
Discrete Sensor Placement Problems in

Distribution Networks

Tanya Y. Berger-Wolf a,b William E. Hart c Jared Saia b

aCenter for Discrete Mathematics and Theoretical Computer Science (DIMACS),

CoRE Bldg, Rutgers University, 96 Frelinghuysen Rd, Piscataway, NJ 08854

tanyabw@dimacs.rutgers.edu

bDepartment of Computer Science, University of New Mexico, Albuquerque NM

87131, USA

{tanyabw,saia}@cs.unm.edu

cComputer Science Research Institute, Sandia National Laboratories, Albuquerque

NM 87185, USA

wehart@sandia.gov

Abstract

We consider the problem of placing sensors in a network to detect and identify the

source of any contamination. We consider two variants of this problem: 1) sensor-

constrained : we are allowed a fixed number of sensors and want to minimize con-

tamination detection time; and 2) time-constrained : we must detect contamination

within a given time limit and want to minimimize the number of sensors required.

Our main results are as follows. First, we give a necessary and sufficient condition

Preprint submitted to Elsevier Science 15 December 2004

for source identification. Second, we show that the sensor and time constrained ver-

sions of the problem are polynomially equivalent. Finally, we show that the sensor-

constrained version of the problem is polynomially equivalent to the asymmetric

k-center problem and that the time-constrained version of the problem is polyno-

mially equivalent to the dominating set problem.

1 Introduction

We consider the problem of placing sensors in a building or a utility network in

order to detect contamination of the air or water supply. Practical motivation

for this problem derives from recent world events including Tokyo’s subway

incident, London’s poison gas bomb plot and various US government warn-

ings. While more effective sensors (e.g. the SnifferSTAR air quality sensor [1])

are currently being developed to address increasing threats of contamination,

these new sensors are likely to be expensive. Thus, algorithmic techniques are

needed to place sensors in a network in such a way that cost is minimized and

contamination can still be quickly detected.

Two possible goals for sensor placement are: (1) contamination detection i.e.

ensuring quick detection of a contamination event, and (2) source identifica-

tion i.e. ensuring that the source of contamination can always be identified.

Two natural constraints for sensor placement are: (1) sensor-constrained i.e.

allowing only a fixed number of sensors and (2) time-constrained i.e. requir-

ing contamination detection or source identification within a given time limit.

2

These two goals and two constraints define four sensor placement problems

which we address in this paper.

Our results in this paper provide the first analysis of the computational com-

plexity of these sensor placement problems. The problems are described for-

mally in Section 2.1. For contamination detection, we show that the sensor-

constrained and time-constrained problems are polynomially equivalent and

NP-hard (Section 2.2). We show that the sensor-constrained contamination

detection problem is polynomially equivalent to the asymmetric k-center prob-

lem (Section 4) and the time-constrained contamination detection problem is

polynomially equivalent to the dominating set problem (Section 5). In addi-

tion, we describe necessary and sufficient conditions for source identification

(Section 3); and give exact solutions to two specific cases of the source iden-

tification problem: the uniform clique and rooted trees (Section 6).

1.1 Past Work

A variety of numerical techniques have been proposed for sensor placement.

There are several integer programming formulations for contamination detec-

tion in water networks [2–5]. Berry et al. [2] show that these integer programs

can be robust to noise in data. Unfortunately, integer programming can be

exponential slow so these formulations of the problem are unlikely to scale.

Numerical methods have also been developed for the problem of source iden-

3

tification [6–10]. The approaches suggested in these papers are either to place

sensors randomly or apply a greedy heuristic that uses matrix condition num-

ber and iterative matrix inversion to compute a minimal (but not necessarily

optimal) set of sensors capable of contamination source identification. Unfor-

tunately, these numerical methods can also be exponentially slow.

There have also been non-numerical approaches to sensor placement. González-

Banos and Latombe show how to place visual sensors in a building for 3D map-

ping using a combinatorial optimization approach [11]. Additionally, heuristic

optimizers have been used to perform sensor placement in water networks us-

ing water quality and protection measures based on detailed hydraulic models

like EPANET (e.g. see [12–14]).

2 Discrete Optimization Model

2.1 Overview

In this section we give a formal description of our sensor placement problems.

