions. Second, we want our protocol to work on DHTs
which are robust to malicious faults such as [21, 5]. Such DHTs provide the same
functionality as Chord and can robustly provide the h and next operations even
in the presence of large numbers of malicious faults. Thus, our algorithms will
work in the presence of malicious faults when they are run on these DHTs.
This is of critical importance if we will be using our algorithms for choosing
random peers as subroutines in other attack-resistant algorithms for a DHT
(e.g. Byzantine agreement [14]). Unfortunately, we are not aware of any DHTs
with load-balancing extensions which are provably robust to malicious faults.

1.4 Notation

For any two points x and y on the unit circle, we let d(x, y) be the distance from
x to y traveling clockwise along the unit circle i.e. if y ≥ x, then d(x, y) = y−x
else d(x, y) = (1−x)+y. For points x and y on the unit circle, we will use (x, y]
to refer to the interval on the perimeter of the unit circle traveling clockwise from
x to y. For brevity, we will frequently use the word interval to mean “interval
on the perimeter of the unit circle”. For an interval I, we will let len(I) denote
the length of I and will let num(x, y) denote the number of peer points in I.

For a given peer, p, we will use p interchangeably to refer both to the peer
itself and to the peer point for p. The exact meaning will be clear from context.
For any peer p, we note that k applications of next returns the kth next peer in
the clockwise ordering around the circle from p and is denoted next(k).

The rest of this paper is laid out as follows. In Section 2, we give our
two algorithms for choosing a random peer. We analyze these algorithms and
give proofs of correctness in Section 3. In Section 4, we describe our empirical
results for these two algorithms. Section 5 describes a possible extension of Arc
Length for unstructured networks and Section 6 concludes and gives directions
for future work.

2 Algorithms

We now present the algorithms Peer Count and Arc Length. Peer Count depends
on the ability of each peer p to independently determine a number tp and a
length dminp such that with high probability, no interval containing tp peers
has length less than dminp. Arc Length depends on the ability of each peer p
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to independently determine a length dp and a number tmaxp so that with high
probability, no interval of length dp contains more than tmaxp peers. In the
next subsection, we show how these parameters can be chosen such that tp and
tmaxp are both Θ(log n) and dminp and dp are Θ(log n/n).

Both algorithms use O(log n) calls to next in expectation and an expected
constant number of calls to h for suitably chosen parameters. We first describe
the algorithms and then describe the procedures for choosing parameters.

2.1 Algorithm Peer Count

The algorithm Peer Count is presented formally in Figure 2. A peer p initially
calls FindParametersI to determine values for dminp and tp and sets λ to
dminp/tp. Then the algorithm enters a loop in which it selects a random number
r from (0, 1]. It moves clockwise around the circle to the next peer until a peer p′

is encountered such that d(r, p′) < λnum(r, p′) or tp peers have been examined.
If such a peer is found, it is returned; otherwise, the loop is repeated. One
execution of a loop is referred to as a round.

The high level intuition for the correctness of algorithm Peer Count is as
follows. If the parameters dminp and tp are set correctly, then λ will be θ(1/n).
Algorithm Peer Count will associate each peer with exactly λ length of “real
estate” on the unit circle. If the random value r falls in the real estate belonging
to peer p, then p will be chosen by Peer Count. Peers with short arc lengths will
get extra real estate from peers with longer arc lengths. Thus, the real estate
associated with a particular peer need not be contiguous on the unit circle. We
can show using Chernoff bounds that any interval containing tp contiguous peers
(i.e. an interval considered by the algorithm) will have length large enough to
assign λ real estate to each peer in the interval. The value T in algorithm Peer
Count is used to partition up the length of such an interval so that each peer has
exactly λ real estate assigned to it. The formal proof of correctness of algorithm
Peer Count is presented in Section 3.

2.2 Algorithm Arc Length

The algorithm Arc Length is presented formally in Figure 3 and we give an
overview here. A peer p calls FindParametersII to select parameters dp and
tmaxp such that with high probability, no interval of length dp contains more
than tmaxp peers. Then the algorithm enters a loop in which it selects a random
number r from (0, 1] and a random integer x in [1, tmaxp]. The algorithm then
moves clockwise around the circle to the next peer until it has examined x peers
or it has moved a distance greater than dp from the point r. If the algorithm
finds a peer p′ such that 1) p′ is the xth peer it has encountered moving clockwise
from r and 2) d(r, p′) ≤ dp, then p′ is returned; otherwise the loop is repeated.
One execution of a loop is referred to as a round.

