Scalable Byzantine Agreement

Clifford Scott Lewis * Jared Saia *

Abstract

This paper gives a scalable protocol for solving the Byzantine agreement problem. The protocol is
scalable in the sense that for Byzantine agreement over n processors, each processor sends and receives
only O(logn) messages in expectation. To the best of our knowledge this is the first result for the
Byzantine agreement problem where each processor sends and receives o(n) messages. The protocol uses
randomness and is correct with high probability. ! It can tolerate any fraction of faulty processors which
is strictly less than 1/6. Our result partially answers the following question posed by Kenneth Birman:
“How scalable are the traditional solutions to problems such as Consensus or Byzantine Agreement?” [5].

1 Introduction

Peer-to-peer (p2p) networks have emerged for a wide range of applications including data-sharing (e.g.
Napster [32], Gnutella [28], Kazaa [30] and Morpheus [31]), computation (e.g. SETI@home [33], FOLD-
ING@home [27] DataSynapse [26], NetBatch [22]), collaboration (e.g. Groove Networks [29]), internet
infrastructure systems (e.g. 13 [23]) and distributed storage (e.g. FARSITE [1]). Distributed computation
is an integral part of many of these p2p systems [33, 27, 26, 22, 1]. Some of these systems use a trusted
third party to initiate or direct the computation. However in many cases, a trusted third party may not
be available and so completely distributed algorithms are required.

Unfortunately, distributed computation by a p2p network is vulnerable to attack. Because p2p systems
generally lack admission control, there can be large numbers of malicious peers in the system at any time.
There are examples where such malicious peers acting alone or in concert have wreaked havoc on a p2p
system [6, 35, 7]. For this reason, p2p systems which perform distributed computation need algorithms
which work even in the face of malicious attack. In particular, these algorithms must be both scalable and
attack-resistant.

Towards this end, we consider the problem of designing a scalable solution to the Byzantine agreement
problem. The Byzantine agreement problem [19, 14] is one of the most well-studied problems in distributed
computation and is a building block in many secure distributed protocols. Unfortunately, to the best of
our knowledge, all previous solutions to this problem require each processor to send a number of messages
which is at least linear in the total number of processors. This is unacceptable for a p2p system, where
the number of processors can easily be on the order of hundreds of thousands. In fact, for a p2p system to
be scalable, we generally require all resource costs per peer to be polylogarithmic in the number of peers.

This paper gives a protocol which solves the Byzantine Agreement problem while requiring each pro-
cessor to send only O(logn) messages in expectation. To the best of our knowledge this is the first result
for this problem which requires each processor to send o(n) messages. Our protocol uses randomness and

is correct with high probability. It can tolerate any fraction of faulty processors which is strictly less than
1/6.

*Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-1386; email: {csl,
saia}@cs.unm.edu. This research was partially supported by NSF grant CCR-0313160 and Sandia University Research
Program grant No. 191445.

n particular, the probability of failure can be made to be %, for any fixed constant c.



A major tradeoff we make to achieve scalability is that our protocol is correct only with high probability.
We feel that this tradeoff is justified for two reasons. First, one can not achieve scalability without making
this tradeoff. Consider any protocol where each processor receives o(n) messages total. Because a constant
fraction of the processors are faulty, there is always some probability that all of the messages received
by a fixed processor are from faulty processors. If this event occurs, the faulty processors can force the
protocol to fail. Second, the probability of error for our protocol can be made small enough to be essentially
imperceptible on a human scale, even for reasonably sized constants. For example, if n = 100, 000, the
fraction of faulty processors is 1/100, and the constant C' in step 1 of the protocol (given in Figure 1) is
600, then the probability of protocol failure is no more than 9x1073'. Note that the number of milliseconds
in a human life is less than 10'3. Thus, if the protocol runs once per millisecond in this scenario, we would
expect at least 10'7 human lifetimes to pass between failures.