We model the network as a directed weighted graph G = (V,E). V is a set of

vertices representing possible locations for the sensors. These may be rooms in

a building or pipe junctions in a water network. E is a set of edges represent-

ing flow between the vertices. These may be airways or hallways in a building

or pipes in a utility network. Each edge (i, j) has weight rij ∈ <+ which is

4

the time it takes for contaminant to pass from vertex i to vertex j. We use

the shortest path metric to define the actual translocation rates in the graph.

That is, for any two vertices i and j, the translocation rate rij is defined as

the length of the shortest path between i and j; rij is infinite if no such path

exists. Since the shortest path metric defines the actual translocation rates

in this graph, the triangle inequality is valid. We can construct an adjacency

matrix representation of the effective translocation rates in the graph by using

any all-pairs shortest paths algorithm for directed weighted graphs with no

negative weights. 1 Thus, the input graph is a weighted complete graph (pos-

sibly with some infinite weight edges), where some edges represent the actual

flow conduits and the rest are inferred to represent the effective translocation

rates. For simplicity of presentation, however, in some cases we will explicitly

describe only the edges representing flow conduits and the remaining edges

are inferred.

Given this input, the goal is to place sensors on the vertices so it is always

possible to detect the contamination and, additionally, identify the vertex that

is the source of contamination. We say that a sensor s can detect contamination

at vertex v if there exists a directed path from v to s. We say that s detects

contamination at v within time t if the length of the v-s path is at most t.

We make several assumptions about the sensor placement problem. First we

1 The best algorithm to date is, we believe, Pettie’s algorithm that runs in

O(|E||V | + |V |2 log log |V |) time [15]

5

assume that a sensor can detect the presence of contaminant before it reaches

dangerous levels and that once a sensor is activated, it remains activated. Sec-

ond, we assume rapid mixing in the air flow. That is, (1) there is no delay

between the material entering and leaving a compartment and (2) the spread

of the material inside the compartment is even. Third, we assume that there

is a single contamination source. Otherwise, a sensor is needed at every ver-

tex for source identification to be possible. For any particular contamination

event, we assume that all the vertices down the flow from the contamination

source eventually become contaminated. Any vertex in the network may be a

potential contamination source.

In the sensor constrained variant of our problem, we are given a maximum

number of sensors, Smax, and we want to minimize the time from contamina-

tion to detection or source identification. In the time constrained variant of

the problem, we are given a time limit, T , and want to minimize the number

of sensors required to detect contamination or identify the source within that

time limit.

2.2 Sensor constrained and time constrained equivalence

We now show a polynomial time equivalence between the sensor constrained

and time constrained variants of the sensor placement problem.

Observation 1 The sensor-constrained and time-constrained versions of the

6

sensor placement problem are polynomially equivalent. Moreover, an algorithm

for the sensor-constrained version can be converted to an algorithm for the

time-constrained version with a lg |V | factor increase in the running time, and

an algorithm for the time-constrained version can be converted to an algorithm

for the sensor-constrained version with a lg m factor increase in the running

time (where m ≤ n2 is the number of finite weight edges).

Proof. Suppose we have an exact algorithm that solves the sensor-constrained

version of the problem. We now describe an algorithm for the time-constrained

version, with time limit T , that minimizes the number of sensors. Set the

sensor limit at |V | and use the given algorithm to find the minimum time

to detection or identification. If the solution for the contamination source

identification exceeds T then there is no feasible solution to the identification

problem. (Note that when sensor limit is |V | the time to detection is 0 and

therefore there is a feasible solution). Otherwise, use binary search on the

sensor limit to find the smallest number of sensors for which the solution to

the sensor-constrained version is within the specified time limit T . There are

at most lg |V | iterations of the binary search, hence the logarithmic factor

increase in the running time.

The other direction is very similar. Suppose we have an exact algorithm for

the time-constrained version. Sort the edges by their length. (Note that this

adds an O(m lg m) additive factor to the running time which is assumed to be

less than At−c × lg m, where At−c is the running time of the algorithm for the

7

time-constrained problem.). Recall that we assume that all the edges exist and

their weights are defined by the shortest path metric. Therefore the time to

detection or identification for any algorithm must be the length of some edge.

Start with the time limit set at rmax, the length of the longest finite edge. Solve

this problem for the smallest number of sensors. This gives the smallest feasible

number of sensors. Thus, if the solution requires more sensors than the sensor

limit Smax then there is no feasible solution. Otherwise, use binary search on

edge lengths to find the smallest time limit for which the time-constrained

solution gives at most the number of alloted sensors.

