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Abstract. In the problem of reliable multiparty computation (RC), there are n
parties, each with an individual input, and the parties want to jointly compute a
function f over n inputs. The problem is complicated by the fact that an omni-
scient adversary controls a hidden fraction of the parties.
We describe a self-healing algorithm for this problem. In particular, for a fixed
function f , with n parties and m gates, we describe how to perform RC repeat-
edly as the inputs to f change. Our algorithm maintains the following properties,
even when an adversary controls up to t ≤ ( 1

4
− ε)n parties, for any constant

ε > 0. First, our algorithm performs each reliable computation with the follow-
ing amortized resource costs: O(m+ n logn) messages, O(m+ n logn) com-
putational operations, and O(`) latency, where ` is the depth of the circuit that
computes f . Second, the expected total number of corruptions is O(t(log∗m)2),
after which the adversarially controlled parties are effectively quarantined so that
they cause no more corruptions.
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1 Introduction
How can we protect a network against adversarial attack? A traditional approach pro-
vides robustness through redundant components. If one component is attacked, the re-
maining components maintain functionality. Unfortunately, this approach incurs signif-
icant resource cost, even when the network is not under attack.

An alternative approach is self-healing, where a network detects the damage made
by attacks, inspects the corruption situation and automatically recovers. Self-healing
algorithms expend additional resources only when it is necessary to repair from attacks.

In this paper, we describe self-healing algorithms for the problem of reliable multi-
party computation (RC). In the RC problem, there are n parties, each with an individual
input, and the parties want to jointly compute a function f over n inputs. A hidden 1/4-
fraction of the parties are controlled by an omniscient Byzantine adversary. A party that
is controlled by the adversary is said to be bad, and the remaining parties are said to be
good. Our goal is to ensure that all good parties learn the output of f . 1

RC abstracts many problems that may occur in high-performance computing, sen-
sor networks, and peer-to-peer networks. For example, we can use RC to enable per-
formance profiling and system monitoring, compute order statistics, and enable public
voting.
? This research is partially supported by NSF grants: CISE-1117985 and CNS-1017509.
1 Note that RC differs from secure multiparty computation (MPC) only in that there is no re-

quirement to keep inputs private.
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Our main result is an algorithm for RC that 1) is asymptotically optimal in terms
of total messages and total computational operations; and 2) limits the expected total
number of corruptions. Ideally, each bad party would cause O(1) corruptions; in our
algorithm, each bad party causes an expected O((log∗m)2) corruptions.

1.1 Our Model
We assume a static Byzantine adversary that takes over t ≤ ( 14 − ε)n parties before
the algorithm begins, for any constant ε > 0. As mentioned previously, parties that
are compromised by the adversary are called bad, and the remaining parties are good.
The bad parties may arbitrarily deviate from the protocol, by sending no messages,
excessive numbers of messages, incorrect messages, or any combination of these. The
good parties follow the protocol. We assume that the adversary knows our protocol,
but is unaware of the random bits of the good nodes. We make use of a public key
cryptography scheme, and thus assume that the adversary is computationally bounded.

We assume a partially synchronous communication model. Any message sent from
one good node to another good node requires at most h time steps to be sent and re-
ceived, and the value h is known to all nodes. However, we allow the adversary to be
rushing: the bad nodes receive all messages from good nodes in a round before sending
out their own messages. We further assume that each party has a unique ID. We say that
party p has a link to party q if p knows q’s ID and can thus directly communicate with
node q.

In the reliable multiparty computation problem, we assume that the function f can
be implemented with an arithmetic circuit overm gates, where each gate has two inputs
and at most two outputs.2 For simplicity of presentation, we focus on computing a single
function multiple times (with changing inputs). However, we can also compute multiple
functions with our algorithm.

1.2 Our Result
We describe an algorithm, COMPUTE, to efficiently solve reliable multiparty compu-
tation. Our main result is summarized in the following theorem.

Theorem 1. Assume we have n parties providing inputs to a function f that can be
computed by an arithmetic circuit with depth ` and containing m gates. Then COM-
PUTE solves RC and has the following properties.

(1) In an amortized sense3, any execution of COMPUTE requires:
– O(m+ n log n) messages sent by all parties;
– O(m+ n log n) computational operations performed by all parties; and
– O(`) latency.

(2) The expected total number of times COMPUTE returns a corrupted output isO(t(log∗m)2).

2 We note that any gate of any fixed in-degree and out-degree can be converted into a fixed
number of gates with in-degree 2 and out-degree at most 2.

3 In particular, if we call COMPUTE L times, then the expected total number of messages sent
will beO(L(m+n logn)+t(m log2 n)). Since t is fixed, for largeL, the expected number of
messages per COMPUTE isO(m+n logn). Similar for the cost of computational operations.
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1.3 Technical Overview
Our algorithms make critical use of quorums and a quorum graph.

Quorums and the Quorum Graph: We define a quorum to be a set ofΘ(log n) parties,
of which at most 1/4-fraction are bad. Many results show how to create and maintain
a network of quorums [1,2,3,4,5,6,7]. All of these results maintain what we will call a
quorum graph in which each vertex represents a quorum. The properties of the quorum
graph are:

(1) each party is in Θ(log n) quorums;
(2) for any quorum Q, any party in Q can communicate directly to any other party in

Q; and
(3) for any quorums Q and Q′ that are connected in the quorum graph, any party in Q

can communicate directly with any party in Q′ and vice versa.

Moreover, we assume that for any two parties x and y in a quorum, x knows all quorums
that y is in.

Computing with Quorums: We maintain a quorum graph with m+n nodes: m nodes
for the gates of the circuit and n nodes for the inputs of the parties. The input nodes
are connected to the gates using these inputs, and the gate nodes are connected as in
the circuit. Quorums are mapped to nodes in this quorum graph as described above.
For simplicity of presentation, we let the computation be performed from the left to the
right, where the input quorums are leftmost and the output quorum is rightmost.

Naive Algorithm: A correct but inefficient way to solve RC is as follows. Each party
si sends its input to all parties of the appropriate input quorum. Then the computation
is performed from left to right. All parties in each quorum compute the appropriate gate
operation on their inputs, and send their outputs to all parties in the right neighboring
quorums via all-to-all communication. At the next level, all parties in each quorum take
the majority of the received messages in order to determine the correct input for their
gate. At the end, the parties in the rightmost quorum will compute the correct output of
the circuit. They then forward this output back from right to left through the quorum
graph using the same all-to-all communication and majority filtering.

Unfortunately, this naive algorithm requiresO(m log2 n) messages andO(m log n)
computational operations. Our main goal is to remove the logarithmic factors. 4

Our Approach: A more efficient approach is for each quorum to have a leader, and
for this leader to receive inputs, perform gate computations, and send off the output.
Unfortunately, a single bad leader can corrupt the entire computation.