1.1 Related Work

The Byzantine agreement problem was introduced by Pease, Shostak and Lamport [19]. Fischer, Lynch
and Paterson show that there is no deterministic protocol to solve the asynchronous Byzantine agreement
problem, even if there is only a single processor fauly [11]. Moreover, Fischer and Lynch [12] showed that
even in the synchronous communication model, any deterministic protocol requires a linear number of
rounds to reach agreement in the worst case.

Rabin [20] and Ben-Or [3] present protocols which overcome this limitation by using randomness. These
protocols are always correct and require only a constant number of rounds in expectation. They can also
be shown to achieve consensus even in the asynchronous setting. Several subsequent papers improve on
these initial results by reducing time complexity, message complexity, bit complexity, and by increasing
the fraction of faults that can be tolerated [25, 4, 8, 9]. However, both in Rabin and Ben-Or’s and all
subsequent protocols, each processor is required to send and receive O(n) messages in expectation.

Our protocol is very similar to Rabin’s protocol. The only major difference is that our protocol uses
random sampling. While in each round of Rabin’s protocol, each processor takes input from all other
processors, in our protocol, in each round, each processor takes input from a small random sample of all
the other processors. Our main contribution is showing that even with this random sampling, we can still
obtain correctness with high probability.

2 The Scalable Byzantine Agreement Protocol

2.1 The Byzantine Agreement Problem

We now formally describe the Byzantine agreement problem. We start with n processors each having an
initial binary input. Some fraction of these processors may be faulty. There are no restrictions on the
actions of the faulty processors: they may fail to act, act inconsistently or act in collaboration. The correct
processors are those which follow the protocol. The correct processors are trying to ensure that at the end
of the protocol the following two properties hold:

1. All correct processors have the same output result.

2. If all correct processors have the same input, b;, then they will all have b; as an output.

2.2 The Protocol

Our protocol, which we call Scalable Byzantine Agreement, is presented in Figure 1. This protocol is
very similar to Rabin’s randomized protocol [20], as presented in [17]. In our protocol, each processor
first takes input from a small random sample of the processors: O(logn) processors chosen uniformly at
random. Then the value of a global coin flip is established and used to set a threshold for the round. Each
processor, based on its sampled inputs, calculates its estimate of the number of correct processors which
have the majority vote. The processor sets its vote according to whether or not this estimate exceeds



the threshold chosen for that round. The protocol continues until all processors have crossed the highest
threshold.

2.3

Model Assumptions

Our protocol operates under the same model as Rabin’s protocol [20]. In this section, we describe the
assumptions of this model. We emphasize that these are the same assumptions made in Rabin’s model. In
Section 3, we show how to adapt our protocol for a peer-to-peer model and thereby remove or relax most
of these assumptions.

2.4

Trusted IDs: A trusted authority establishes processor identifications.
Secure Communication: There is a secure communication channel between any pair of processors.

Bounded Communication Time: There is an upperbound, U, on the amount of time it takes to send
a message from any processor to any other processor. If a processor takes more than 2U time to reply
to a sent message then that processor is considered faulty. Each processor waits 2U time between
step 2b and step 2d of the protocol. (We assume that communication time dominates computation
time for the processors.)

Knowledge of Inn: Each processor knows the quantity Inn

Ability to Choose a Random Processor: Each processor can choose a processor uniformly at random
from the set of all processors. (This gives us the ability to select a set of C'lnn processors uniformly
at random)

Global Coin Toss: At each step there is a global coin toss that a trusted third party performs.

The coin toss results in heads with probability 1/2 and tails with probability 1/2 and this result is
correctly sent to all the processors.

Properties of the Protocol

Theorem 1 presents the key properties of the Scalable Byzantine Agreement protocol.

Theorem 1. The Scalable Byzantine Agreement protocol has the following properties:

e The protocol can tolerate an fr fraction of faulty nodes for any fr < 1/6

o The expected number of rounds is no more than 3 and the expected number of messages sent and

received by a processor in the protocol is no more than 6C lnn. 2

o With probability at least 1 — 9n1_2(ﬁ_%fﬂ20, the protocol is correct, i.e:

— all correct processors will have the same output result
— if all correct processors have the same input, b;, then they will all have b; as an output.

