
Sleeping on the Job: Energy-E�
ient andRobust Broad
ast for Radio NetworksValerie King∗ Cynthia Phillips† Jared Saia‡† Maxwell Young §‡Abstra
tWe address the problem of minimizing power 
onsumption when broad
asting a message from onenode to all the other nodes in a radio network. To enable power savings for su
h a problem, we introdu
ea 
ompelling new data streaming problem whi
h we 
all the Bad Santa problem. Our results on thisproblem apply for any situation where: 1) a node 
an listen to a set of n nodes, out of whi
h at leasthalf are non-faulty and know the 
orre
t message; and 2) ea
h of these n nodes sends a

ording to somepredetermined s
hedule whi
h assigns ea
h of them its own unique time slot. In this situation, we showthat in order to re
eive the 
orre
t message with probability 1, it is ne
essary and su�
ient for thelistening node to listen to a Θ(
√

n) expe
ted number of time slots. Moreover, if we allow for repetitionsof transmissions so that ea
h sending node sends the message O(log∗ n) times (i.e. in O(log∗ n) roundsea
h 
onsisting of the n time slots), then listening to O(log∗ n) expe
ted number of time slots su�
es.We show that this is near optimal.We des
ribe an appli
ation of our result to the popular grid model for a radio network. Ea
h nodein the network is lo
ated on a point in a two dimensional grid, and whenever a node sends a message
m, all awake nodes within L∞ distan
e r re
eive m. In this model, up to t < r

2
(2r + 1) nodes withinany 2r+1 by 2r+1 square in the grid 
an su�er Byzantine faults. Moreover, we assume that the nodesthat su�er Byzantine faults are 
hosen and 
ontrolled by an adversary that knows everything ex
eptfor the random bits of ea
h non-faulty node. This type of adversary models worst-
ase behavior due tomali
ious atta
ks on the network; mobile nodes moving around in the network; or stati
 nodes losingpower or 
easing to fun
tion. Let n = r(2r + 1). We show how to solve the broad
ast problem in thismodel with ea
h node sending and re
eiving an expe
ted O(n log2 |m| + √

n|m|) bits where |m| is thenumber of bits in m, and, after broad
asting a �ngerprint of m, ea
h node is awake only an expe
ted
O(

√
n) time slots. Moreover, for t ≤ (1 − ǫ)(r/2)(2r + 1), for any 
onstant ǫ > 0, we 
an a
hieve aneven better energy savings. In parti
ular, if we allow ea
h node to send O(log∗ n) times, we a
hievereliable broad
ast with ea
h node sending O(n log2 |m| + (log∗ n)|m|) bits and re
eiving an expe
ted

O(n log2 |m|+ (log∗ n)|m|) bits and, after broad
asting a �ngerprint of m, ea
h node is awake for onlyan expe
ted O(log∗ n) time slots. Our results 
ompare favorably with previous proto
ols that requiredea
h node to send Θ(|m|) bits, re
eive Θ(n|m|) bits and be awake for Θ(n) time slots.
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1 Introdu
tionPower is one of the most 
riti
al resour
es in radio networks. The wireless network 
ards on radio networkdevi
es o�er a number of di�erent modes typi
ally with states su
h as o�, sleeping, idle, re
eiving andsending [1℄. The energy 
osts a
ross these modes 
an vary signi�
antly. Remarkably, the 
ost of the idle,re
eiving, and sending states are roughly equivalent, and these 
osts are an order of magnitude larger thanthe 
ost of the sleep state.1 Thus, to a �rst approximation, the amount of time spent in the sleep stategives an ex
ellent estimate of the energy e�
ien
y of a given algorithm [4℄. In this paper, we 
onsidera node to be either asleep or awake (listening and/or sending). Here, our goal is to design an algorithmthat allows a single node to broad
ast a message so that eventually all non-faulty nodes learn the 
orre
tmessage; this is the problem of reliable broad
ast. All previous work on the reliable broad
ast problemignores energy e�
ien
y, assuming the nodes are spending a substantial amount of time listening. In thispaper, we dire
tly address the problem of designing energy-e�
ient algorithms for reliable broad
ast; ourapproa
h depends upon the analysis of a new data streaming problem that we 
all the Bad Santa problem.1.1 The Bad Santa ProblemConsider the following s
enario. A 
hild is presented with n boxes, one after another. When given ea
hbox, the 
hild must immediately de
ide whether or not to open it. If the 
hild de
ides not to open a box,he is never allowed to revisit it. At least half the boxes have presents in them, but the de
ision as to whi
hboxes have presents is made by an adversarial Santa who wants the 
hild to open as many empty boxes aspossible. The 
hild wants to �nd a present, while opening the smallest expe
ted number of boxes. This isthe Bad Santa problem.More formally, an adversary sends a stream of n bits of whi
h at least half are 1. The adversarysets the bits of the stream prior to sending the �rst bit. The algorithm may query any bit as it passes,but on
e a bit passes without being queried, it is lost. The algorithm is 
orre
t if it always �nds a 1.The adversary knows the (randomized) algorithm ahead of time but not its random bits. The 
ost of analgorithm on an input is the number of expe
ted queries exe
uted until it �nds a 1. The goal is to designa 
orre
t algorithm with minimum expe
ted 
ost over the worst 
ase input. At �rst glan
e, it may appearthat randomly sampling O(log n) presents trivially solves the single stream Bad Santa problem. However,this strategy has a (small) probability of failure, whi
h is una