To address this issue, we provide CHECK (Section 2.3). This algorithm determines
if there has been a corruption, and if so, it calls UPDATE (Section 2.4), which identifies
at least one pair of parties that are in conflict. Informally, we say that a pair of parties
are in conflict if they each accuse the other of malicious behavior. In such a situation,
we know that at least one party in the pair is bad. Our approach is to mark both parties

4 We note that such asymptotic improvements can be significant for large networks. For exam-
ple, if n = 64,000, then we would expect our algorithm to reduce message costs by a factor
of log2 n = 255.
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in each conflicting pair, and these marked parties are prohibited from participating in
future computation but they still can provide the inputs of the circuit. 5

The basic idea of CHECK is to redo the computation through subsets of parties
so that one subset for each gate. CHECK runs in multiple rounds. Initially, all subsets
are empty; and in each round, a new party is selected uniformly at random from each
quorum to be added to each subset. We call these parties the checkers. For convenience
of presentation, we will refer to the leaders as the checkers for round 0. For each round
i ≥ 1, all i checkers at gate g: 1) receive inputs to g from the checkers at each input gate
for g; 2) compute the gate output for g based on these inputs; and 3) send this output
to the checkers at each output gate for g. If a good checker ever receives inconsistent
inputs, it calls UPDATE. Unfortunately, waiting until a round where each gate has had
at least one good checker would require O(log n) rounds.

To do better, we use the following approach. Let G be the quorum graph as defined
above and let the checkers be selected as above. Call a subgraph of G bad in a given
round if all checkers in the nodes of that subgraph are bad; note that such a subgraph
consists of the new checkers that are added to the subsets in that round. When the adver-
sary corrupts an output of a bad subgraph of G in one round, it has to keep corrupting
this output by nesting levels of bad subgraphs of G in all subsequent rounds.

Recall that in each round, new checkers are selected uniformly at random. When
CHECK selects a good checker at a quorum, it is as removing the node associated
with this quorum from the quorum graph. Thus, we can view CHECK as repeatedly
removing nodes from increasingly smaller subgraphs of G until no nodes remain, at
which the corruption is detected. A key lemma (Lemma 2) shows that for any rooted
directed acyclic graph (DAG), withm nodes and maximum indegree 2, when each node
is deleted independently with probability at least 1/2 + ε, for any constant ε > 0, the
probability of having a connected DAG, rooted at one node, with surviving nodes of
size Ω(logm), is at most 1/2. By this lemma, we show that CHECK requires only
O(log∗m) rounds to detect a corruption with constant probability.6

CHECK requires O((m + n log n)(log∗m)2) messages. Then, we can call it with
probability 1/(log∗m)2 and obtain asymptotically optimal resource costs for the RC
problem, while incurring an expected O(t(log∗m)2) corruptions.

1.4 Related Work
Our results are inspired by recent work on self-healing algorithms. Early work of [8,9,10,11,12]
discusses different restoration mechanisms to preserve network performance by adding
capacity and rerouting traffic streams in the presence of node or link failures. This work
presents mathematical models to determine global optimal restoration paths, and pro-
vides methods for capacity optimization of path-restorable networks.

More recent work [13,14,15,16,17,18] considers models where the following pro-
cess repeats indefinitely: an adversary deletes some nodes in the network, and the al-

5 A technical point is that we may need to unmark all parties in a quorum if too many parties in
that quorum become marked. However, a potential function argument (Lemma 8) shows that
after O(t) markings, all bad parties will be marked.

6 This probability can be made arbitrarily close to 1 by adjusting the hidden constant in the
O(log∗m) rounds.
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gorithm adds edges. The algorithm is constrained to never increase the degree of any
node by more than a logarithmic factor from its original degree. In this model, re-
searchers have presented algorithms that ensure the following properties: the network
stays connected and the diameter does not increase by much [13,14,15]; the shortest
path between any pair of nodes does not increase by much [16]; expansion properties of
the network are approximately preserved [17]; and keeping network backbones densely
connected [18].

This paper particularly builds on [19]. That paper describes self-healing algorithms
that provide reliable communication, with a minimum of corruptions, even when a
Byzantine adversary can take over a constant fraction of the nodes in a network. While
our attack model is similar to [19], reliable computation is more challenging than re-
liable communication, and hence this paper requires a significantly different technical
approach. Additionally, we improve the fraction of bad parties that can be tolerated
from 1/8 to 1/4.

Reliable multiparty computation (RC) is closely related to the problem of secure
multiparty computation (MPC) which has been studied extensively for several decades
(see e.g. [20,21,22,23] or the recent book [24]). RC is simpler than MPC in that it does
not require inputs of the parties to remain private. Our algorithm for RC is significantly
more efficient than current algorithms for MPC, which require at least polylogarith-
mic blowup in communication and computational costs in order to tolerate a Byzantine
adversary. We reduce these costs through our self-healing approach, which expends ad-
ditional resources only when corruptions occur, and is able to “quarantine” bad parties
after O(t(log∗m)2) corruptions.

1.5 Organization of Paper
The rest of this paper is organized as follows. In Section 2, we describe our algorithms.
The analysis of our algorithms is shown in Section 3. Finally, we conclude and describe
problems for future work in Section 4.

2 Our Algorithms
In this section, we describe our algorithms: COMPUTE, COMPUTE-CIRCUIT, CHECK
and UPDATE.

Our algorithms aim at detecting corruptions and marking the bad parties. Parties
that are marked are not allowed to participate in the computation. Initially, all parties
are unmarked.

Recall that there are n parties, each provides an input to an input quorum, Qi, for
1 ≤ i ≤ n; and then the computation is performed through m quorums, Qj’s, for
n + 1 ≤ j ≤ m + n. The result is produced at an output quorum Qm+n, and it is sent
back to the senders through the m quorums.

Before discussing our main COMPUTE algorithm, we describe that when a party
x broadcasts a message msg, signed by a quorum Q, to a set of parties S, it calls
BROADCAST (msg,Q, S).

2.1 BROADCAST
In BROADCAST (Algorithm 1), we use threshold cryptography to avoid the overhead
of Byzantine Agreement. In a (η, η′)-threshold cryptographic scheme, a private key is
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distributed among η parties in such a way that 1) any subset of more than η′ parties can
jointly reassemble the key; and 2) no subset of at most η′ parties can recover the key.
The private key can be distributed using a Distributed Key Generation (DKG) protocol
[25]. DKG generates the public/private key shares of all parties in every quorum. The
public key of each quorum is known to all parties in the quorum, and to all parties in all
neighboring quorums in the circuit.

In particular, we use a (|Q|, 3|Q|
4 − 1)-threshold scheme, where |Q| is the quorum

size. A party x calls BROADCAST in order to send a message msg to all parties in S
after signing it by the private key of quorum Q. We sign the message using Algorithm 2
to fulfill that: 1) at least 3/4-fraction of the parties in quorum Q have received the same
message msg; 2) they agree upon the content of msg; and 3) they give a permission to
party x to broadcast this message.

Algorithm 1 BROADCAST(msg,Q, S) . A party x sends message msg to a set of
parties S, after signing it by the private key of quorum Q.
1: Party x calls SIGN (msg,Q). . signs msg by the private key of quorum Q.
2: Party x sends this signed-message to all parties in S.

Any call to BROADCAST hasO(log n+ |S|) messages andO(log n) computational
operations for signing the message msg by O(log n) parties in Q, with latency O(1).

Algorithm 2 SIGN(msg,Q) . Signs message msg by the private key of quorum Q.
1: Party x sends message msg to all parties in Q.
2: Each party in Q signs msg by its private key share to obtain its message share.
3: Each party in Q sends its message share back to party x.
4: Party x interpolates at least 3|Q|

4
message shares to obtain a signed-message of Q.