The proof of Theorem 1 appears in Section 4. Figure 2 gives some examples of the constants involved

in our protocol. The figure shows that even for reasonably small sample sizes, we can achieve a probability
of error which is extremely small.

Zwhere C is any constant chosen such that C'lnn is an odd number.



Input: A value b;.
Output: A decision d;.

The threshold values are G = (1 — fi —a)n, H = (1 — 2f; —4a)n, and L = (1 — 3f; — Ta)n, where
a=1/14 — (3/7) fr (which implies that L = 1/2). coin is the result of a random global coin flip.

1. vote; < b;;

2. For each round, do:

(a) Select C'lnn processors uniformly at random with replacement from which to receive
input (C' is a constant described in Theorem 1).

(b) Request input from the selected processors;

(¢) Send wote; to the processors which request it;

(d) maj; « majority value (0 or 1) among votes received.
m; < the number of occurrences of maj; among the votes received

(e) M; < m; * 71~ (M; is an estimate of the number of correct processors that have the
majority vote);

(f) if coin = heads then threshold «— L;
else threshold — H,;

(g) if M; > threshold then vote; <— maj;;
else vote; «— 0;

(h) if M; > G then set d; to maj; permanently;

Figure 1: Scalable Byzantine Agreement Protocol

3 Peer-to-Peer Adaptations

In this section, we adapt our protocol to a peer-to-peer model. We assume that there is a collection of n
peers which will perform our protocol. We further assume that these peers are connected in a Distributed
Hash Table(DHT); in particular, we will assume they are connected in a DHT which is robust to Byzantine
faults. Any such DHT will suffice; we will use the “Simple Fault Tolerant DHT” described by Naor and
Weider [18]. This DHT ensures secure communication from any peer x to any other peer y, provided that
x knows gy’s ID. The DHT ensures this property with high probability even if each peer in the network
independently suffers a Byzantine fault with probability p < 1/2. Sending a message from peer x to peer
y in the network has O(logn) latency and requires O(log2 n) messages total. Further each peer in their
network has degree O(logn).

In the following itemized list, we address each of the asssumptions made in Section 2.3 in order to
adapt our protocol to the peer-to-peer model. We will see that our protocol when run among a set of n
peers connected in the “Simple Fault Tolerant DHT” will have the following resource costs: each peer will
have a latency of O(logn) per round and each peer will send O(log® n) messages per round. We note that
all of the messages sent will be small in size.

o Trusted ID’s: All peer-to-peer systems implicitly make the assumption that a trusted authority
establishes peer IDs. In fact, Douceur shows that without this assumption, a system is always open
to “Sybil Attacks” [10]. Under this attack, a single faulty agent presents multiple peer identities and
thereby gains control of an arbitrarily large fraction of the peers in the system. With such control,
the single faulty agent can then completely disrupt the system. An identification authority is needed
to avoid this type of attack. The authority can be an explicit certification agency like Verisign [13].



n sample size | failure probability n sample size | failure probability
10° | 2.3 % 10° 9%10~* 10° | 4.6 % 10° 9% 1013

106 | 2.6 % 10° 9% 10748 106 | 5.2% 103 9% 107156

107 | 3.2%10° 9% 10756 107 | 6.4 % 103 9% 107182

108 | 3.6 % 103 9% 10764 108 | 7.2%10° 9% 107208

n sample size | failure probability n sample size | failure probability
10° | 6.9 % 10° 9% 10722 10° | 9.2% 10° 9% 10731

106 | 7.8 %103 9% 107264 106 | 1.0 % 10* 9% 107372

107 | 9.6 % 103 9% 107308 107 | 1.3 % 10% 9% 107434

108 | 1.1%10% 9% 107352 108 | 1.4 % 10* 9% 107496

Figure 2: Sample size and protocol failure probability for various n when fr = 1/100. The top left table
has C' = 200; the top right table has C = 400; the bottom left table has C' = 600; and the bottom right

table

has C' = 800.