Note that the binary search approach assumes monotonicity. However, it is

clear that the number of sensors needed monotonically increases as the detec-

tion time limit decreases and vice versa.

3 Source Identification

In both the sensor and time constrained variants of sensor placement, the

question of unique contamination source identification must be addressed. The

problem of source identification is clearly at least as hard as contamination

detection, since detection is necessary for identification. The following lemma

gives a necessary and sufficient condition for source identification.

Lemma 1 Unique contamination source identification is possible within the

system if and only if every vertex has a unique configuration of sensors and re-

8

v1 v2

s1 s2

1
1 2

3

Fig. 1. The sensors s1 and s2 will react in the same order to vertices v1 or v2 being

contaminated. However if v1 is the contamination source, then the reaction delay

between s1 and s2 is 1, while if v2 is the source, the delay is 2.

action time delays between successive sensors. That is, let S = {s0, . . . , sk−1}

be the set of all sensors in the graph. For a vertex vi, let (si0 , . . . , sik−1
) be

the sensors ordered by the length of the path from vertex vi to each sen-

sor (breaking the ties by sensor number). Further, let (di1 , . . . , dik−1
) be the

reaction delay time sequence, where dij is the difference between the path

length from vi to sij−1
and the path length from vi to sij . If there is no path

from vi to sij , then dij = ∞. Then each vertex must have a unique tuple

((si0 , 0), (si1 , di1), . . . , (sik−1
, dik−1

)).

The reaction time delay sequence in addition to the sensor permutation is

generally necessary for unique identification. Figure 1 shows an example of

the same sensor permutation with different time delays that allows unique

identification. (The edges not drawn in the figure are inferred.)

Clearly, there must be a path from each vertex to at least one sensor for

source identification. In the worst case, the entire sequence of sensors may

be necessary for the unique source identification. Figure 2 shows an example

9

v1 v2 v3

s3s2s1

Fig. 2. An example of a graph where an entire sensor sequence may be neces-

sary for a unique contamination source identification. For each sensor si the in-

coming edges have weight i. The delay sequence for the vertices is as follows:

v1 : (s1, 0), (s2, 1), (s3, 1), v2 : (s2, 0), (s3, 1), v3 : (s1, 0), (s3, 2). For each sensor

vertex si the delay sequence is (si, 0). The minimum number of sensors for this

graph is the three sensors shown in the figure.

of this phenomena, with six vertices and three sensors that can be easily

generalized to s sensors with 2s vertices for an arbitrary s.

Given a graph with edge weights and a sensor placement, using Lemma 1

it is possible to verify whether the placement indeed allows unique source

identification. It also leads to a natural contamination source identification

algorithm. First, we construct the sensor-delay sequence for each vertex by

sorting the set of weights from a vertex to all the sensors. The sorting and

computing of the delay in the reaction time between two successive sensors

can be done in O(|V ||S| log |S|) time, where |S| is the number of sensors. Once

the sensor-delay sequences are constructed, we need to verify that each vertex

has at least one finite sensor reaction time and that there are no two identical

sequences. This can be done in a straight-forward way in O(|V |2|S|) time (in

the worst case the sequences differ in the last delay time). Now we can build a

10

delay sequence multi-graph, with sensors as vertices and edges (i, j) of weight

wij if there exists a sensor reaction sequence in which sensor j reacts after

sensor i with a delay of wij. For each edge we also keep a label that identifies

the set of possible vertices that are consistent with the delay sequence as being

the contamination source. Traversing two consecutive edges implies taking the

intersection of their labels. This graph can be built in O(|V ||S|) time. Thus

the total preprocessing time is O(|V ||S| log |S|). When contamination occurs,

then any actual sensor reaction sequence corresponds to a unique path in

the delay sequence graph. Thus the contamination source can be identified in

O(|S|) time. We have shown the following statement.

Proposition 1 Given a placement of |S| sensors in the system, it takes at

most O(|V |2|S|) time to verify that unique source contamination identification

is possible and, in case of contamination, it takes at most O(|S|) time to

identify the source.

Note that this algorithm relies on the relative difference of the edge weights,

and not on their particular values. If the error in measurement of the translo-

cation rates is less than the smallest difference between any two paths, the

algorithm robustly identifies sources. To our knowledge, this sort of robust-

ness has not been quantified in other methods for source identification for

these problems.