2.2 COMPUTE
Now we describe our main algorithm, COMPUTE (Algorithm 3), which calls COMPUTE-
CIRCUIT (Algorithm 4). In COMPUTE-CIRCUIT, the n parties broadcast their inputs
to the input quorums. The input quorums forward these inputs to a circuit of m lead-
ers in order to perform the computation and provide the result to the output quorum.
Then this result is sent back to all senders through the same circuit. Recall that a leader
of a quorum, is a party in this quorum, that is: 1) a representative of all parties in the
quorum; and 2) it is known to all parties in the quorum and neighboring quorums. We
assume that all parties provide their inputs to the circuit in the same round.

In the presence of an adversary, COMPUTE-CIRCUIT is vulnerable to corrup-
tions. Thus, COMPUTE calls TRIGGER-CHECK (Algorithm 5), in which the parties
of the output quorum decide together, to trigger CHECK (Algorithm 7) with probability
1/(log∗m)2, using secure multiparty computation (MPC) [23]. CHECK is triggered in
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Algorithm 3 COMPUTE . performs a reliable computation and sends the result
reliably to all parties.
1: COMPUTE-CIRCUIT . computes and sends back the result through a circuit of leaders.
2: TRIGGER-CHECK . The output quorum triggers CHECK with probability 1/(log∗m)2.

order to detect if a computation was corrupted in the last call to COMPUTE-CIRCUIT,
with probability at least 1/2.

Unfortunately, while CHECK can determine if a corruption occurred, it does not
specify the location where the corruption occurred. Thus, when CHECK detects a cor-
ruption, UPDATE (Algorithm 11) is called. In each call to UPDATE, two neighboring
quorums in the circuit are identified such that at least one pair of parties in these quo-
rums is in conflict and at least one party in this pair is bad. Then the parties that are
in conflict are marked in all quorums they are in and in their neighboring quorums.
Moreover, for each pair of leaders that are in conflict, their quorums elect a new pair of
unmarked leaders uniformly at random. If (1/2− γ)-fraction of parties in any quorum
have been marked, for any constant γ > 0, e.g., γ = 0.01, they are set unmarked in all
their quorums and the neighboring quorums.

Moreover, we use BROADCAST in COMPUTE-CIRCUIT and CHECK in order to
handle any accusation issued in UPDATE against the parties that provide the inputs to
the input quorums, or those that receive the result in the output quorum.

Our model does not directly consider concurrency. In a real system, concurrent ex-
ecutions of COMPUTE that overlap at a single quorum may allow the adversary to
achieve multiple corruptions at the cost of a single marked bad party. However, this
does not effect correctness, and, in practice, this issue can be avoided by serializing
concurrent executions of COMPUTE. For simplicity of presentation, we leave the con-
currency aspect out of this paper.

2.3 CHECK
In this section, we describe CHECK algorithm, which is stated formally as Algorithm 7.
In this algorithm, we make use of subquorums, where a subquorum is a subset of un-
marked parties in a quorum. Let Uk be the set of all unmarked parties in quorum Qk,
for 1 ≤ k ≤ m+ n.

CHECK runs for O(log∗m) rounds. For each round i, the parties of the output
quorum Qm+n elect an unmarked party r from Qm+n to be in charge of the recompu-
tation in round i. This election process is stated formally in ELECT (Algorithm 6). The
elected party r calls REQUEST (Algorithm 8) to send a request through a DAG of sub-
quorums, SAj ’s, to the n senders to recompute. Then the recomputation is performed by
RECOMPUTE (Algorithm 9), in which each sender that receives such request provides
its input to redo the computation through a DAG of subquorums, SBj ’s. Finally, when
r receives the result of the computation, it calls RESEND-RESULT (Algorithm 10) in
order to send back this result to the senders through a DAG of subquorums SCj ’s, for
n+ 1 ≤ j ≤ m+ n.

Moreover, in ELECT (Q), the parties of quorum Q use MPC to elect an unmarked
party uniformly at random from Q. Note that at any moment at least half of the un-
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Algorithm 4 COMPUTE-CIRCUIT . performs a computation through a circuit
of leaders producing a result at the output quorum; then the result is sent back through
same circuit to all senders.
1: for i = 1, . . . , n do . provides the inputs to the circuit.
2: Party si calls BROADCAST (ai, Qi, Qi). . si broadcasts its input ai to all nodes in Qi.
3: All parties in Qi send ai to the leaders of the right neighboring quorums of Qi.
4: end for
5: for i = n+ 1, . . . ,m+ n− 1 do . performs the computation.
6: for all j : i < j ≤ m+ n and (Qi, Qj) ∈ Circuit do
7: if leader qi ∈ Qi receives all its inputs then
8: qi performs an operation on its inputs producing an output, bi.
9: qi sends bi to leader qj ∈ Qj .

10: end if
11: end for
12: end for
13: if leader qm+n ∈ Qm+n receives all its inputs then
14: qm+n performs an operation on its inputs producing an output, bm+n.
15: qm+n broadcasts bm+n to all parties in Qm+n.
16: end if
17: for i = m+ n, . . . , n+ 2 do . sends back the result to the leftmost leaders.
18: for all j : n+ 1 ≤ j < i and (Qj , Qi) ∈ Circuit do
19: Leader qi ∈ Qi sends bm+n to leader qj ∈ Qj .
20: end for
21: end for
22: for i = 1, . . . , n do . sends result to all parties after broadcasting it to the input quorums.
23: The leaders of Qi’s right neighboring quorums call BROADCAST (bm+n, Qi, Qi).
24: All parties in Qi send bm+n to sender si.
25: end for

Algorithm 5 TRIGGER-CHECK . The parties of the output quorum Qm+n trigger
CHECK with probability 1/(log∗m)2.
1: Each party in Qm+n chooses an input: a real number uniformly distributed between 0 and 1.
2: The parties of Qm+n perform MPC to find the output, prob, which is the sum of all their

inputs modulo 1.
3: if prob ≤ 1/(log∗m)2 then
4: CHECK
5: end if

Algorithm 6 ELECT(Q) . Parties in Q elect an unmarked party in Q using MPC.
1: Let each party in the set of unmarked parties, U ⊂ Q, is assigned a unique integer from 0 to
|U | − 1.

2: Each party in Q chooses an input: an integer uniformly distributed between 0 and |U | − 1.
3: The parties of Q perform MPC to find the output: the sum of all their inputs modulo |U |.
4: The party in U associated with this output number is the elected party.
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Algorithm 7 CHECK . Party r calls CHECK to check for corruptions.
Declaration: Let Uk be the set of all unmarked parties in quorum Qk, for 1 ≤ k ≤ m+ n. Also
let m′ be the maximum number of nodes in any quorum. Further, let subquorums, SA

j , SB
j and

SC
j , be initially empty, for all n+ 1 ≤ j ≤ m+ n.
1: for i← 1, . . . , 8(log∗m+ 2(log c+ 1))* do
2: ELECT(Qm+n) . elects an unmarked party r ∈ Qm+n.
3: Party r constructs Ai, Bi and Ci to be three, m by m′, arrays of random integers.**
4: REQUEST(i, Ai, Bi) . r requests all senders to recompute.
5: RECOMPUTE . recomputes producing the result, bim+n, at r.
6: RESEND-RESULT(i, Ci, bim+n) . r sends back bim+n to all parties.
7: end for

* c = 2(1+2p)

log e(1−2p)2
; for any quorum, p ≤ 1/2− ε is the probability of selecting a bad party u.a.r.

from the unmarked nodes in this quorum, for a constant ε > 0.
** Ai[k, k′], Bi[k, k′] and Ci[k, k′] are uniformly random integers between 1 and k′, for 1 ≤
k ≤ m and 1 ≤ k′ ≤ m′.
Note that: if a party has previously received kp, then it verifies each subsequent message with it;
also if a node receives inconsistent messages or fails to receive and verify an expected message,
then it initiates a call to UPDATE.