More simply, it can be implicit: peer IDs can be a hash of the peer IP address (e.g. as in Chord [24],
CAN [21] and Tapestry [34]), or cryptographic keys embedded in device hardware (e.g. as in the
EMBASSY platform [15]). Any type of trusted, easily verifiable peer ID will suffice for our protocol.

Secure Communication: In our protocol, we require that any two procesors can communicate securely.
The “Simple Fault Tolerant DHT” fulfills this requirement. When run under this DHT, each peer
will have O(logn) latency and send O(log® n) messages in steps 2b and 2c of our protocol.

Bounded Communication Time: We note that we can decrease latency at the expense of fault-
tolerance in the following way. For some constant U, let fy be the fraction of peers for which
communication latency can be greater than U. We can “fold” these peers into the set of faulty peers.
In other words, if we increase f; by fy, then each processor need wait only 2U time between step 2b
and step 2d of the protocol. For example, assume we know that there is a set of 95% of the peers
that have maximum pairwise latency of 100 milliseconds. Then we can set U to be 100 milliseconds
provided that we add .05 to f;.

Knowledge of Inn: In our protocol, we require that every processor knows the quantity Inn. It is not
possible for every peer in the DHT to know n exactly because of the dynamic nature of the network.
However, the “Simple Fault Tolerant DHT” provides an operation which, with high probability,
allows any peer to get a constant factor approximation to Inn (this operation was first described by
Malkhi et al in [16]). The operation takes constant time. Using this approximation causes a (small)
constant blowup in the size of the samples chosen in step 2a of our protocol.

Ability to Choose a Random Processor: In our protocol, we assume that each processor can choose a
processor uniformly at random. We now present a heuristic for selecting a peer uniformly at random
from the set of all current peers in the DHT. We assume that each peer has a unique id (e.g. the
IP-address of the peer) and that the domain of the DHT is the interval between 0 and some constant
D. Our heuristic simply picks a random number in this interval between 0 and D and then uses
the DHT to find the unique peer to which this random number maps®. Provided that the the DHT
has sufficiently good load-balancing properties, this chosen peer will be a good approximation to a
uniformly random choice. Note that since we are assuming a robust DHT, this heuristic allows for

3If the number maps to multiple peers, we select one of the peers uniformly at random



sampling even in the presence of Byzantine faults. Using this heuristic, each peer will have O(logn)
latency and send O(log3 n) messages to choose the sample set in step 2a of our protcol.

e Global Coin Toss: We present a simple heuristic to implement a global coin toss. In the first round of
the protocol, each peer selects as leader the peer that is clockwise closest to the point 0 in the DHT.
In the i-th round, each peer selects as leader the peer that is clockwise closest to the peer selected in
the ¢ — 1 round. The peer that is selected as leader performs the global coin toss and communicates
the results to all the other peers. If we assume that the base hash function of the DHT is a random
oracle function [2], then with constant probability, the peer chosen in a given round will be a correct
peer. In this case, the global coin toss will be unbiased. The only damage a faulty peer can do when
selecting the coin toss is to bias the coin toss or to communicate different values to different peers.
The only negative effect this has is to potentially extend the protocol another round. Since no more
than a constant fraction of the peers are faulty, this heuristic adds only a constant number of rounds
to the protocol in expectation. The heuristic introduces a latency of O(logn) and requires O(log? n)
messages to be sent in step 2f of our protocol(to determine the value of the coin toss).

3.1 A Note on the Global Coin Toss

Our heuristic for the global coin toss works only if a trusted third party assigns IDs to the faulty peers when
they join the DHT. Thus, we are assuming a weaker adversary than is normally assumed for the global
coin toss problem. In particular, our adversary controls a set of peers which are assigned IDs and then
added to the DHT; it can not carefully choose the peers it controls from among those peers already in the
network. We feel that our adversary, although somewhat weakened, still covers a broad range of possible
attacks. Finding a scalable solution to the global coin toss problem with a more powerful adversary is an
area for future work.

4 Proofs

In this section, we give the proof of Theorem 1. Before we give that proof, we first show several lemmas.
These lemmas will all be concerned with a fixed round of the protocol.