11

4 Sensor-Constrained Contamination Detection

In the sensor-constrained contamination detection problem, we are given a

weighted directed graph G = (V,E) with positive weights rij and a positive

integer Smax, which is the maximum number of sensors to be used. Our goal

is to place the sensors onto the vertices of the graph in a way that minimizes

the maximum contamination detection time. This problem is equivalent to the

Asymmetric k-center problem, which is well known to be NP-hard [16]:

Asymmetric k-center: We are given a complete directed graph G = (V,E)

of shortest (weighted) path distances between the vertices that satisfies tri-

angle inequality, and a positive integer k. We must find a subset of vertices

S, |S| = k, which minimizes the longest distance from a vertex in S and any

vertex in the graph. That is we want to find appropriate S minimizing cost(S),

defined as follows:

cost(S) = max
v∈V

min
s∈S

dist(s, v).

The Asymmetric k-center problem cannot be approximated within a fac-

tor of (1−o(1)) log∗ n unless NP ⊆ DTIME(nlog log n). It is also inapproximable

within any constant factor unless P = NP [17]. There exist both an O(log∗ n)-

approximation algorithm [18] and a O(log∗ k)-approximation algorithm [19],

which are theoretically the best possible (unless NP ⊆ DTIME(nlog log n)).

Theorem 1 The sensor-constrained contamination detection problem is equiv-

12

alent to the Asymmetric k-center problem.

Proof. To show the reduction in either direction, we equate k = Smax and retain

the underlying directed graph G with the edge weights reversed dist(i, j) = rji.

Since the edge weights use the shortest path metric, the triangle inequality is

satisfied. A solution to the Asymmetric k-center problem is a subset of at

most k vertices, S, that minimizes the distance from a vertex in S to a vertex

in the graph. That is, this is a subset of at most Smax vertices such that the

maximum time from any vertex to a vertex in S is minimizes among all such

subsets. That is, this is a subset of vertices such that a placement of sensors

at these vertices minimizes the contamination detection time.

5 Time-Constrained Contamination Detection

In the time-constrained contamination detection problem, we are given a

weighted directed graph G = (V,E) with positive weights rij and a positive

integer T , which is the detection time limit. Our goal is to place the minimum

number of sensors onto the vertices of the graph that allows contamination

detection and source identification within the time limit. From Observation 1

we know that the time-constrained and sensor-constrained variants are poly-

nomially equivalent. We have shown in Section 4 that the sensor-constrained

variant is NP-hard, therefore, the time-constrained variant is NP-hard as well.

The question remains, however, what is the best approximation algorithm for

13

the time-constrained variant.

Notice, that we cannot apply directly any approximation algorithm for the

sensor-constrained minimization using the binary search to find the smallest

number of sensors within a given time limit. The solution that we find might

exceed the specified limit. Thus, the approximate solution must be within the

time limit. However, in that case we might restrict the problem too much,

increasing the number of sensors needed. In fact, for an arbitrary graph, there

is no bound on the increase in the number of sensors with the decrease in

the time detection limit. Consider a uniform clique with all the edge weights

(in both directions) being T , the time limit. We need only one sensor to

guarantee contamination detection within time T . However, detection within

any time less than T requires all n sensors. The clique graph is not unique.

We can construct numerous non-trivial examples with arbitrary increase in the

number of sensors when the detection time limit decreases. Thus we need an

approximation algorithm designed specifically for the time-constrained version

of the problem. For that, we reduce time-constrained sensor placement directly

to the Minimum Dominating Set problem.

Minimum Dominating Set: Given a graph G = (V,E) find the smallest

subset S ⊆ V such that for all u ∈ V −S there is a v ∈ S such that (u, v) ∈ E.

Minimum Dominating Set is not approximable within c ln |V | for any con-

stant 0 < c ≤ 1 [20]. The best approximation algorithm is the 1974 Johnson’s

14

1 + ln |V | approximation algorithm [21] which is the direct application of the

greedy set cover algorithm. The running time of the greedy set cover algo-

rithm is asymptotically proportional to the sum of the set sizes. In case of

the Minimum Dominating Set problem, there are |V | sets, each of size at

most ∆ (maximum degree of a vertex in the graph). Thus, the running time

is O(|V |∆).

Theorem 2 Time-constrained sensor placement problem is polynomially equiv-

alent to Minimum Dominating Set.