eptable.We are interested in two variants of this problem. First is the single stream 
ase des
ribed above.Se
ond is the multi-stream 
ase where there are multiple n-bit streams that the algorithm queries 
on-se
utively. Ea
h stream has a 
onstant fra
tion of 1 bits, but the values (1s and 0s) may be distributeddi�erently in ea
h stream; note, in the multi-stream 
ase, the fra
tion of 1 bits 
an be less than 1/2 . A
orre
t algorithm must �nd one 1 bit in one of the streams. The 
ost is the expe
ted number of queriesover the worst 
ase set of su
h streams.1.2 Reliable Broad
ast Grid ModelWe demonstrate the appli
ability of the Bad Santa problem on a network model that has been studiedextensively in the distributed 
omputing literature, whi
h we will refer to as the reliable radio broad
astgrid model [5, 6, 7, 8℄. In this model, ea
h node is situated on a point in a two-dimensional grid. Whenevera node sends a message, all awake nodes within L∞ distan
e r re
eive the message.2 Communi
ation issyn
hronous. If two nodes broad
ast simultaneously, the messages interfere, so nodes in the interse
tion ofthe neighborhoods of both senders re
eive no message. We make some additional remarks regarding the�exibility of the grid model later on in Se
tion 5.5.1The di�eren
e in energy 
onsumption between the idle/send/re
eive states and the sleep state di�ers depending on thetype of 
ard and the 
ommuni
ation standard being employed. For example, using the IEEE 802.11 standard with a 11 Mbps
ard, the ratios between power 
onsumption of the idle/send/re
eive states and the sleep state are all more than 12 [2℄. In [3℄,with a di�erent setup employing TinyOS and a TR1000 trans
eiver, the measured ratios are over 1000.2The distan
e between two points (x1, y1) and (x2, y2) in the L∞ metri
 is max{|x1 − x2|, |y1 − y2|}. We 
an use othermetri
s; the 
hoi
e determines the fra
tion of faulty nodes we 
an tolerate in any (2r + 1) × (2r + 1) square of the grid.2