Algorithm 8 REQUEST(i, Ai, Bi) . r requests n senders through a DAG of
subquoums, SAj ’s, for n+ 1 ≤ j ≤ m+ n, to redo the computation.

1: Party r calls SIGN ([i, Ai, Bi, r], Qm+n). . signs [i, Ai, Bi, r] by Qm+n’s private key.
2: Party r sets REQi = ([i, Ai, Bi, r]ks , kp). . (kp, ks) : public/private key pair of Qm+n.
3: Party r sends REQi to all parties of quorum Qm+n.
4: All parties inQm+n calculate party, qim+n ∈ Um+n, of indexAi

m+n to be added to SA
m+n.*

5: for j ← m+ n, . . . , n+ 1 do . sends REQi through a DAG of subquorums.
6: Let Qj′ and Qj′′ be the left neighboring quorums of Qj in the circuit, for n + 1 ≤
j′, j′′ ≤ m+ n. **

7: All i parties in SA
j calculate parties, qij′ and qij′′ , of indices Ai

j′ and Ai
j′′ , to be added to

SA
j′ and SA

j′′ respectively.
8: Party qij calculate all parties in SA

j′ and SA
j′′ using A1

j′ , . . . , A
i
j′ and A1

j′′ , . . . , A
i
j′′ .

9: for k ← 1, . . . , i do . k refers to the rounds prior to round i.
10: Party qkj sends REQk to parties qij′ and qij′′ .
11: Party qij sends REQi to parties qkj′ and qkj′′ .
12: end for
13: end for
14: for k ← n, . . . , 1 do . The input quorums forward REQi to all senders.
15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the circuit.
16: All i parties in Sk′ and all parties in Sk′′ call BROADCAST (REQi, Qk, Qk).
17: All parties in Qk send REQi to sender sk.
18: end for
*Ai

j = Ai[j−n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties in Uj

in round i of REQUEST; note that the nodes ofUj are sorted by their IDs, for n+1 ≤ j ≤ m+n.
** Recall that there are no subquorums for the input quorums.
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marked parties in Q are good. Thus, the elected party is good with probability at least
1/2. Finally, this election protocol runs in O(1) time, and requires O(log4 n) messages
and O(log4 n) computational operations.

During CHECK, if any party receives inconsistent messages or fails to receive and
verify any expected message in any round, it initiates a call to UPDATE.

Algorithm 9 RECOMPUTE . n senders provide inputs to a DAG of subquorums,
SBj ’s, for n+ 1 ≤ j ≤ m+ n, to recompute, producing a result, bim+n, at r.

1: for each sender sj that receives REQi, for 1 ≤ j ≤ n and n+ 1 ≤ j′, j′′ ≤ m+ n do
2: sj sets RECi to be a message consisting of its input aj and REQi.
3: sj broadcasts RECi to all parties in Qj .
4: Let Qj′ and Qj′′ be the right neighboring quorums of Qj in the circuit.
5: All parties in Qj calculate parties, qij′ and qij′′ , of indices Bi

j′ and Bi
j′′ , to be added to

SB
j′ and SB

j′′ respectively.*
6: All parties in Qj send RECi to all parties in SB

j′ and to all parties in SB
j′′ .

7: All parties in Qj send REC1, . . . , RECi−1 to qij′ and qij′′ .
8: end for
9: for j ← n+ 1, . . . ,m+ n− 1 do . recomputes

10: Let Qj′ and Qj′′ be the right neighboring quorums of Qj in the circuit.
11: All i parties in SB

j calculate parties, qij′ and qij′′ , of indices Bi
j′ and Bi

j′′ , to be added to
SB
j′ and SB

j′′ respectively.
12: Party qij calculate all parties in SB

j′ and SB
j′′ using B1

j′ , . . . , B
i
j′ and B1

j′′ , . . . , B
i
j′′ .

13: for all 1 ≤ k ≤ i, qkj performs its operation on its inputs producing an output, bkj .
14: for k ← 1, . . . , i do
15: qkj sends bkj and RECk to parties qij′ and qij′′ .
16: qij sends bij and RECi to parties qkj′ and qkj′′ .
17: end for
18: end for
19: All i parties in Sm+n broadcast bim+n and RECi to all parties in Qm+n.
20: All parties in Qm+n send bim+n and RECi to party r. . r receives the result.
* Bi

j = Bi[j − n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties
in Uj in round i of RECOMPUTE; note that the nodes of Uj are sorted by their IDs, for
n+ 1 ≤ j ≤ m+ n.

2.4 UPDATE
When a computation is corrupted and CHECK detects this corruption, UPDATE is
called. The UPDATE algorithm is described formally as Algorithm 11. When UPDATE
starts, all parties in each quorum in the circuit are notified.

The main purpose of UPDATE is to 1) determine the location in which the corrup-
tion occurred; and 2) mark the parties that are in conflict.

To determine the location in which the corruption occurred, UPDATE calls INVES-
TIGATE (Algorithm 12) to investigate the corruption situation by letting each party in-
volved in COMPUTE-CIRCUIT or CHECK broadcast all messages they have received
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Algorithm 10 RESEND-RESULT(i, Ci, bim+n) . Party r sends back the result,
bim+n, through a DAG of subquorums, SCj ’s, to n senders, for n+ 1 ≤ j ≤ m+ n.

1: Party r calls SIGN ([i, Ci, bim+n, r], Qm+n). . signs it by Qm+n’s private key.
2: Party r sets RESi = ([i, Ci, bim+n, r]ks , kp). . (kp, ks) : public/private key pair of Qm+n.
3: Party r sends RESi to all parties of quorum Qm+n.
4: All parties in Qm+n calculate party, qim+n ∈ Um+n, of index Ci

m+n to be added to SC
m+n.*

5: for j ← m+ n, . . . , n+ 1 do . sends back the result through a DAG of subquorums.
6: Let Qj′ and Qj′′ be the left neighboring quorums of Qj in the circuit, for n + 1 ≤
j′, j′′ ≤ m+ n. **

7: All i parties in SC
j calculate parties, qij′ and qij′′ , of indices Ci

j′ and Ci
j′′ , to be added to

SC
j′ and SC

j′′ respectively.
8: Party qij calculate all parties in SC

j′ and SC
j′′ using C1

j′ , . . . , C
i
j′ and C1

j′′ , . . . , C
i
j′′ .