Proof. Given a weighted graph G = (V,E) for the sensor placement problem

and a time limit T , we create the input graph G′ = (V,E ′) for the Minimum

Dominating Set problem as follows. An edge (u, v) ∈ E ′ if and only if

ru,v ≤ T . That is, we create the “reachability in T graph”. A solution to the

Minimum Dominating Set on G′ provides a minimum subset of vertices

S ⊆ V such that for any u ∈ V it is either in S or there exists v ∈ S such

that (u, v) ∈ E ′. That is, S is a minimum subset of vertices V such that

for any vertex in the original graph G the distance from it to S is at most

T . This is the solution to the time-constrained sensor placement problem for

contamination detection.

For the other direction, given graph G = (V,E) for the Minimum Domi-

nating Set problem we create an instance of the time-constrained sensor

placement problem by assigning all the edges in E weights 1 and setting the

15

time limit T = 1. The weights for the edges not present in E are the path

length between the corresponding vertices. A solution to the time-constrained

sensor placement problem provides a minimum subset of vertices S such that

for any vertex u ∈ V − S the distance from u to a vertex in v ∈ S is at most

1. That is, (u, v) ∈ E.

6 Source Identification in Special Graphs

In this section, we give exact solutions to the source identification problem for

two special graphs: the uniform clique and rooted trees.

6.1 Uniform clique

Consider the uniform clique graph on n vertices, Kn, where each pair of vertices

i, j is connected by a bidirectional edge with weight r. The complete solution to

the uniform clique graph sensor placement problem is outlined in the following

two observations.

Observation 2 The uniform clique graph Kn needs one sensor for contam-

ination detection (in time greater than 0) and a sensor placed at any vertex

guarantees detection within the time limit of r.

Observation 3 The uniform clique graph Kn needs at least n− 1 sensors for

unique source identification (in time greater than 0) and any n − 1 sensors

16

guarantee unique source identification within the time limit of r.

To reduce the detection or identification time to 0 it is necessary to place a sen-

sor at every vertex. This is true for any graph with all non-zero edge weights.

Clearly, any sensor placement graph is a weighted clique (with possibly some

infinite edge weights).

6.2 Rooted trees

A rooted tree is a tree graph with a special vertex designated as a root. All

the edges are oriented away from the root. That is for any edge (i, j), it is

oriented from i to j if i is on the path from the root to j. Water and other

distribution networks can in some cases be modeled as rooted trees. In such a

network there is a single supply source and it is delivered along a unique path

to each destination. This model does not take into account possible back flow,

that is, it assumes the flow moves from the source to the destinations only.

6.2.1 Detection

There must be a sensor in each leaf of the tree (a vertex with no outgoing

edge), otherwise there is no way to detect contamination at that vertex. For a

detection time limit T , we use algorithm rtree presented in Figure 3 to find

the minimum set of sensors that ensures contamination detection within time

T .

17

RTREE

(1) Place a sensor at each leaf.

(2) Follow the edges in the reverse direction from the cur-

rent sensors and mark all the vertices that have dis-

tance at most T to a sensor as “covered”.

(3) Put a sensor at each uncovered vertex that is first on

the path from a sensor to the root.

(4) Repeat steps 2 and 3 until all vertices are covered.

Fig. 3. Algorithm rtree for contamination detection in rooted trees.

Theorem 3 Algorithm rtree produces a minimum set of sensors that guar-

antees contamination detection within the specified time limit T .

Proof. Suppose to the contrary that an optimal set of sensors is smaller than

that produced by the algorithm. There must exist a sensor in that set that

was placed at a vertex already covered at some iteration of the algorithm. Let

s be the first such sensor. The length of the path from s to the closest sensor

other than s is less than the time limit T . Notice that in the set of sensors

produced by rtree each two sensors are at least distance T apart, since we

never place a sensor on a covered vertex. In a tree graph there is a unique

path from the root to every vertex. If we replace the sensor s with the next

sensor sR from rtree on the path from the root to s, then we do not increase

the number of sensors. Moreover, all the vertices are still covered since s was

the vertex furthest from the root that was not in the set produced by rtree.

18

When we replace s by sR, all the descendants of sR are still covered by the

set of sensors that is the same in the optimal and rtree. The ancestors of

s are covered because sR is the first vertex uncovered by that set and it is

closer to the next optimal sensor on the path from the root to s. Thus we can

replace the optimal set of sensors with that produced by the algorithm without

increasing the number of sensors. This is a contradiction to the assumption

that the optimal set is smaller than the one produced by the algorithm. Hence

the algorithm rtree produces an optimal set of sensors.