The high level intuition for the correctness of algorithm Arc Length is as
follows. In one round of the algorithm, some interval I starting at point r and of
length dp will be considered. There will be some number, n′, of peers in interval

6



1. tp, dminp ← FindParametersI();

2. λ← dminp/tp;

3. While TRUE do :

4. r ← random number in (0, 1];

5. first← h(r); T ← d(r, first)− λ;

6. Repeat tp − 1 times or until T < 0:

7. T ← T + d(first, next(first))− λ;

8. first← next(first).

9. If T < 0 return first;

Figure 2: Algorithm Peer Count

I. If FindParametersII works correctly, n′ will be less than tmaxp. Thus,
Algorithm Arc Length selects each peer in interval I with probability exactly
1/tmaxp. Since each peer has probability dp of being in the interval considered
by Arc Length in a round, it means that each peer has probability exactly
dp/tmaxp of being selected in a given round. The formal proof of correctness
of algorithm Arc Length is presented in Section 3.

2.3 Choosing parameters

Here we describe the procedures FindParametersI and FindParametersII. These
procedures use constants c1, c2, c3, c4, which will be tuned to minimize latency
and ensure correctness. Both procedures use only estimates of lnn and (ln n)/n
since the size n of the networks is not known to each peer.

For sufficiently large n, with probability 1− 1/n, a constant approximation
of lnn is given by the distance from a peer to its nearest clockwise neighbor, as
in [15]. In Figure 4, we generalize this approach: Procedure 1 gets its estimate
based on the distance between p and its cth

1 closest clockwise neighbor.
An algorithm for estimating (lnn)/n is given in [16, 21]. For sufficiently

large n, with probability 1− 1/n, the distance spanned by any Θ(lnn) peers is
Θ(lnn/n). In Figure 5, Procedure 2 generalizes the algorithm from [16, 21] by
introducing the constant c2.

The procedures FindParametersI and FindParametersII are given in Figure 6
and Figure 7, respectively. These procedures first get estimates of ln n and
(lnn)/n and then compute tp and dminp (respectively, dp and tmaxp).
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1. dp, tmaxp ← FindParametersII();

2. While TRUE do :

3. r ← random number in (0, 1];

4. x← random integer in [1, tmaxp];

5. i← 1; p′ ← h(r);

6. While i < x and d(r, p′) ≤ dp:

7. i← i + 1; p′ ← next(p′);

8. If d(r, p′) ≤ dp return p′;

Figure 3: Algorithm Arc Length

1. p← id of self;

2. n̂← c1/[d(p, next(c1)(p))];

3. Return ln n̂;

Figure 4: Procedure 1: Estimating lnn

3 Analysis

In this section, we prove Theorem 1. The proof of Theorem 1 will make use of
Lemmas 2, 6, 8, and 12 which we give in this section.

3.1 Analysis of FindParametersI

In this section, we will prove the following lemma about the procedure FindPa-
rametersI.

Lemma 2. Assume n peers are distributed uniformly at random on the unit
circle of a DHT. Then there exist settings for the constants c1, c2, c3, c4 in the
procedure FindParametersI which ensure the following with probability at least
1− 3/n. For every peer p, tp and dminp are chosen such that:

• Every interval containing tp peers has length at least dminp;

• tp = Θ(lnn) and dminp = Θ((lnn)/n).

8



1. s← estimate of ln n, via Procedure 1;

2. Return (1/c2) ∗ [d(p, next(c2s)(p))].

Figure 5: Procedure 2: Estimating (lnn)/n

1. tp ← estimate of ln n, via Procedure 1;

2. dp ← estimate of (ln n)/n via Procedure 2;

3. dminp ← c3 ∗ dp

4. Return tp ← c4 ∗ tp and dminp ← c4 ∗ dminp

Figure 6: FindParametersI

The proof of Lemma 2 uses several lemmas concerning the base hash function
h′; h′ is the hash function which maps peers to points on the unit circle based
on their IDs (i.e. IP addresses). As mentioned previously, we make the random
oracle assumption [7] for the base hash function of the DHT. The first lemma
is shown by Mahlki et al. [15].