9: for k ← 1, . . . , i do . k refers to the rounds prior to round i.
10: Party qkj sends RESk to parties qij′ and qij′′ .
11: Party qij sends RESi to parties qkj′ and qkj′′ .
12: end for
13: end for
14: for k ← n, . . . , 1 do . The input quorums forward RESi to all senders.
15: Let Qk′ and Qk′′ be the right neighboring quorums of Qk in the circuit.
16: All i parties in Sk′ and all parties in Sk′′ call BROADCAST (RESi, Qk, Qk).
17: All parties in Qk send RESi to sender sk.
18: end for
* Ci

j = Ci[j − n, |Uj |] is the index of the party, qij , which is selected u.a.r. from the parties
in Uj in round i of RESEND-RESULT; note that the nodes of Uj are sorted by their IDs, for
n+ 1 ≤ j ≤ m+ n.
** Recall that there are no subquorums for the input quorums.

Algorithm 11 UPDATE . Party q′ ∈ Q′ calls UPDATE after it detects a corruption.
1: q′ broadcasts to all parties in Q′ the fact that it calls UPDATE along with the messages it has

received in this call to COMPUTE.
2: The parties in Q′ verify that q′ received inconsistent messages before proceeding.
3: Q′ notifies all quorums in the circuit via all-to-all communication that UPDATE is called.
4: INVESTIGATE . investigates all participants to determine corruption locations.
5: MARK-IN-CONFLICTS . marks the parties that are in conflict.

Algorithm 12 INVESTIGATE . investigates the parties that have participated.
1: for each party, q, involved in the last call to COMPUTE-CIRCUIT or CHECK do
2: q compiles all messages they have received (and from whom) and they have sent (and to

whom) in the last call to COMPUTE-CIRCUIT or CHECK.
3: q broadcasts these messages to all parties in its quorum and neighboring quorums.
4: end for



12 G. Saad and J. Saia

or sent. Then, UPDATE calls MARK-IN-CONFLICTS (Algorithm 13) in order to mark
the parties that are in conflict, where a pair of parties is in conflict if at least one of these
parties broadcasted messages that conflict with the messages broadcasted by the other
party in this pair. Note that each pair of parties that are in conflict has at least one bad
party. Recall that if (1/2 − γ)-fraction of parties in any quorum are marked, for any
constant γ > 0, e.g., γ = 0.01, they are set unmarked. Also, for each pair of leaders
that get marked, their quorums elect another pair of unmarked leaders.

Algorithm 13 MARK-IN-CONFLICTS . marks the parties that are in conflict.
1: for each pair of parties, (qx, qy), that is in conflict*, in quorums (Qx, Qy) do
2: party qy broadcasts a conflict message, {qx, qy}, to all parties in Qy .
3: each party in Qy forwards {qx, qy} to all parties in Qx.
4: all parties in Qx (or Qy) send {qx, qy} to the other quorums that has qx (or qy).
5: each quorum has qx or qy sends {qx, qy} to its neighboring quorums.
6: end for
7: for each party q that receives conflict message {qx, qy} do
8: q marks qx and qy in its marking table.
9: end for

10: if (1/2− γ)-fraction of parties in any quorum have been marked, for γ = 0.01 then
11: each of these parties is set unmarked in all its quorums.
12: each of these parties is set unmarked in all its neighboring quorums.
13: end if
14: for each pair of leaders, (qx, qy), that is in conflict, in quorums (Qx, Qy) do
15: ELECT(Qx) and ELECT(Qy) to elect a pair of unmarked leaders, (q′x, q′y).
16: Qx and Qy notify their neighboring quorums with (q′x, q

′
y).

17: end for
* A pair of parties, (qx, qy), is in conflict if: 1) qx was scheduled to send an output to qy at some
point in the last call to COMPUTE-CIRCUIT or CHECK; and 2) qy does not receive an expected
message from qx in INVESTIGATE, or qy receives a message in INVESTIGATE that is different
than the message that it has received from qx in the last call to COMPUTE-CIRCUIT or CHECK.

3 Analysis
In this section, we sketch the proof of Theorem 1. Due to space constraints, all proofs
are provided in the full paper. Throughout this section all logarithms are base 2.

Recall that in each round of CHECK, a new DAG of unmarked parties is formed,
where a new unmarked party is selected u.a.r. from each quorum in the circuit.

Definition 1. A Deception DAG, Di, is the maximal subgraph of the new DAG of un-
marked parties that are selected u.a.r. in round i, with the following properties: 1) it
has only bad parties; 2) it receives all its inputs, and each input is provided correct by
at least one good party; 3) it is rooted at one party, which does not provide the correct
output to at least one good party; and 4) all other outputs this DAG has are provided
correct.
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If the adversary corrupts the output of the root party in a deception DAG in any
round, then it has to keep corrupting this output by a deception DAG in each subsequent
round; otherwise, the good parties that expect to receive this output in each round will
call UPDATE due to receiving inconsistent output messages.

We say that a deception DAG, Di, in round i extends in round i+1 if there exists a
deception DAG, Di+1, in round i+1 such that at least 1) there is a subquorum that has
one party in Di and one party in Di+1; and 2) there is a subquorum that has one party
in Di+1 but has no party in Di.

Also, we say that a deception DAG, Di, in round i shrinks in round i + 1 if there
exists a deception DAG, Di+1, in round i + 1 such that 1) for each subquorum, S, in
which Di+1 has a party, Di has a party in S; and 2) at least there is a subquorum that
has one party in Di but has no party in Di+1.

Further, we say that a deception DAG, Di, shrinks logarithmically from round i to
round i+ 1 if |Di+1| = O(log |Di|).

3.1 CHECK
In the following lemmas, we first show that any deception DAG in any round never
extends in any subsequent round. Then we show that with probability at least 1/2, any
deception DAG shrinks logarithmically from round to round. This will imply that the
expected number of rounds to shrink any deception DAG to size zero is O(log∗m).

Note that in any round i, if a deception DAG,Di, shrinks to a deception DAG,Di+1,
of size zero in round i + 1, then the good party that did not receive the correct output
from Di in round i will receive the correct output in round i+ 1. As a result, this good
party will call UPDATE declaring that it has received inconsistent output messages.

Lemma 1. Any deception DAG in any round never extends in any direction.

Proof. We know by definition that the deception DAG is bordered by the good parties
that provide the inputs to the DAG, and the good parties that receive the outputs from
the DAG.

In each round, all parties of each subquorum in round i send their outputs to the
new added party in the next subquorum. Thus, the good parties that provide the correct
inputs to the deception DAG of round i, will provide the correct inputs to the deception
DAGs in all subsequent rounds.

Moreover, in each round, the new added party in each subquorum forwards its out-
put to all parties in its subquorum. Note that each good party has previously received
a message, it verifies this message with all subsequent messages it receives, and if it
receives inconsistent messages or fails to receive an expected message, then it calls
UPDATE.

Therefore, all good parties that border a deception DAG in any round will border all
subsequent deception DAGs. ut

Now we show that any deception DAG shrinks logarithmically from round to round
with probability at least 1/2.

Definition 2. Rooted Directed Acyclic Graph (R-DAG) is a DAG in which, for a vertex
u called the root and any other node v, there is at least one directed path from v to u.
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Lemma 2. Given any R-DAG, of size n, in which each node has indegree of at most d
and survives independently with probability at most p such that 0 < p ≤ 1

d − ε, for any
constant ε > 0, then the probability of having a subgraph, rooted at some node, with
surviving nodes, of size Ω( logn

(1−pd)2 ) is at most 1/2.