6.2.2 Identification

Notice that the above algorithm guarantees detection within the specified time

limit, it does not guarantee identification. We need to modify the algorithm

slightly to guarantee unique contamination source identification.

Lemma 2 In a rooted tree graph, for any vertex at most two sensors are

sufficient to uniquely identify contamination at that vertex (the two sensors

are not necessarily the same for all the vertices).

Proof. In a tree with no vertices of degree 2 every internal vertex has a set of

descendents different from the set of descendents of its child (besides the child

itself) and each internal vertex has at least one pair of descendants such that

19

it is their least common ancestor 2 . Thus, for any internal vertex it is sufficient

to have sensors at some two vertices whose least common ancestor it is. These

two sensors identify their least common ancestor as the contamination source

in such a tree. Placing a sensor at any vertex of degree 2 uniquely identifies

contamination at that vertex and effectively converts the tree to a tree with

no vertices of degree 2.

Thus, when no time limit is imposed, it is sufficient to place the sensors at

the leaves to ensure unique contamination source identification in a tree with

no degree-2 vertices. However, we must place a sensor at any vertex that has

only one outgoing edge, since otherwise it cannot be a least common ancestor

of some two vertices. With these observations in mind, in Figure 4 we present

the modified algorithm rtree-id that produces the smallest set of sensors

that guarantees unique source identification within a given time limit T .

Theorem 4 Algorithm rtree-id produces a minimum set of sensors that

guarantee contamination source identification within the specified time limit.

The proof is similar to that of Theorem 3.

Both algorithms rtree and rtree-id minimize the number of sensors given

a time limit, that is, they are algorithms for the time-constrained model of

the problem. However, since these algorithms are exact, we have shown in

2 The least common ancestor of two nodes in a rooted tree is the node that is an

ancestor of both and is the furthest of all such from the root.

20

RTREE-ID

(1) Place a sensor at each vertex with out-degree less than

2.

(2) Follow the edges in the reverse direction from the cur-

rent sensors and mark all the vertices that have dis-

tance at most T to a sensor. For each vertex that is

marked at least twice, mark it as “covered”.

(3) Put a sensor at each not “covered” vertex that is first

on the path from a sensor to the root.

(4) Repeat steps 2 and 3 until all vertices are covered.

Fig. 4. Algorithm rtree-id for contamination source identification in rooted trees.

Section 2.2 that using those algorithms, we can construct a solution to the

sensor-constrained problem with a O(log |V |) factor increase in running time.

Thus, we have solved the sensor placement problem for rooted trees.

6.3 Directed acyclic graphs

A directed acyclic graph (DAG) is a directed graph with no cycles. The vertices

with no incoming edges are called maximal elements, and the vertices with no

outgoing edges are called minimal elements of the graph. Many distribution

networks can be realistically modeled as DAGs. In such a network there may be

many supply sources (maximal elements), but the flow is only from the source

to the destinations. This model still does not take into account possible back

21

flows.

6.3.1 Detection

Theorem 5 Time-constrained sensor placement for contamination detection

in a DAG is NP-complete.

Proof. The general sensor placement problem for contamination detection is

in NP, hence this special case is in NP as well. We show NP-hardness by a

reduction from Minimum Set Cover.

Minimum Set Cover: Given a universe U = {1, 2, ..., n} and a collection of

sets S = {S1, S2, ..., Sk} such that Si ⊆ U , find the smallest number of sets in

S such that ∪Sj
= U .

Given an instance of the Minimum Set Cover problem with the elements

U = {1, 2, ..., n} and a collection of sets S = {S1, S2, ..., Sk}, we create an

instance of the time-constrained sensor placement on a DAG as follows. There

are three types of vertices. All the maxima vertices correspond to U , one vertex

for each element. There is also a vertex for each set, with an edge from an

element u to a set S if u ∈ S. Finally, there is one minimum vertex with an

edge from each of the sets to it. Clearly, the resulting graph has no directed

cycles and can be constructed in polynomial time. Figure 5 illustrates the

construction. To finish the reduction, all the edges have the same weight 1

and the time limit for detection is T = 1.

22

S
1

S
2

S
k

1 2 3 n−1 n
...

...

Fig. 5. A graph obtained after the reduction from an instance of Set Cover. There

is an edge from i to Sj if i ∈ Sj . All vertices Sj have an edge to the minimum vertex.