1.2.1 FaultsEvery node in the grid may su�er faults, but as in [5, 6, 7, 8℄ we assume that no more than t nodes in any
2r + 1 by 2r + 1 square are faulty and that no node 
an spoof another node's identity. We 
onsider the
ases where these faults are either all fail-stop: the t nodes are all deleted from the network; or Byzantine:the t nodes are taken over by an adversary and deviate from our proto
ol arbitrarily.3 We assume thatall of the nodes that su�er faults are 
hosen by a single adversary who 
ontrols these nodes to 
oordinateatta
ks on the network. This adversary knows everything ex
ept for the random bits of the non-faultynodes.1.2.2 S
hedule of TransmissionWe assume there is a distinguished node s known as the sour
e that holds an initial message m. We assumewithout loss of generality that the sour
e node has 
oordinates (0, 0) on the grid, i.e. all nodes know thesour
e. We dis
uss relaxing this assumption in Se
tion 2.2. All known proto
ols designed for the reliablebroad
ast grid model pro
eed in steps where the sour
e of the message sends to its neighbors, whi
h inturn send to their neighbors, until all nodes re
eive the message. The prede
essor set Gp of a 
orre
t node
p is a parti
ular set of nodes su
h that if p listens to all nodes in Gp and majority �lters on the re
eivedmessages, p will obtain the 
orre
t message; we give a pre
ise de�nition of Gp in Se
tion 5. Following theliterature, we assume that ea
h node has a prede
essor set of n = r(2r + 1) nodes assigned to distin
ttime slots and that the entire s
hedule repeats every (2r + 1)2 time slots. We 
all ea
h s
hedule repetitiona round. An example of a broad
ast s
hedule is given in [8℄: In ea
h round, ea
h node in position (x, y)broad
asts in time slot ((x mod (2r+1))×(2r+1)+(y mod (2r+1))) mod (2r+1)2. For the remainderof the paper, it su�
es to assume ea
h round has O(n) time slots and ea
h node within L∞ distan
e r ofsome node p is assigned to a distin
t time slot. If t < n/2 then ea
h node has a prede
essor set of whi
hstri
tly less than half of the nodes are faulty, or it 
an listen dire
tly to the sour
e whi
h we assume is
orre
t [5, 6℄. For simpli
ity, we assume the sour
e initially broad
asts the message size and, thereafter,time slots are long enough to send the entire message.4 The 
ost of listening to a message is proportionalto the message length.2 The Bad Santa Problem & The Reliable Broad
ast ProblemIn this se
tion, we sket
h the methods for applying the solutions of the Bad Santa problem to the problemof reliable broad
ast. We will redu
e the expe
ted listening time (i.e. number of time slots in an awakestate) and the expe
ted bit 
omplexity required for a node to learn the message from its n prede
essors.We 
an use the algorithm for the single stream Bad Santa problem to do so provided that: (1) at least halfof the prede
essors have the 
orre
t message and, in the 
ase of Byzantine faults, the listening node 
andetermine if a message is 
orre
t; (2) the listening node knows the lo
ation of the sour
e node and timeof broad
ast (to determine when to start the Bad Santa proto
ol and to whi
h set of n nodes to possiblylisten). If t < n/2; faults are fail-stop; and the time of broad
ast and length of the message is known inadvan
e; 
onditions (1) and (2) are 
learly satis�ed. Thus, the message 
an be transmitted safely fromone set of prede
essors to another, with ea
h node using the Bad Santa proto
ol to de
ide whi
h of itsprede
essors to listen to and thereby learn the message. In this 
ase, there is no 
hange to the laten
y ofthe broad
ast; ea
h node sends on
e.We 
an redu
e listening time further by using the multi-stream Bad Santa proto
ol. Here the fra
tionof faulty prede
essors 
an ex
eed 1/2 and we show that multiple streams are required if we wish to obtainsavings. If we use k + 1 streams, then there are k + 1 rounds of sending before the message is passed fromone set of nodes to another; ea
h node sends k +1 times and the laten
y in
reases by a fa
tor of k +1 overthe single round 
ase.3Although, Byzantine nodes must also abide by the s
hedule as in [5, 6, 8℄4An alternative is that the sour
e node prepro
esses the message by dividing it into pie
es that ea
h �t into a time slot.However, both the broad
asting of the message size and the details of how the message might be formatted for sending areoutside the s
ope of this paper. 3



Notation De�nition
r Radius of broad
ast for all nodes.
t Number of Byzantine peers in a (2r + 1) × (2r + 1) square of the radio network.

p(x, y) A node p lo
ated at 
oordinate (x, y) in the grid network model.
N(p) or N(x, y) Set of nodes within the broad
ast radius of node p(x, y).

n In the 
ontext of the Bad Santa Problem, n is the number of boxes in a stream. In the
ontext of a radio network, n is the size of prede
essor set where n = r(2r + 1).
k Number of streams used in the problem de�nition of the Bad Santa Problem.
s Sour
e node (or dealer) in the problem of reliable broad
ast.
m Message sent by the sour
e node in the problem of reliable broad
ast.
|m| Number of bits in the message m.
f A se
ure hash fun
tion.