Proof. This proof makes use of the following three propositions, but first we define
some notations.

Given an R-DAG, D(V,E), with size n and maximum indegree d, after each node
survives independently with probability at most p such that 0 < p ≤ 1

d − ε, for any
constant ε > 0, we explore D to find a subgraph with only surviving nodes, of size
more than k, rooted at an arbitrary node v (assuming that node v survives).

Let D′(v) be the maximal subgraph of surviving nodes, rooted at node v. Let each
node in D have a status, which is either inactive, active or neutral. During the ex-
ploration process, the status of nodes is changed. A node x is inactive if x ∈ D′(v)
and its children are explored determining which one is in D′(v). A node x is active if
x ∈ D′(v) but its children are not explored yet. A node x is neutral if it is neither
active nor inactive, i.e., node x and its children are not explored yet.

The exploration process runs in at most k > 0 steps. Initially, we set an arbitrary
surviving node, v, active and all other nodes neutral. At each step i, we choose an active
node, wi, in an arbitrary way, and we explore all its children. For all (wi, w′i) ∈ E and
w′i survives and is neutral, we set w′i active, otherwise w′i remains as it is. Then, we
set wi inactive. Note that at any step, if there is no active node, the exploration process
terminates. Now let di be the maximum number of children of node wi for 1 ≤ i ≤ k,
i.e.,

di =

{
deg(wi)− 1 if wi ∈ V − root(D),
deg(wi) otherwise.

where deg(wi) is the degree of node wi and root(D) is the root node ofD. For 1 ≤ i ≤
k, letXi be a non-negative random variable for the number of surviving neutral children
of wi, and let Yi be a non-negative random variable for the number of surviving non-
neutral children of wi. Note that Y1 = 0. So Xi follows a binomial distribution with
parameters (di−Yi) and p, i.e.,Xi ∼ Bin(di−Yi, p). LetAi be a non-negative random
variable for the total number of active nodes after i steps, for 1 ≤ i ≤ k.

Proposition 1. Ai =
{∑k

i=1Xi − (k − 1) if Ai−1 > 0,
0 otherwise.

Proof. Since the process starts initially with one active node v, A0 = 1. Now we have
two cases of Ai−1 to compute Ai, 1 ≤ i ≤ k:

Case 1 (process terminates before i steps): If Ai−1 = 0, then Aj = 0 for i ≤ j ≤
k.

Case 2 (otherwise): If Ai−1 > 0, then Ai = Ai−1 +Xi− 1, where after exploring
wi, the total number of active nodes is the number of new active nodes (Xi) due to
the exploration of wi in addition to the total number of active nodes of previous steps
(Ai−1) excluding wi that becomes inactive at the end of step i. ut

Now let |D′(v)| be the number of nodes in D′(v).

Proposition 2. Pr(|D′(v)| > k) ≤ Pr(
∑k
i=1Xi ≥ k).
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Proof. To prove this proposition, we first prove that Pr(|D′(v)| > k) ≤ Pr(Ak > 0).
In order to do that, we prove that |D′(v)| > k =⇒ Ak > 0. If |D′(v)| > k,

then the exploration process does not terminate before k steps. This implies that after k
steps, there are k inactive nodes and at least one active node remains. This follows that
Ak > 0. Thus, we have

Pr(|D′(v)| > k) ≤ Pr(Ak > 0). (1)

Now we prove that Pr(Ak > 0) ≤ Pr(
∑k
i=1Xi − (k − 1) > 0). To do that, we

prove that Ak > 0 =⇒
∑k
i=1Xi − (k − 1) > 0. If Ak > 0, then Aj > 0 for all

1 ≤ j ≤ k. By Proposition 1, we obtain that
∑j
i=1Xi− (j − 1) > 0 for all 1 ≤ j ≤ k.

This follows that

Pr(Ak > 0) ≤ Pr(
k∑
i=1

Xi − (k − 1) > 0). (2)

By Inequalities 1 and 2, we obtain

Pr(|D′(v)| > k) ≤ Pr(
k∑
i=1

Xi − (k − 1) > 0),

or equivalently,

Pr(|D′(v)| > k) ≤ Pr(
k∑
i=1

Xi > k − 1).

Since k is a positive integer, we have

Pr(|D′(v)| > k) ≤ Pr(
k∑
i=1

Xi ≥ k).

ut

Proposition 3. Pr(
∑k
i=1Xi ≥ k) ≤ e−

(1−pd)2k
1+pd .

Proof. To prove this proposition, we first make use of stochastic dominance. For 1 ≤
i ≤ k, let X+

i ∼ Bin(d, p), and let X+
1 , ..., X

+
k be independent random variables. We

know that Yi ≥ 0 and di ≤ d for 1 ≤ i ≤ k.
By Theorem (1.1) part (a) of [26], for all 1 ≤ i ≤ k, X+

i first-order stochastically
dominates Xi, i.e., X+

i is stochastically larger than Xi. Hence,
∑k
i=1X

+
i is stochasti-

cally larger than
∑k
i=1Xi. Thus, we have

Pr(

k∑
i=1

Xi ≥ k) ≤ Pr(
k∑
i=1

X+
i ≥ k).

Now let Sk =
∑k
i=1X

+
i . By Chernoff bounds, for δ > 0, we obtain

Pr(Sk ≥ (1 + δ)E(Sk)) ≤
(

eδ

(1 + δ)(1+δ)

)E(Sk)

≤ e−
δ2

2+δE(Sk).
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We know that Sk ∼ Bin(kd, p). Thus, E(Sk) = pdk. Therefore, we have

Pr(Sk ≥ (1 + δ)pdk) ≤ e−
δ2

2+δ pdk.

For δ = 1−pd
pd , we obtain

Pr(Sk ≥ k) ≤ e−
(1−pd)2k

1+pd .

ut

Now by Propositions 2 and 3, we have

Pr(|D′(v)| > k) ≤ e−
(1−pd)2k

1+pd .

We know that node v survives with probability at most p. Thus, we obtain

Pr(|D′(v)| > k) ≤ pe−
(1−pd)2k

1+pd .

Union bound over n nodes, then the probability that there exists a subgraph of D,
rooted at one node, having only surviving nodes, of size more than k is at most

nPr(|D′(v)| > k) ≤ npe−
(1−pd)2k

1+pd .

Note that npe−
(1−pd)2k

1+pd ≤ 1/2 when k ≥ 1+pd
(1−pd)2 log e log(2pn). Thus, the probabil-

ity of having such a subgraph of size more than 1+pd
(1−pd)2 log e log(2pn), or equivalently,

Ω
(

logn
(1−pd)2

)
, is at most 1/2. ut

Corollary 1. For any R-DAG, of size n, the probability of having a subgraph, rooted at
one node, with surviving nodes, of size at least n/2 is at most 1/2.

Now, if a deception DAG shrinks logarithmically in a successful step, then how
many successful steps to shrink this deception DAG to a deception DAG of size zero or
even of a constant size?

Let f(n) = c log n, and let f (i)(n) be the function of applying function f , i times,
over n. Also, we let log(i)(n) be the function of applying logarithm i times over n.
Fact 1 ∀i ≥ 1 : log(i)(n) ≥ log c+ 1, f (i)(n) ≤ 2c log(i)(n).