We will use the following definitions in these lemmas: n is the total number of processors in the protocol;
C' is the constant in step 2a of the protocol; Smajority is the set of correct processors that have the majority
bit; Skaulty is the set of faulty processors; M = |Smajorityl; T = |[Stauty|; fr = T/n; fu = M/n. For
any processor i: S; is the set of processors in the sample that node ¢ takes in step 2a of the protocol;
ti = |Si () Stautty|s Xi = |5i () Smajority|; maji, vote;, m; and M; are the values computed in the protocol.

The following lemma about sampling will be useful. Intuitively, it says that if the constant C' is chosen
large enough in step 2a of the protocol, that with high probability, for all processors ¢, the random variables
t; and x; will be close to their expected values.

Lemma 2. Let o be any fized constant such that 0 < o < 1, Then with probability at least 1 — 3n1_2°‘2c,
the following statements are true for every processor i:

1. t; < (fi + «)Clnn

2. |xi — fuClnn| <aClan

Proof. Let i be some fixed processor. Since each processor in S; is faulty independently with probability
ft, we know that E(t;) = f;CInn. Further, we can apply Chernoff bounds *todo*, to say that:

P(t; > (ft + a)Clnn) < g=20°Clnn



Now let &1 be the event that for any processor i:
t; > (ft + a)Clnn

Since the value i can take on only n possible values, we can use a simple Union Bound to bound the
probability of event &;:

P(&) < n672a2C’lnn

6(1—20420) Inn

Now again let 7 be some fixed processor. Since each processor in S; is from the set Syajority independently
with probability fas, we know that E(x;) = faC Inn. Further, we can apply Chernoff bounds to say that:

P(lxi — fuClnn| > aClnn) < 9p—20°Clnn
Now let & be the event that for any processor i:
Ixi — fuClnn| > aClnn

Again, since the value ¢ can take on only n possible values, we can use a simple Union Bound to bound
the probability of event &s:

P(SZ) < n2672a201nn

26(1—2a20) Inn

Finally we can use a simple Union bound to bound the probability that either event &; or event &s
occur:

P(& U 52) < 36(1—2a20) Inn
< gpl-2°C
So for C chosen sufficiently large, the statements in the lemma hold with high probability. O

The following lemmas are all true with probability at least 1 — 3pl-20°C,
Lemma 3. Consider some fized round of the protocol. With high probability, for all processors i:

M—aon <M, <M+T+ 2an

Proof. To get the upperbound, we first note that for any processor ¢, m; < x; + t; and apply Lemma 2 to
upperbound y; and ;:

m; Xi + 1
(fu+a)Clnn+ (fr +a)Clnn

(fm+ fr+2a)Clnn

<
<

This implies that:
M; < M+ T+ 2an.
To get the lowerbound, we note that for any processor ¢, m; > x; and then apply Lemma 2 to lowerbound
Xi*
my Xi
(fur —a)Clnn

This implies that M; > M — an. Il

AVARAY]



Corollary 4. With high probability, for any two processors i and j, |M; — M;| < T + 3an

Proof. Without loss of generality, assume that M; > M;. Then from Lemma 3, we know that with high
probability, M; < M + T + 2an. This implies that M > M; — T — 2an
Using Lemma 3 again, we can say that:

M — an

(M; — T —2an) — an
= M,;— (T + 3an)

M;

AV

O

Lemma 5. If any processor j, has M; > H in some round, then for all processors i, maj; = maj; in that
round.

Proof. Since M; > H, we know by Lemma 3 that M > H — (T +2a)n. Thus, far > (1 —3fr —6c). Hence
by Lemma 2, for all processors 4,

fuClnn —aClnn
(1-3fr—7a)Clnn
(1/2)Clnn

Xi

AVARAYARIY

This implies that for every processor i, at least half of S; is from Siajority- This implies that all processors
have the same maj value? and that in particular, for all processors i, maj; = maj;. O

Lemma 6. If all correct processors have the same vote value at the start of some round, then with high
probability they will all permanently decide on that value at the end of the round.