Lemma 3 There exists a feasible set cover of the elements of U if and only if

there exists a feasible solution to resulting sensor placement problem with no

sensors placed at the maximal vertices.

Proof. Given a feasible set cover of U , we place the sensors at the minimal

vertex and the vertices corresponding to the sets in the cover. Contamination

in the minimum vertex and every vertex Si is detected by the sensor at the

minimum vertex (within time 1). Contamination at any maximal vertex i is

detected by the sensor at the vertex corresponding to the set Sj from the set

cover that contains i.

Conversely, given a placement of sensors in the graph with no sensors at the

maximal vertices, we create a set cover by taking the sets corresponding to

the vertices Sj that have sensors placed at them. Contamination at any of the

maximal vertices must be detected by one of these sensors, since the distance

to the minimum vertex is 2. Thus, the sets corresponding to these vertices

cover all the elements of U .

23

We now continue with the proof of Theorem 5. If there exists a feasible solution

to the sensor placement problem with no sensors at the maximal vertices, then

there exists an optimal solution with no sensor at the maximal vertices. This

is due to the fact that we can replace any sensor at a maximal vertex i with

a sensor at a vertex Sj that has an edge from i with no increase in the total

cost.

Given an optimal solution to the sensor placement problem with no sensor at

the maximal vertices, we construct a set cover by taking the sets corresponding

to the vertices Sj with sensors. From Lemma 3, this is a feasible solution to

the set cover problem. This is also an optimal solution, since the number of

sensors in any sensor placement with no sensor at the maximal vertices is one

more than the size of the set cover.

Thus, the Sensor Placement problem on a DAG is NP-complete.

7 Conclusions and Discussion

We have defined discrete models for the problem of placing sensors in dis-

tribution networks and presented robust approximation methods. Our results

show that optimal solutions cannot be efficiently found in all cases (unless

P = NP), but that near-optimal solutions can be efficiently generated. Al-

though we have not applied the approximation methods we discuss, it is clear

that fast approximation methods are important for sensor placement because

24

real-world data sets can be quite large. For example, a water network for a

large municipality can easily contain over 10,000 major distribution pipes. We

have also addressed the important goal of the identification of the source of

contamination for the first time in a discrete setting.

The models considered in this paper make many simplifications and assump-

tions that might need to be revised for practical applications. For example, we

have assumed a single set of network flows. Although this might be reasonable

for building ventilation systems, this will often be insufficient for large-scale

municipal water networks. Network flows in water networks vary based on

consumer demands, which naturally vary throughout the day and by day of

the week. Consequently, sensor placement methods for such domains need to

account for the best placement for a variety of flows (e.g., see the model pro-

posed by Berry et al. [2]). Even if the gross flow remains stable, there will

naturally be modest variations in flows. A more careful consideration of these

effects needs to be addressed to ensure quick robust contamination detection

and source identification.

Another major simplification in our model is that we have assumed robust

detection regardless of the contaminant concentration level. A more realistic

model would require a minimum concentration for robust detection. Addition-

ally, it may be necessary to explicitly model sensor failures. Sensor failures

might simply reflect the ability of sensors to operate under normal operating

conditions. However, modeling this aspect could account for malicious de-

25

struction of sensors (e.g., by assessing how many sensors could be destroyed

without seriously compromising their detection capacity).

Finally, we note that accurate prediction of sensor placements might require

explicit models of the decay of contaminants within the network. For example,

it is well-known that chemicals like chlorine bind to water pipes, which is

modeled by water models such as EPANET [22]. Contaminants that decay

rapidly will naturally be more difficult to detect, though this is not captured

in our models.

Acknowledgments

We are grateful to Cynthia Phillips and the anonymous reviewers for their

helpful comments. This work was performed in part at Sandia National Labo-

ratories. Sandia is a multiprogram laboratory operated by Sandia corporation,

a Lockheed Martin Company, for the United States Department of Energy un-

der Contract DE-AC04-94AL85000.

This work is supported by the National Science Foundation postdoctoral fel-

lowship grant EIA 02-03584 (Tanya Berger-Wolf), by the National Science

Foundation grant CCR-0313160 (Jared Saia), and by the Sandia University

Research Program Grant No. 191445 (Jared Saia).

26

References

[1] N. Singer, Flying SnifferSTAR may aid civilians and US military, Sandia

LabNews 55 (2).