Proof. We prove by induction over i ≥ 1 that for log(i)(n) ≥ log c+ 1,

f (i)(n) ≤ 2c log(i)(n).

Base case: for i = 1, by definition,

f(n) = c log n ≤ 2c log n.

Induction hypothesis: for log(j)(n) ≥ log c+ 1,

∀j < i, f (j)(n) ≤ 2c log(j)(n).
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Induction step: by definition,

f (i)(n) = f(f (i−1)(n)).

By induction hypothesis, for log(i−1)(n) ≥ log c+ 1,

f (i−1)(n) ≤ 2c log(i−1)(n).

Then,
f (i)(n) ≤ f(2c log(i−1)(n)) = c log(2c log(i−1)(n)),

or equivalently,

f (i)(n) ≤ c(1 + log c+ log(i)(n)) ≤ 2c log(i)(n),

for log(i)(n) ≥ log c+ 1. ut

Now let f∗(n) be the smallest value i such that f (i)(n) ≤ c(2c+ log c+ 1).
Fact 2 ∀n > c(2c+ log c+ 1), f∗(n) ≤ log∗ n− log∗(log c+ 1).

Proof. Let k = log∗ n− log∗ (log c+ 1)− 1. Then, log(k)(n) ≥ log c+ 1. By Fact 1,

f (k)(n) ≤ 2c log(k)(n).

With a further application of f to f (k)(n), we have

f (k+1)(n) ≤ c log(2c log(k)(n)) = c(1 + log c+ log(k+1)(n)).

We know that log(k+1)(n) ≤ 2c. Thus, we obtain

f (k+1)(n) ≤ c(1 + log c+ 2c).

Therefore, by definition,

f∗(n) ≤ k + 1 = log∗ n− log∗ (log c+ 1).

ut

Lemma 3. Assume that any deception DAG of size n′ shrinks to a deception DAG of
size c log n′ in a successful step, for any constant c ≥ 1. Then, for a deception DAG of
size n > c(2c+ log c+1), after log∗ n− log∗ (log c+ 1) successful steps, it shrinks to
a deception DAG of size at most c(2c+ log c+ 1).

Proof. Fact 2 proves this lemma. ut

Let p be the probability of selecting an unmarked bad party uniformly at random in
any quorum. Recall that the fraction of bad parties in any quorum is at most 1/4, and
at any time the fraction of unmarked parties in any quorum is at least 1/2 + γ, for any
constant γ > 0. Thus, p ≤ 1/2

1+2γ .
Now we show the expected number of rounds to shrink any deception DAG to size

zero.
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Lemma 4. With probability at least 1/2, any deception DAG of size m shrinks to size
zero in 8(log∗m+2(log c+1)) rounds, where c = 2(1+2p)

log e(1−2p)2 and p ≤ 1/2
1+2γ , for any

constant γ > 0.

Proof. Given a deception DAG, of size m. By Lemma 1, the deception DAG never ex-
tends over rounds. For shrinking deception DAGs over rounds, we make use of Lemma
2 to shrink logarithmically any deception DAG of size more than c(2c + log c + 1);
otherwise, deception DAGs shrink geometrically using Corollary 1.

LetXi be an indicator random variable that is equal 1 if the deception DAG in round
i shrinks logarithmically in round i+ 1; and 0 otherwise.

By Lemma 3, after having at most log∗m − 1 of Xi’s equal 1, the deception DAG
of size at most m shrinks to a size of at most c(2c+ log c+ 1).

Also let Yj be an indicator random variable that is equal 1 if the deception DAG of
size at most c(2c + log c + 1) ≤ 4c2 in round j shrinks geometrically by at most half
the size in round j + 1; and 0 otherwise.

Thus, in order to shrink the deception DAG of size n to 0, we require at most
log∗m− 1 of Xi’s equal 1 and at most 2 log c+ 3 of Yj’s equal 1.

Note that in each round, the receiver that is elected by the output quorum is good
with probability at least 1/2. Then, by Lemma 2, Xi = 1 with probability at least 1/4;
and by Corollary 1, Yj = 1 with probability at least 1/4.

Now let

X =

8(log∗m−1)∑
i=1

Xi

and

Y =

8(log∗m+2(log c+1))∑
j=8(log∗m−1)+1

Yj .

Also let Zk be an indicator random variable that is 1 with probability 1/4; and 0
otherwise, for 1 ≤ k ≤ 8(log∗m+ 2(log c+ 1)); and let

Z =

8(log∗m+2(log c+1))∑
k=1

Zk.

We know that for all i, j, k, both Xi and Yj are stochastically larger than Zk. Thus,
X + Y is stochastically larger than Z. Therefore,

Pr (X + Y ≥ log∗m+ 2(log c+ 1)) ≥ Pr (Z ≥ log∗m+ 2(log c+ 1)) ,

or equivalently,

1− Pr (X + Y < log∗m+ 2(log c+ 1)) ≥ 1− Pr (Z < log∗m+ 2(log c+ 1)) .

Thus, we obtain

Pr (X + Y < log∗m+ 2(log c+ 1)) ≤ Pr (Z < log∗m+ 2(log c+ 1)) .
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Note that E(Z) = 2(log∗m + 2(log c + 1)). Since the Zk’s are independent random
variables, by Chernoff bounds,

Pr (Z < 2(1− δ)(log∗m+ 2(log c+ 1))) ≤
(

eδ

(1 + δ)1+δ

)2(log∗m+2(log c+1))

.

For δ = 1
2 and m ≥ 3,

Pr (Z < log∗m+ 2(log c+ 1)) <
1

2
.

Thus, the probability that CHECK succeeds in finding a corruption and calling UP-
DATE is at least 1/2. ut

Now we show that for the adversary to maximize the number of rounds without
detecting corruptions is to consider the maximum deception DAG in the first round.

Lemma 5. For the adversary to maximize the expected number of rounds, in which no
corruption detected, is to corrupt the output of the root party in the maximum deception
DAG of the first round.

Proof. For the case that the adversary considers multiple deception DAGs that are over-
lapped in the same round. Then the adversary corrupts more than one output in some
round. Now let D′ be the maximum deception DAG in this round. By Lemma 4, each
of these deception DAGs shrinks to size zero in an expected number of rounds that is at
most the expected number of rounds that D′ shrinks to size zero.

Similarly, the case that the adversary considers multiple disjoint deception DAGs in
the same round.

Therefore, for the adversary to maximize the expected number of rounds without
any corruption detected is to consider only the maximum deception DAG in the first
round of CHECK. ut

The next lemma shows that CHECK catches corruptions with probability ≥ 1/2.

Lemma 6. Assume some party selected uniformly at random in the last call to COMPUTE-
CIRCUIT has corrupted a computation. Then when the algorithm CHECK is called,
with probability at least 1/2, some party will call UPDATE.

Proof. Recall that the number of gates in the circuit is m. Thus, by Lemmas 4 and 5,
this request is sent reliably to all input quorums in O(log∗m) rounds with probability
at least 1/2. Note that each request, REQi, has a round number i. Hence, at any round,
if any good party in any input quorum receives a request of round number i and has not
received (i− 1) requests of proper round numbers, then it will call UPDATE.