Proof. Let b be the vote value that all processors have at the beginning of the round. We first show that
for all processors i, maj; = b. This is equivalent to showing that for all processors i, x; > (1/2)C'lnn. We
know that fy; =1 — fr, thus by Lemma 2, we know that for all processors i:

fuClnn—aClnn
(1—fr—a)Clan
(1/2)C'lnn

Xi

VoIV IV

Where the last line follows because our constraint 3f; + 7a = 1/2 implies that f; + « < 1/2. Thus for
all processors i, maj; = b

We next show that all processors have M; > G. If all correct processors have the same vote value at
the start of some round, then M = n — T. Thus, from Lemma 3, we know that with high probability, for
all processors i:

M, > M-—an
= n—-T—aoan
= G

4provided that C'lnn is an odd number, which is easy to ensure.



Lemma 7. If any processor permanently sets its output value in a given round, then by the end of the
following round all processors will have permanently set their outputs to the same value.

Proof. Let j be some processor which has permanently set its output in the current round to the value d;.
Since M; > G, we know by Lemma 5 that for all other processors, i, maj; = d;. From Corollary 4, we also
know that since M; > G, for all processors i, M; > G — (T + 3an) i.e. M; > H.

Thus, with high probability, for all processors i, vote; = d; at the end of the round. Hence, by Lemma 6,
in the next round, all processor’s will permanently set their values to d;. O

Lemma 8. Any given round will be the last or next to last round with probability at least 1/2

Proof. There are two cases for a round.

Case 1: For all processors i, M; < H. In this case, if the global coin toss sets the threshold to be H, all
processors will set their vote values to 0 and so the protocol will terminate in the next round by Lemma 6.
This happens with probability 1/2.

Case 2: For some processor j, M; > H. By Lemma 5, all processors, 4, will have mayj; = maj; for this
round. By Corollary 4, all processors ¢ will have M; > L for this round. Thus if the global coin toss sets
the threshold to L, all processors will set their vote values to maj; and so the protocol will terminate in
the next round by Lemma 6. This happens with probability 1/2. U

4.1 Proof of Theorem 1
We are now ready to prove Theorem 1.

Proof. The protocol requires that 1 — 3fr — 7a < 1/2 for any constant « > 0. This implies that fr must
be less than 1/6 and that « = (1/14 — 3/7fr). Call a round good if the statements in Lemma 2 (and thus
all the lemmas) hold and call it bad otherwise. Let Py be the probability that a given round is bad. Thus:

P, < 3n1—2a2C

Let &; be the event that the i-th round is the first bad round. Note that P(¢;) is no more than the probability
that the protocol gets to the i-th round times P,. Thus, P(&1) < By, and for all i > 2 P(&;) < (1/2)1P,.
Now the probability that any round is bad is P(|J;2; &) which we can bound with a Union bound as
follows:

r(J&) < > P&
i=1 i=1
< Pb-l-Z(l/?)in
i=0
= 3h

We note that if no round is bad, we can establish both correctness and termination. Correctness is
established by Lemmas 6 and 7: Lemma 6 proves that if all correct processors have the same input, then
they will all have the same output. Lemma 7 proves that all correct processors will have the same output
result. Finally, termination of the protocol is established by Lemma 8. In particular, the expected number
of rounds is no more than 3. We note that each processor sends 2C Inn expected messages per round
(C'lnn messages asking for bits and C'lnn messages sending the processor’s vote). Thus, the expected
total number of messages sent and received by a processor in the protocol is no more than 6C Inn. U



5 Conclusion and Open Problems
We have presented a first result on the scalable Byzantine agreement problem. Numerous open problems
remain including the following;:

e Can one design a scalable solution to the global coin toss problem for an adversary which is able to
carefully choose the peers it controls from among all the peers in the network?

e In many cases, it may suffice to guarantee that, e.g., only 99% of the processors reach agreement. In
such a situation, is it possible to reduce the message complexity to O(1) in expectation?

e Can one apply the same type of sampling technique used in this paper to other classical problems in
distributed computing in order to make them more scalable?