Lemma 3. With probability at least 1 − 1/n: (property 1) h′ has the property
that for any peer, p,

lnn− ln lnn− 2 ≤ ln

(

1

d(p, next(p))

)

≤ 3 lnn

Consider some interval I of the unit circle. We say that I is anchored if I has
a peer point, p, at its counterclockwise endpoint. We say that p is the anchor
point for I. The following lemma bounds the number of peers in anchored
intervals of a certain size.

Lemma 4. Let α1, α2, ǫ be fixed positive constants with α1 < α2 and 0 ≤ ǫ ≤
1/2. Let C ≥ 16/(α1ǫ

2). Then for n sufficiently large, with probability at least
1− 1/n, the following (property 2) is true for h′:

• For any anchored interval I on the unit circle, if the number of peers
that I contains other than the anchor point is greater than Cα1 lnn and
less than Cα2 lnn, then I is of length between C(1 − ǫ)α1(lnn/n) and
C(1 + ǫ)α2(lnn/n)

9



1. tp ← estimate of ln n, via Procedure 1;

2. dp ← estimate of (ln n)/n via Procedure 2;

3. tmaxp ← c3 ∗ tp

4. Return dp ← c4 ∗ dp and tmaxp ← c4 ∗ tmaxp

Figure 7: FindParametersII

Proof. We must show two facts are true with high probability. First, that no
anchored interval I of length less than C(1− ǫ)α1(lnn/n) contains greater than
Cα1 lnn peers other than the anchor point. Second, that no anchored interval
I of length greater than C(1 + ǫ)α2(ln n/n) contains less than Cα2 lnn peers
other than the anchor point.

We start with the first fact. Consider some anchored interval I of length
C(1 − ǫ)α1(ln n/n). Let X be a random variable giving the number of peer
points other than the anchor which fall in I. Note that E(X) = ((n−1)/n)C(1−
ǫ)α1(lnn). Further, by Chernoff bounds, we know that for any 0 < δ ≤ 1,

Pr(X ≥ (1 + δ)E(X)) ≤ e−δ2E(X)/3.

Setting δ = ǫ implies that:

Pr(X ≥ Cα1 lnn) ≤ e−ǫ2E(X)/3

≤ e−ǫ2C(1−ǫ)α1/6

≤ 1/n3.

The second line in the above follows provided that n ≥ 2. The last line
follows since C ≥ 12/(ǫ2α1) and 1− ǫ ≥ 1/2 (since ǫ ≤ 1/2)

There are exactly n anchored intervals of length C(1− ǫ)α1(lnn/n). Thus a
simple union bound shows that with probability no more than 1/n2, no anchored
interval of length less than C(1 − ǫ)α1(lnn/n) contains greater than Cα1 lnn
peers.

Now we show the second fact is true with high probability. Consider some
anchored interval I of length C(1 + ǫ)α2(ln n/n). Let X be a random variable
giving the number of peer points other than the anchor which fall in I. Note
that E(X) = ((n − 1)/n)C(1 + ǫ)α2(lnn). Further, by Chernoff bounds, we
know that for any 0 < δ < 1,

Pr(X ≤ (1− δ)E(X)) ≤ e−δ2E(X)/2.

We want to choose a δ such that (1− δ)E(X) ≥ Cα2 lnn. Choosing δ = ǫ/2

ensures that this is true for n sufficiently large (specifically n ≥ 2(1+ǫ)
ǫ ). Using

this value for δ, we get that:

10



Pr(X ≤ Cα2 lnn) ≤ e−ǫ2E(X)/8

≤ ǫ2Cα2(ln n)/16

≤ 1/n3.

The last line in the above follows since C ≥ 16/(ǫ2α2).
There are exactly n anchored intervals of length C(1+ ǫ)α2(lnn/n). Thus a

simple union bound shows that with probability no more than 1/n2, no anchored
interval of length greater than C(1 + ǫ)α2(ln n/n) contains less than Cα2 lnn
peers.

We have show that fact (1) fails to be true with probability 1/n2 and fact
(2) fails to be true with probability 1/n2. Finally, a union bound gives that the
probability that either fact is not true is no more than 2/n2. This probability
is no more than 1/n provided that n ≥ 2.

The following lemma bounds the size of any interval containing more than
a certain number of peer points.