f(m) Fingerprint resulting from applying the hash fun
tion f to m.Table 1: Summary of frequently used notation.Failure is Not An Option: Why do we insist on allowing no error in the Bad Santa problem? Why notjust use random sampling? Random sampling has a probability of error that depends on n, whi
h is on theorder of the number of nodes in the transmission radius; we stress that n depends on r and is not the totalnumber of nodes in the network. If the network's total size is mu
h larger than n, then even if the failureprobability for a single listener is exponentially small in n, the probability that some node in the networkfails to learn the message will still be quite large. For example, if the total network size is exponentialin n and the probability of failure for a single listener is O(2−n), then with 
onstant probability, reliablebroad
ast will fail.2.1 Byzantine Fault Model: Known Start Time and Sour
eTo satisfy 
ondition (1) when the faults are Byzantine, our proto
ol has two stages. In the �rst stage, thesour
e uses a se
ure (
ryptographi
) hash fun
tion (for more on su
h hash fun
tions see [9℄, Chapter 4) togenerate a �ngerprint of size (log2 |m|)2 where |m| is the message length5, and broad
asts this �ngerprintto all the other nodes in the network using a previously known energy-ine�
ient method in [6℄. In these
ond stage, the sour
e broad
asts the full message with ea
h node using a Bad Santa proto
ol. Ea
h node
ompares the hash value of ea
h full message re
eived against the true �ngerprint to determine if it agreesand is thus presumably 
orre
t. If the adversary is unable to dis
over a false message whose hash mat
hesthe �ngerprint, then the only message whi
h mat
hes the �ngerprint is the 
orre
t message. Ea
h node
an determine if the message it re
eives is 
orre
t. Thus, at ea
h stage, all non-faulty nodes transmit the
orre
t message and 
ondition (1) is satis�ed. This introdu
es a possibility of error into the transmissionwhi
h depends on the relative size of the �ngerprint to the message and the resour
es of the adversary.In this model, the set of faulty nodes 
an di�er from one stream to the next as 
hosen by the adversary;however, for a given stream, the adversary must de
ide whether a node is 
orrupt prior to its sele
tion ornon-sele
tion by a proto
ol.2.2 Byzantine Fault Model: Unknown Start Time and Sour
e(s)We also deal with the 
ase where the start time of the message is not known in advan
e, or the lo
ation ofthe sour
e is not known. Moreover, our proto
ol allows any node to send a message i.e. be
ome a sour
enode. We note that this is also possible under the original proto
ols of [5, 6, 8℄; however, we expli
itly dealwith this 
ase and show how to a

omplish an energy savings if t < n
16+ǫ for any 
onstant ǫ > 0. Morespe
i�
ally, we require that no more than a 1/2 − ǫ fra
tion of the nodes are faulty in any r/2 by r/2square. In this model, the adversary is adaptive in the sense that it 
an de
ide whi
h nodes to take overbased on whi
h nodes have previously 
ommitted to the 
orre
t message.5We make the random ora
le assumption about the hash fun
tion used to generate the �ngerprint of m.4



3 Our ResultsOur �ve main results are summarized in the theorems below. Theorem 1 is given in Se
tion 4; Theorem 2in Se
tion 4.1; Theorem 3 and Theorem 4 are addressed in Se
tions 5.1& 5.2; Theorem 5 and Theorem 6in Se
tion 5.3; Theorem 7 in Se
tion 5.4. For ease of exposition, we have aggregated the notation we most
ommonly use throughout the paper in Table 1. Finally, throughout, let lg n denote the logarithm base 2and let log(k) n denote log · · · log
︸ ︷︷ ︸

k

n.Theorem 1. For the single stream Bad Santa problem, the optimal expe
ted number of queries is Θ(
√

n).Theorem 2. For the k stream Bad Santa problem, the optimal expe
ted number of queries is O(log(k)(n)+

k) and Ω(log(2k) n). In parti
ular, for k = Θ(log∗ n), we 
an ensure the expe
ted number of queries is
O(log∗ n).The next two theorems about energy-e�
ient broad
ast are established by algorithms based on solutionsto the Bad Santa problem. We again repeat that n = r(2r + 1) and so n depends on the broad
ast radius;it is not the total number of nodes in the network. The algorithms apply to a grid of �nite or in�nite size.In the former 
ase, we a
hieve the standard result that all nodes, ex
ept those on the boundary of width
r, 
ommit to the 
orre
t message. In the latter 
ase, for Byzantine faults, our result translates into a �niteportion of the grid obtaining the 
orre
t message and this is dependent on the 
omputational power of theadversary. Theorem 3 essentially follows dire
tly from Theorems 1 and 2. Theorem 4 requires a �ngerprintof the message to �rst be broad
ast through the network.Theorem 3. Assume we have a network where at most t < r

2 (2r + 1) nodes su�er fail-stop faults in anysquare of size 2r + 1 by 2r + 1 and that the start time and sour
e of a message are known. Then thereexists an algorithm for reliable broad
ast whi
h has the following properties:
• Ea
h node is awake for O(

√
n) time slots in expe
tation.