6 Acknowledgements
We gratefully thank James Aspnes, John Douceur and Stefan Saroiu for their help with this paper.

10



References

[1]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite: Federated, available, and reliable storage for an incom-
pletely trusted environment. In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, 2002.

M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols.
In The First ACM Conference on Computer and Communications Security, pages 62—73, 1993.

Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pages 27-30, Montreal, Quebec, Canada, 17-19 August 1983.

P. Berman and J. Garay. Randomized distributed agreement revisited. In Proc. 23rd International
Symposium on Fault-Tolerant Computing, 1993.

Kenneth P. Birman. The surprising power of epidemic communication. In Future Directions in
Distributed Computing, volume 2584 of Lecture Notes in Computer Science, pages 97-102. Springer,
2003.

John Borland. Gnutella girds against spam attacks. CNET News.com, August 2000.
http://news.cnet.com/news/0-1005-200-2489605.html.

John Borland. Hackers, madonna mix it up. CNET News.com, April 2003. http://news.com.com/2100-
1025-997856.html.

G. Bracha. An asynchronous [(n-1/3)]-resilient consensus protocol. In ACM Conference on the Prin-
ciples of Distributed Computing(PODC), 1984.

R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with optimal resilience. In ACM
Symposium on Theory of Computing (STOC), 1993.

John Douceur. The sybil attack. In Proceedings of the Second Internation Peer to Peer Symposium
(IPTPS), 2002.

M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty pro-
cessor. Journal of the ACM, 32(2):374-382, 1985.

Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183-186, June 1982.

Verisign Incorporated. http://www.verisign.com.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 4(3):382—401, 1982.

K.R. Lefebvre. ”the added value of embassy in the digital world”. Technical report, Wave Systems
Corporation, 2000.

D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic lookup network. In ACM
Conference on the Principles of Distributed Computing(PODC, 2002.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

11



[18]
[19]

[20]

[21]

M. Naor and U. Wieder. A simple fault tolerant distributed hash table, 2003.

M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of faults. Journal of the
ACM, 27(2):228-234, April 1980.

M. O. Rabin. Randomized byzantine generals. In 2/th Annual Symposium on Foundations of Computer
Science (FOCS ’83), pages 403-409, Los Alamitos, Ca., USA, November 1982. IEEE Computer Society
Press.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scalable Content-
Addressable Network. In Proceedings of the ACM SIGCOMM 2001 Technical Conference, San Diego,
CA, USA, August 2001.

John Spooner and Ken Popovich. Intel: The future is peer. ZDNet News, August 2000.
http://zdnet.com.com/2100-11-523296.html?legacy=zdnn.

I. Stoica, D. Atkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastructure. In
Proceedings of the ACM SIGCOMM 2002 Technical Conference, 2002.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In Proceedings of the ACM SIGCOMM 2001
Technical Conference, San Diego, CA, USA, August 2001.

S. Toueg. Randomized byzantine agreements. In ACM Conference on the Principles of Distributed
Computing(PODC), 1984.

DataSynapse Website. http://www.datasynapse.com.
FOLDING@home Website. http://folding.stanford.edu.
Gnutella Website. http://gnutella.wego.com/.

Groove Networks Website. http://www.groove.net.
Kazaa Website. http://www.kazaa.com.

Morpheus Website. http://gnutella.wego.com/.

Napster Website. http://www.napster.com/.
SETI@home Website. http://setiathome.ssl.berkeley.edu.

B.Y. Zhao, K.D. Kubiatowicz, and A.D. Joseph. Tapestry: An Infrastructure for Fault-Resilient
Wide-Area Location and Routing. Technical Report UCB//CSD-01-1141, University of California at
Berkeley Technical Report, April 2001.

Andrew Zolli. Monsters of rock: Meet the music industry agents that could ruin your downloading
career. Wired Magazine, September 2003. www.wired.com/wired/archive/11.09/start.html?pg=12.

12