Lemma 5. With probability greater than 1− 1/n, (property 3) h′ has the prop-
erty that any interval containing at least 8 lnn peer points has length greater
than (lnn)/n.

Proof. We will show that no interval of length (ln n)/n contains greater than
or equal to 8 lnn peer points. The analysis follows from the balls and bins
paradigm. Partition the unit circle into disjoint consecutive intervals (bins) of
length (ln n)/n. Let X be the number of balls in any one bin. Then E[X ] = lnn.
By the Chernoff bound, Pr(X ≥ (1 + δ)E[X ]) < e−2E[X] = 1/n2 for δ ≥ 3.

Let δ = 3. With probability 1/n2, no consecutive pair of bins contains more
than 2(1+δ)E[X ] = 8 lnn peer points. A simple union bound then implies that
no interval of length (lnn)/n in the unit circle contains greater than or equal
to 8 lnn peer points.

We can now prove Lemma 2

Proof. Let h′ be a random hash function mapping the n peers uniformly at
random to the unit circle. Then by a simple union bound and Lemmas 3, 4,
and 5, we know that with probability at least 1− 3/n, properties (1)–(3) hold.
In the remainder of this proof, we will let p be an arbitrary peer and assume
the three properties hold.

Let c1 = 1 and c4 = 16, then, by property (1), tp will be of size at least
8 lnn. By property (2), if we set c2 sufficiently large, we can ensure that the
value returned by Procedure 2 will be no more than 4(lnn/n). Then setting c3

to be 1/64 ensures that dminp will be no larger than (lnn)/n. We know that
by property (3), any interval containing at least 8 lnn peer points has length
greater than (lnn)/n. Thus for every peer p, every interval containing tp peers
has length at least dminp. Finally, we note that the constants have been set in
such a way that tp = Θ(lnn) and dminp = Θ((lnn)/n).
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3.2 Analysis of FindParametersII

In this section, we will prove the following lemma about the procedure FindPa-
rametersII.

Lemma 6. Assume n peers are distributed uniformly at random on the unit
circle of a DHT. Then there exist settings for the constants c1, c2, c3, c4 in the
procedure FindParametersII which ensure the following with probability at least
1− 3/n. For every peer p, dp and tmaxp are chosen such that:

• No interval of length dp contains more than tmaxp peers

• tmaxp = Θ(lnn) and dp = Θ((lnn)/n).

We will make use of the following simple corollary which follows directly
from Lemma 5.

Corollary 7. Property (3) implies that no interval of length (lnn)/n contains
greater than or equal to 8 lnn peer points.

We now present the proof of Lemma 6.

Proof. Let h′ be a random hash function mapping the n peers uniformly at
random to the unit circle. Then by a simple union bound and Lemmas 3, 4,
and 5, we know that with probability at least 1− 3/n, properties (1)–(3) hold.
In the remainder of this proof, we will let p be an arbitrary peer and assume
the three properties hold.

Let c1 = 1, then by property (2), if we set c2 sufficiently large, we can ensure
that the value returned by Procedure 2 will be less than or equal to 4(lnn)/n. If
we then set c4 = 1/4, we can ensure that dp ≤ (lnn)/n. Now if we set c3 = 64,
by Property (1), we can ensure that tmaxp ≥ 8 lnn. We know that by property
(3) and Corollary 7, no interval of length (lnn)/n contains greater than or equal
to 8 lnn peer points. Thus for every peer p, no interval of length dp contains
more than tmaxp peer points. Finally, we note that the constants have been set
in such a way that dp = Θ((lnn)/n) and tmaxp = Θ(lnn).

3.3 Analysis of Algorithm Peer Count

In this section, we prove the following lemma.

Lemma 8. Assume in an execution of algorithm Peer Count that tp and dminp

are chosen so that every interval containing tp peers has length at least dminp.
Then algorithm Peer Count has the following properties.

• Each peer is chosen with the same probability, namely dminp/tp.

• The expected number of rounds is tp/(n · dminp).

12



• For any positive integer r, the probability that the number of rounds is
greater than r is (1− n · dminp/tp)

r

• There is exactly one call to h per round. The number of calls to next per
round is tp except for the last round, where it may be less than tp.