• Ea
h node broad
asts O(
√

n|m|) bits and re
eives |m| bits.In the next theorem, we use the notion of 
omputational steps in the 
ontext of the adversary. By this, wemean the number of times the adversary 
an 
reate an input x′, apply a se
ure hash fun
tion f to x′ and
he
k for a mat
h between the output �ngerprint f(x′) and some other �ngerprint for whi
h the adversaryis attempting generate a 
ollision.Theorem 4. Assume we have a network where at most t < r
2 (2r + 1) of the nodes su�er Byzantine faultsin any square of size 2r + 1 by 2r + 1 and that the start time and sour
e of a message are known. Furtherassume that the number of 
omputational steps available to the adversary is bounded by s. Then there existsan algorithm for guaranteeing reliable broad
ast with a probability of failure O(s/|m|lg |m|). In an initialstage, the algorithm requires a �ngerprint of size lg2 |m| to be initially broad
ast to the network. However,in the se
ond stage, when the message m itself is broad
ast, the algorithm has the following properties:

• Ea
h node is awake for O(
√

n) time slots in expe
tation,Over both stages, the algorithm has the following 
osts:
• Ea
h node broad
asts O(n log2 |m|+√

n|m|) bits and re
eives an expe
ted O(n log2 |m|+√
n|m|) bits.We also present results on in
reased energy-savings for values of t within an arbitrary 
onstant fa
tor ofoptimal. In parti
ular, we 
onsider the 
ase where t ≤ (1 − ǫ) r

2 (2r + 1) for any 
onstant ǫ > 0 where wehave the following results:Theorem 5. Assume we have a network where, for any 
onstant ǫ > 0, at most t ≤ (1− ǫ) r
2 (2r +1) nodessu�er fail-stop faults in any square of size 2r + 1 by 2r + 1 and that the start time and sour
e of a messageare known. Then there exists an algorithm whi
h guarantees reliable broad
ast and whi
h has the followingproperties: 5



• For any k between 1 and ln∗ n, the algorithm requires ea
h node to be awake for an expe
ted O(log(k) n)time slots.
• Ea
h node broad
asts O(k|m|) bits and re
eives |m| bits.Therefore, the above algorithm requires ea
h node to broad
ast O(k) times whi
h translates into a higherlaten
y given that nodes must adhere to a broad
ast s
hedule; however, nodes expend far more energy inexpe
tation.Theorem 6. Assume we have a network where, for any 
onstant ǫ > 0, at most t ≤ (1− ǫ) r

2 (2r+1) of thenodes su�er Byzantine faults in any square of size 2r + 1 by 2r + 1 and that the start time and sour
e ofa message are known. Further assume that the number of 
omputational steps available to the adversaryis bounded by s. Then there exists an algorithm whi
h guarantees reliable broad
ast with a probability offailure O(s/|m|lg |m|). In an initial stage, the algorithm requires all nodes to be awake for every slot duringwhi
h a �ngerprint of size lg2 |m| is initially broad
ast to the network. However, in the se
ond stage, whenthe message m itself is broad
ast, the algorithm has the following properties:
• For any k between 1 and ln∗ n, requires all nodes to be awake an expe
ted O(log(k) n) time slots.Over both stages, the algorithm has the following 
osts:
• For any k between 1 and ln∗ n, ea
h node broad
asts O(n log2 |m|+k|m|) bits and re
eives an expe
ted

O(n log2 |m| + (log(k) n)|m|) bits.Finally, we deal with the 
ase where the start time and the sour
e of the message is unknown. In thissituation, if t < n
16+ǫ , we have the following result:Theorem 7. If the start time and sour
e of a message are unknown, there is a proto
ol for reliable broad
astin whi
h ea
h node (1) sends O(|m|) bits per round, (2) is awake an amortized 
onstant number of timeslots per round and (3) re
eives an amortized O(|m|) bits per round.For this last result given in Theorem 7, all nodes may re
eive the message; that is, those nodes on theboundary are not ex
luded as with our previous results.To 
ontrast our results with previous work, we note that under the previous algorithms for reliablebroad
ast [5, 6℄, ea
h node 1) is awake for (2t+1) = Θ(n) time slots, 2) broad
asts Θ(|m|) bits; 3) re
eives