[2] J. Berry, L. Fleischer, W. Hart, C. Phillips, Sensor placement in municipal water

networks, in: Proc World Water and Environmental Resources Conference,

2003.

[3] J. Berry, W. E. Hart, C. A. Phillips, J. Uber, A general integer-programming-

based framework for sensor placement in municipal water networks, in: Proc

6th Annual Symposium on Water Distribution Systems Analysis, 2004.

[4] R. D. Carr, H. J. Greenberg, W. E. Hart, C. A. Phillips, Addressing modelling

uncertainties in sensor placement for community water systems, in: Proc 6th

Annual Symposium on Water Distribution Systems Analysis, 2004.

[5] J.-P. Watson, W. E. Hart, H. J. Greenberg, A multiple-objective analysis

of sensor placement optimization in water networks, in: Proc 6th Annual

Symposium on Water Distribution Systems Analysis, 2004.

[6] A. Birchall, A microcomputer algorithm for solving compartmental models

involving radionuclide transformations, Health Physics 50 (3) (1986) 389–397.

[7] A. Birchall, A. C. James, A microcomputer algorithm for solving first-order

compartmental models involving recycling, Health Physics 56 (6) (1989) 857–

868.

[8] F. Gelbard, J. E. Brockmann, K. K. Murata, W. E. Hart, An algorithm for

27

locating sensors in a large multi-room building, Tech. Rep. SAND2000-0851,

Sandia National Laboratories (2000).

[9] C. D. Laird, L. T. Biegler, B. G. van Bloemen Waanders, R. A. Bartlett, Time

dependent contamination source determination for municipal water networks

using large scale optimization, Journal of Water Resources Planning and

Management(to appear).

[10] C. D. Laird, L. T. Biegler, B. G. van Bloemen Waanders, R. A. Bartlett,

Time dependent contamination source determination: A network subdomain

approach for very large networks, in: Proc World Water and Environmental

Resources Congress, 2004.

[11] H. González-Banos, J.-C. Latombe, A randomized art-gallery algorithm for

sensor placement, in: Proceedings of the Seventeenth Annual Symposium on

Computational Geometry (SoCG), ACM Press, New York, NY, USA, 2002, pp.

232–240.

[12] A. Kessler, A. Ostfeld, G. Sinai, Detecting accidental contaminations in

municipal water networks, J. Water Resources Planning and Management

(1998) 192–198.

[13] A. Kumar, M. Kansal, G. Arora, Discussion of “Detecting accidental

contaminations in municipal water networks”, Journal of Water Resources

Planning and Management (1999) 308–310.

[14] M. Tryby, D. Boccelli, J. Uber, L. A. Rossman, Facility location model for

booster disinfection of water supply networks, Journal of Water Resources

Planning and Management (2002) 322–332.

28

[15] S. Pettie, A faster all-pairs shortest path algorithm for real-weighted sparse

graphs, in: P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz,

R. Conejo (Eds.), Automata, Languages and Programming. 29th International

Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002. Proceedings, Vol.

2380 of Lecture Notes in Computer Science, Springer, Berlin, 2002, pp. 85–97.

[16] M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the

Theory of NP-completeness, W. H. Freeman and Company, 1979.

[17] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, J. Naor, Asymmetric

k-center is log∗ n hard to approximate, in: Proceedings of the 36th ACM

Symposium on Theory of Computing (STOC 2004), ACM, Chicago, IL, 2004.

[18] R. Panigrahy, S. Vishwanathan, An o(log∗ n) approximation algorithm for the

asymmetric p-center problem, Journal of Algorithms 27 (2) (1998) 259–268.

[19] A. F. Archer, Two o(log∗ k)-approximation algorithms for the asymmetric k-

center problem, in: Proceedings of the 8th Conference on Integer Programming

and Combinatorial Optimization, 2001, pp. 1–14.

[20] R. Raz, S. Safra, A sub-constant error-probability low-degree test, and sub-

constant error-probability PCP characterization of NP, in: Proceedings of the

29th Annual ACM Symposium on Theory of Computing, ACM, 1997, pp. 475–

484.

[21] D. S. Johnson, Approximation algorithms for combinatorial problems, J.

Comput. System Sci. 9 (1974) 256–278.

[22] L. A. Rossman, The EPANET programmer’s toolkit for analysis of water

29

distribution systems, in: Proceedings of the Annual Water Resources Planning

and Management Conference, 1999.

30