We will prove this lemma as follows. We will say that Peer Count assigns
a point x on the unit circle to a peer q if Peer Count returns q when x is the
random number chosen in step 1. In the proofs below, we will fix the peer p
that is running the peer count algorithm and will let λ be dminp/tp as in the
second step of Peer Count. We will then show that Peer Count assigns to each
peer a set of disjoint intervals whose lengths sum to λ.

Lemma 9. For any point r on the unit circle, if r is assigned by Peer Count
to a peer q, then d(r, q) < λnum(r, q) and num(r, q) ≤ tp. If there is more than
one such peer, then the algorithm assigns r to the closest one, i.e., the one such
that d(r, q) is minimal.

Proof. In the loop at line 6, the algorithm visits a succession of peer points
going clockwise from r. Let qi represent the peer whose peer point is the ith

encountered (here, q1= h(r)). In line 5, T is set to d(r, q1) − λ. It is easy to
see by induction that at the ith repetition of line 7, T = d(r, qi+1)− λ(i + 1) =
d(r, qi+1) − λnum(r, qi+1). The algorithm returns the first peer qi such that
T < 0, i.e., d(r, qi) < λnum(r, qi), provided that such a peer is encountered
within tp peer points of r.

For any peer q, let Int(q) = (x, q] be the half-closed interval on the unit
circle whose endpoint x is the closest point counterclockwise from q such that
d(x, q) ≥ λnum(x, q).

Lemma 10. Let q, q′ be any peers such that num(Int(q)) ≤ tp and q 6= q′.
Then:

1. Every point assigned by the algorithm to q lies in Int(q).

2. Every point in Int(q) is assigned by the algorithm to a peer whose peer
point lies in Int(q).

3. Either Int(q) ⊂ Int(q′), Int(q′) ⊂ Int(q), or Int(q) ∩ Int(q′) = ∅.

Proof. Proof of (1): Let Int(q) = (x, q]. Let y be a point assigned to q. Then
d(y, q) < λnum(y, q), by Lemma 9. Assume to the contrary that y lies outside
Int(q).

We first look at the case that there is no peer point in [y, x]. Then d(y, q) =
d(y, x) + d(x, q) ≥ d(x, q) ≥ λnum(x, q) = λnum(y, q), contradicting the as-
sumption that the algorithm would have assigned y to q.

Alternatively, let q′ be the peer whose peer point is closest to x in [y, x]
(or equal to x if x is a peer point). By assumption, since y was assigned to
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q, d(y, q) < λnum(y, q). Now, d(y, q) = d(y, q′) + d(q′, q) and num(y, q) =
num(y, q′) + num(q′, q). Hence we have

d(y, q′) + d(q′, q) < λnum(y, q′) + λnum(q′, q).

Since d(q′, q) ≥ d(x, q) ≥ λnum(x, q) and num(q′, q) = num(x, q), the above
inequality is preserved when we subtract d(q′, q) from the left-hand side and
λnum(q′, q) from the right-hand side. This implies:

d(y, q′) < λnum(y, q′).

By Lemma 9, the algorithm would have assigned y to q′ since d(y, q′) < d(y, q),
contradicting our assumption.

Proof of (2): This follows from the fact that every point y in lnt(q) has the
property that d(y, q) < λnum(y, q). Hence by Lemma 9, y is either assigned to
q or some closer peer in [y, q].

Proof of (3): This is similar in technique to the proof of (1) and is left to the
reader.

Lemma 11. The set of intervals assigned to any peer q with num(Int(q)) ≤ tp
has total length λ.

Proof. The proof is by induction on the size of num(Int(q)) where q is any peer.

Base Case: num(Int(q)) = 1. In this case, Int(q) = (q − λ, q]. Lemma 10 (2)
implies that every point in Int(q) is assigned to q and Lemma 10 (1) implies
that no other point is assigned to q so the single interval assigned to q has length
λ.

Induction step: Suppose num(Int(q)) = k. Then there are k − 1 peer points
within Int(q) excluding q. By Lemma 10(3), each of these peer points q′ have
Int(q′) ⊂ Int(q). Since Int(q′) does not contain q, num(Int(q′)) < k. By the
induction assumption, each peer q′ is assigned an interval of length λ, for a total
of (k − 1)λ. By Lemma 10 (2), every point in Int(q) is assigned to a peer in
Int(q). Hence since d(Int(q)) = λk, kλ − (k − 1)λ = λ has been assigned to
q. By lemma 10 (1), no other points on the unit circle have been assigned to q.
Hence q has been assigned a set of intervals whose lengths add up to λ.