If all input quorums receive all requests properly in all O(log∗m) rounds, then RE-
COMPUTE must be called properly O(log∗m) times by all input quorums. By Lem-
mas 4 and 5, the result is computed and sent reliably to the output quorum inO(log∗m)
rounds with probability at least 1/2.

Similarly, we know that in RECOMPUTE, the round number i is enclosed inRECi,
which is propagated with the computation results from the senders to the output quorum.
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Thus, at any round, if any good party in the output quorum receives a result with a round
number i and has not received (i − 1) results with proper rounds numbers, then it will
call UPDATE.

Finally, if all parties in the output quorum receive all results properly in allO(log∗m)
rounds, then RESEND-RESULT must be called O(log∗m) times by the output quorum.
By Lemmas 4 and 5, the result of the computation is sent back reliably to all senders
in O(log∗m) rounds with probability at least 1/2. Thus, the probability that CHECK
succeeds in finding a corruption and calling UPDATE is at least 1/2. ut

3.2 UPDATE
Lemma 7. If some party selected uniformly at random in the last call to COMPUTE-
CIRCUIT or CHECK has corrupted a computation, then UPDATE will identify a pair of
neighboring quorums Q and Q′ such that at least one pair of parties in these quorums
is in conflict and at least one party in such pair is bad.

Proof. First, we show that if a pair of parties x and y is in conflict, then at least one of
them is bad. Assume not. Then both x and y are good. This implies that party x would
have truthfully reported what it received and sent; any result that x has computed would
have been sent directly to y; and y would have truthfully reported what it received from
x. But this is a contradiction, since for x and y to be in conflict, y must have reported
that it received from x something different than what x reported sending.

Now consider the case where a selected unmarked bad leader corrupted the compu-
tation in the last call to COMPUTE-CIRCUIT. By Lemma 6, with probability at least
1/2, some party, q′ ∈ Q′, will call UPDATE. Recall that in UPDATE q′ broadcasts all
messages it has received to all parties in Q′. These parties verify if q′ received incon-
sistent messages before proceeding.

In UPDATE, we know that each party, q ∈ Q, participated in the last call to COM-
PUTE broadcasts what it has received and sent to all parties in Q. Thus, all parties of
Q verify the correctness of q’s computation. Thus, if the corruption occurs due to an in-
correct computation made by a bad party, this corruption will be detected and all parties
will know that this party is bad.

Now if all parties compute correctly and CHECK detects a corruption, then we show
that there is some pair of parties will be in conflict. Assume this is not the case. Thus,
by the definition of corruption, there must be a deception DAG, in which all inputs
are provided correct and an output is corrupted at party q′. Then each pair of parties,
(qj , qk) ∈ (Qj , Qk), in the deception DAG that is rooted at q′, is not in conflict, for
n+1 ≤ j < k ≤ m+n. Thus, we have that 1) this DAG received all its inputs correct;
2) all parties compute correctly; and 3) no pair of parties is in conflict. This implies that
it must be the case that q′ received the correct output. But if this is the case, then q′

that initially called UPDATE would have received no inconsistent messages. This is a
contradiction since in such a case, this party would have been unsuccessful in trying to
initiate a call to UPDATE. Thus, UPDATE will find two parties that are in conflict, and
at least one of them will be bad. ut

The next lemma bounds the number of calls to UPDATE before all bad parties are
marked.

Lemma 8. UPDATE is called O(t) times before all bad parties are marked.



Self-Healing Computation 21

Proof. By Lemma 7, if a corruption occurred in the last call to COMPUTE-CIRCUIT,
and it is caught by CHECK, then UPDATE is called. UPDATE identifies at least one
pair of parties that is in conflict, and each of such pairs has at least one bad party.

Now let g be the number of marked good parties, and let b be the number of marked
bad parties. Also let

f(b, g) = b− (
p

1− p
)g.

Note that since 0 < p ≤ 1/2
1+2γ , for any constant γ > 0, 0 < p

1−p ≤
1

1+4γ .
For each corruption caught, at least one bad party is marked, and so f(b, g) increases

by at least 1−2p
1−p since b increases by at least 1 and g increases by at most 1. When

(1/2 − γ)-fraction of parties in any quorum Q get unmarked, for any constant γ > 0,
f(b, g) further increases by at least 0 since b decreases by at most p|Q|(1/2− γ) and g
decreases by at least (1−p)|Q|(1/2−γ). Hence, f(b, g) is monotonically increasing by
at least 1−2p

1−p for each corruption caught. When all bad parties are marked, f(b, g) ≤ t.
Therefore, after at most ( 1−p

1−2p )t, or at most (1 + 1
2γ )t, calls to UPDATE, all bad

parties are marked. ut

3.3 Proof of Theorem 1
We first show the message cost, the number of operations and the latency of our al-
gorithms. By Lemma 8, the number of calling UPDATE is at most O(t). Thus, the
resource cost of all calls to UPDATE is bounded as the number of calls to COMPUTE
grows large. Therefore, for the amortized cost, we consider only the cost of the calls to
COMPUTE-CIRCUIT and CHECK.

When a computation is performed through a circuit ofm gates with a circuit depth `,
COMPUTE-CIRCUIT has message cost O(m+n log n), number of operations O(m+
n log n) and latencyO(`). CHECK has message costO((m+n log n)(log∗m)2), num-
ber of operations O((m + n log n) log∗m) and latency O(` log∗m), but CHECK is
called only with probability 1/(log∗m)2. Hence, the call to CHECK has an amortized
expected message costO(m+n log n), amortized computational operationsO(m+n logn

log∗m )

and an amortized expected latency O(`/ log∗m).
In particular, if we call COMPUTE L times, then the expected total number of mes-

sages sent will beO(L(m+n log n)+t(m log2 n)) with expected total number of com-
putational operationsO(L(m+n log n)+ t(m log n log∗m)) and latencyO(`(L+ t)).
This is true since UPDATE is called O(t) times and each call to UPDATE has message
cost O(m log2 n) with computational operations O(m log n log∗m) and latency O(`).

Recall that by Lemma 8, the number of times CHECK must catch corruptions be-
fore all bad parties are marked is O(t). In addition, if a bad party caused a corruption
during a call to COMPUTE-CIRCUIT, then by Lemmas 6 and 7, with probability at
least 1/2, CHECK will catch it. As a consequence, it will call UPDATE, which marks
the parties that are in conflict. UPDATE is thus called with probability 1/(log∗m)2,
so the expected total number of corruptions is O(t(log∗m)2).

4 Conclusion and Future Work
We have presented algorithms for reliable multiparty computations. These algorithms
can significantly reduce message cost and number of computational operations to be
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asymptotically optimal. The price we pay for this improvement is the possibility of
computation corruption. In particular, if there are t ≤ ( 14 − ε)n bad parties, for any
constant ε > 0, our algorithm allows O(t(log∗m)2) computations to be corrupted in
expectation.

Many problems remain. First, it seems unlikely that the smallest number of cor-
ruptions allowable by an attack-resistant algorithm with optimal message complexity is
O(t(log∗m)2). Can we improve this to O(t) or else prove a non-trivial lower bound?
Second, we allow the inputs of parties to reveal. Can we maintain the privacy of these
inputs? Finally, we assume a partially synchronous communication model, which is
crucial for our CHECK algorithm to detect computation corruptions over rounds. Can
we extend this algorithm to fit for asynchronous computations?
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