We now give the proof of lemma 8.

Proof. By Lemma 11, we need only show that for any peer q, num(Int(q)) ≤ tp.
Assume to the contrary that for some peer q, num(Int(q)) > tp. Let Int(q) =
(x, q] for some point x. Let y be the closest point to q in Int(q) such that
num(y, q) = tp. Note that y is closer to q than x. By our assumption, d(y, q) ≥
dminp. But we know that dminp = λtp. Thus d(y, q) ≥ λtp = λnum(y, q).
This contradicts the fact that x is the closest point counterclockwise to q such
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that d(x, q) ≥ λnum(x, q). Thus, each peer is chosen with probability exactly
λ.

By the above argument, the probability that some peer is chosen in a given
round is nλ, and so the expected number of rounds is 1/(nλ) = tp/ndminp.
Further the probability that the number of rounds is greater than r is (1−nλ)r.
The number of calls to next is easily seen to be tp in all but possibly the last
round, which may be completed without all tp calls.

3.4 Analysis of Algorithm Arc Length

Lemma 12. Assume in an execution of algorithm Arc Length that tmaxp and
dp are chosen so that every interval of length dp contains no more than tmaxp

peers. Then algorithm Arc Length has the following properties.

• It chooses each peer with equal probability, namely dp/tmaxp

• The expected number of rounds is tmaxp/(ndp).

• For any positive interger r, the probability that the number of rounds is
greater than r is (1− ndp/tmaxp)

r

• The number of calls to h per round is 1 and the number of calls to next
in each round is no more than tmaxp.

Proof. We first show that any peer q is selected in a given round with probability
dp/tmaxp, hence each is selected with equal probability. Let ξ1 be the event that
q is within distance dp of r. Then Pr[ξ1] = dp. Let ξ2 be the event that q is the
peer returned by the algorithm. Then Pr[ξ2|ξ1] = 1/tmaxp (since any interval of
length dp contains no more than tmaxp peers). Since Pr[ξ2] = Pr[ξ2|ξ1]Pr[ξ1],
we have that Pr(ξ2) = dp/tmaxp.

The probability that any peer is selected in a given round is thus ndp/tmaxp.
This means that the expected number of rounds is tmaxp/(ndp) and that the
probability that the number of rounds is greater than r is (1−ndp/tmaxp)

r for
any positive integer r. The number of calls to next per round is never more
than tmaxp.

3.5 Proof of Theorem 1

We now give the proof of Theorem 1. We first show the theorem holds for
algorithm Peer Count. To see this, note that by Lemma 2, with probability at
least 1−3/n, tp = θ(ln n) and dminp = θ((ln n)/n) and every interval containing
tp peers has length at least dminp. Thus, Lemma 8 implies that algorithm Peer
Count is correct and that, in expectation, it has latency lnn and sends lnn
messages. Further, if in Lemma 8 we set r = θ(ln n), it implies that with high
probability, the number of rounds is θ(ln n). Thus, with high probability, the
latency and number of messages sent are both O(ln2n).

We next show that Theorem 1 holds for algorithm Arc Length. First, we
note that by Lemma 6, with probability at least 1− 3/n, tmaxp = Θ(lnn) and
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Peer Count Arc Length
Range Tested Step Range Tested Step

c1 2− 5 1 2− 5 1
c2 2− 5 1 2− 5 1
c3 0.1 - 0.5 0.1 2− 5 1
c4 2− 5 1 2− 5 1

Figure 8: Range of Values Table

Peer Count Arc Length
c1 5.0 2.0
c2 5.0 4.0
c3 0.2 4.0
c4 4.0 2.0

Figure 9: Selected Values Table

dp = Θ((lnn)/n) and that no interval of length dp contains more than tmaxp

peers. Thus, Lemma 12, implies that algorithm Arc Length is correct and
that, in expectation, it has latency lnn and sends lnn messages. Further, if in
Lemma 12 we set r = θ(ln n), it implies that with high probability, the number
of rounds is θ(ln n). Thus, with high probability, the latency and number of
messages sent are both O(ln2n).

4 Empirical Results

The failure probability of our algorithms depends critically on the values of
the constants c1, c2, c3, c4. The relationship between these constants, the failure
probability and the latency is given by a non-linear system of equations. Since
finding an optimal solution is computationally intractable, our goal is to find
settings for the constants which ensure that the algorithms are both 1) correct
for a large number of randomly generated DHTs and 2) have low latency.

4.1 Maintaining Correctness

For Peer Count, a set of constants is correct for a DHT if, for all peers p, no
interval containing tp consecutive peers has length less than dminp. For Arc
Length, a set of constants is correct for a DHT if, for all peers p, no interval of
length dp contains more than tmaxp peers. If these conditions hold, then any
peer in the DHT which executes the algorithms will select a peer uniformly at
random.
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Peer Count Arc Length
Range Tested Step Peer Count Step

c1 6.0-13.0 1.0 3.0-10.0 1.0
c2 6.0-13.0 1.0 5.0-12.0 1.0
c3 0.04-0.18 0.02 5.0-12.0 1.0
c4 5.0-12.0 1.0 3.0-10.0 1.0

Figure 10: Range of values used for investigating latency.

4.2 Setting the Constants

To find candidate constant settings, we explored discrete points in a large space
of possible constant values. The range of values table in figure 8 shows the
range of values tested for each algorithm. We only kept those settings which we
verified to be correct for 1, 000 random DHTs containing 10, 000 peers. In other
words, for all 10 million peers in the 1, 000 DHTs, we verified that Peer Count
and Arc Length would run correctly on each peer. From this we concluded that
the error probability of the algorithms, using those settings, was small. Note
that the probability of error decreases as n increases.

4.3 Measuring Latency

From all constant settings which passed the empirical test described in the
previous section, we chose one for each algorithm which minimized the average
latency over many trials. The selected values table in Figure 9 gives the settings
chosen for the algorithms Peer Count and Arc Length, respectively.

In our empirical tests, to get specific numerical values for latency and mes-
sage costs for calls to next and h, we assume Chord is the underlying DHT.
Therefore, the latency for a call to either of our algorithms is defined as ([# of rounds]·
log n)+[# of calls to next] excluding the calls to next incurred by FindParametersI
and FindParametersII. We expect that a peer will need to update its param-
eters infrequently and, therefore, estimate the latency cost based only on calls
to next and h within the main ‘while’ loop of each algorithm.

4.4 Computational Results and Analysis

In order to find the mean latency for both Peer Count and Arc Length, 100
random DHTs were generated each with 10, 000 peers. For each DHT, 10, 000
executions of each algorithm were performed by peers chosen uniformly at ran-
dom. The mean latency for Peer Count was found to be 20.02 logn and the
mean latency for Arc Length was found to be 10.01 logn. The latency distri-
bution for both Peer Count and Arc Length is presented in Figure 11. Both
distributions are tightly concentrated around their means.
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Figure 11: (a-b) The latency distribution for Peer Count and Arc Length, re-
spectively.

4.4.1 Latency and Clockwise Arc Length

We investigate the relationship between the latency of a run of the algorithms
Peer Count and Arc Length and the length of the arc between the peer running
the algorithm and the closest clockwise peer point (we will call this the clockwise
arc length of the peer). We generated 100 random DHTs each with 10, 000
peers. For each DHT, the average latency incurred by each peer over a total of
10 executions of Peer Count and Arc Length was recorded. The peers were then
ordered by clockwise arc length. The results over all 100 DHTs were averaged
and plotted in Figure 12 (a-b). As evidenced by these plots, there is a decrease
in latency as the clockwise arc length increases. This is not surprising given that
as the clockwise arc length of a peer increases, that peer will provide tighter
parameter values to the algorithms Peer Count and Arc Length .

4.4.2 Latency, Constants and Clockwise Arc Length

In this section, we examine the effect of the constants c1, c2, c3, c4 on the latency
of peers with differing clockwise arc lengths. For instance, one may question
whether some optimal setting of the constants for peers with relatively small
clockwise arc length differs from some optimal setting for peers with larger
clockwise arc length. If so, peers might benefit from individually setting their
constants according to some function of their clockwise arc length.

Figure 13 (a-d) and Figure 14 (a-d) depict the latency as measured against
clockwise arc length and constants c1, c2, c3, c4 for Peer Count and Arc Length,
respectively. For each constant, 10 random DHTs were created each with 10, 000
peers. Each peer of a random DHT executed Peer Count or Arc Length 5 times,
respectively. This provided data on average latency versus forward arc legnth
for a certain constant value and a best fit line was obtained. Over the constant
values tested, these best fit lines define the interpolated surfaces observed in
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Figure 12: (a-b) The mean latency values versus the peers ordered by increasing
distance to the closest clockwise peer for Peer Count and Arc Length, respec-
tively.

Figure 13 (a-d) and 14 (a-d).
The table in Figure 10 provides the different values for c1, c2, c3, c4 that were

tested for Peer Count and Arc Length. The resulting plots in Figures 13 and
14 allow for a visual inspection of effects due to changing the value of any single
constant setting. Both Peer Count and Arc Length fail to exhibit any significant
change in latency over the values for clockwise arc length and constants c1 and
c2. Increasing these constants can help peers obtain more accurate values of
lnn and lnn/n. However, this does not significantly improve the overall latency
of the algorithms.

As the constants c3 and c4 are varied, we see a marked change in latency,
which is expected. However, there is no significant change in slope in the plane
defined by the latency and clockwise arc length axes for any of these plots.
These results suggest that, within the range of constants chosen, there are no
settings which improve latency costs regardless of clockwise arc length.

4.4.3 Summary

Overall, the results of our empirical tests match our theoretical predictions. For
Peer Count, the average number of rounds is 4.85, with an average latency of
20.02 logn. For Arc Length, the average number of rounds is about 3.90, with an
average latency of 10.01 logn. The results suggest that algorithm Arc Length
requires significantly less bandwidth and latency than algorithm Peer Count.
Both algorithms exhibit a tendency to favor peers with larger clockwise arc
length. Experimental evidence suggests that this behavior occurs over a range
of settings for the constants. The simplicity and efficiency of Arc Length makes
it an attractive choice over Peer Count. One possible downside of Arc Length in
comparison with Peer Count is that it requires more random bits. In particular,
Arc Length requires log log n more random bits per round than Peer Count.
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Figure 13: Plots of latency values measured against peers ordered by increasing
distance to the closest clockwise peer and varying constants for Peer Count.

5 An Application to Unstructured Networks

We note that algorithm Arc Length can be modified to choose a random peer
in an unstructured network as follows. Assume that all peers have IDs chosen
independently and uniformly at random between 0 and 1 and that the peer p
running the algorithm has estimates dp and tmaxp as described in Section 2.
The peer p picks a random number r between 0 and 1. It broadcasts r and the
number dp to all peers in the network. All peers which have IDs within distance
dp of r then respond to this broadcast. Peer p chooses a random number between
1 and tmaxp and then chooses the x-th closest peer to r among all peers that
responded to its broadcast, if at least x peers responded. Otherwise, it repeats
the algorithm. While p must broadcast to the entire network, we expect only
Θ(log n) peers to have to respond to p’s broadcast. This modified algorithm
might be of particular interest in a sensor or mobile network application where
p is a powered node and the other nodes are unpowered nodes. In this case, we
are able to minimize the number of unpowered nodes that have to send messages
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Figure 14: Plots of latency values measured against peers ordered by increasing
clockwise arc length and varying constants for Arc Length.

to p and so are able to conserve battery power.

6 Conclusion and Future Work

We have presented the first algorithms for choosing a peer uniformly at random
from the set of all peers in a DHT. We have shown that these algorithms have
expected latency and message cost which is O(log n). We have also shown that,
in practice, the algorithms are quite efficient. Several open problems remain
including the following:

• Many peer-to-peer networks like Gnutella have much less structure than
a DHT. Based on empirical studies [23], it seems reasonable to make the
assumption that these semi-structured networks at least have good expan-
sion properties. Can we design efficient algorithms for choosing a random
peer in such semi-structured peer-to-peer networks with good expansion
properties? In particular, can we do better than a random walk in the
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sense that we guarantee that the peer selected is selected precisely uni-
formly at random? Another interesting question is: Can we design efficient
algorithms by assuming a formal model of network creation and mainte-
nance such as the model in [4].

• Can we design an algorithm to efficiently choose a node uniformly at ran-
dom in a sensor network? In sensor networks, connections are determined
by a distance metric and the points are typically randomly distributed.
In such networks, power consumption is also another critical resource to
conserve.
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