Θ(|m|) bits in the fail-stop model; and 4) 
an be for
ed by the adversary to re
eive Θ(n|m|) bits in theByzantine fault model. Therefore, in both fault models, our algorithms are saving substantially on theamount of time a node must be awake for listening to the full message. For the fail-stop 
ase, for k ≥ 1, weare trading a small fa
tor in
rease in tra�
 for these savings . Moreover, in the Byzantine 
ase, we greatlyredu
e the total bit 
omplexity. Finally, note that |m| need not be large to make the probability of �ndinga message with the same �ngerprint very small. For example, if |m| = 1 kB, the probability of a 
ollisionis already less than 10−30.3.1 Related WorkThe reliable broad
ast problem over the radio network model des
ribed above has been extensively studiedin [5, 6, 7, 8, 10℄. In [8℄, Koo showed that reliable broad
ast with Byzantine faults is impossible if t ≥
r
2 (2r+1) in the L∞ norm. In [5, 6℄, Bhandari and Vaidya presented a 
lever algorithm that a
hieved reliablebroad
ast tolerating Byzantine faults for any t < r

2 (2r + 1); our Theorem 4 appies to this s
enario. Therethe authors also a
hieve t < r(2r + 1) for the fail-stop fault model whereas our result applies only when
t < r

2 (2r + 1) or when t ≤ (1 − ǫ)(r/2)(2r + 1) for any 
onstant ǫ > 0. Therefore, we are a 
onstant fa
torfrom the optimal toleran
e in the fail-stop model. Koo et al., in [7℄, des
ribed an algorithm that a
hievesreliable broad
ast even when the faulty nodes 
an spoof addresses of honest nodes or 
ause 
ollisions; thisis a more 
hallenging fault model than is addressed in our work or in any other previous work. All prioralgorithms proposed for the reliable broad
ast problem require ea
h node in the network to be awake for a
onstant fra
tion of the time slots and thus are not energy-e�
ient. Our algorithm from Theorem 4 makes6



use of the algorithm from [6℄ to broad
ast a �ngerprint of the message. Finally, under di�erent models ofa radio network, the problems of 
onsensus [11, 12℄, reliable broad
ast under the fail-stop fault model [13℄and reliable broad
ast under adversarial faults [14℄ have been studied. Work in [15℄ deals with broad
astproto
ols in a time-slotted network where the number of times a node 
an transmit is 
onstrained; this is
alled "k-shot broad
asting". The authors fo
us on establishing bounds on the number of rounds ea
h nodemust transmit in order to a
hieve broad
ast; hen
e, there is a fo
us on the tradeo� between energy (i.e. thenumber of shots needed) and laten
y of the broad
ast. However, despite this similarity, the network modelused in [15℄ does not in
orporate adversarial behaviour and 
aptures more general topologies; 
onsequently,the te
hniques and results di�er signi�
antly from our work.Data streaming problems have been popular in the last several years [16, 17℄. Generally, past work inthis area fo
uses on 
omputing statisti
s on the data using a small number of passes over the data stream.In [16℄, the authors treat their data stream as a dire
ted multi-graph and examine the spa
e requirements of
omputing 
ertain properties regarding node degree and 
onne
tedness. Munro and Paterson [18℄ 
onsiderthe problem of sele
tion and sorting with a limited number of passes over one-way read-only memory.Guha and M
Gregor [19, 20℄ examine the problem of 
omputing statisti
s over data streams where thedata obje
ts are ordered either randomly or arbitrarily. Alon, Matias and Szegedy [21℄ examine the spa
e
omplexity of approximating the frequen
y of moments with a single pass over a data stream. In all ofthese 
ases, and others [22, 23℄, the models di�er substantially from our proposed data streaming problem.Rather than 
omputing statisti
s or sele
tion problems, we are 
on
erned with the guaranteed dis
overy ofa parti
ular value, and under our model, expe
ted query 
omplexity takes priority over spa
e 
omplexity.A preliminary version of the results in this paper appeared in [24℄. This 
urrent version 
ontains a
omplete des
ription of our proto
ols along with the full proofs of our results. We also 
orre
t an errorregarding the energy-savings a
hieved in [24℄. That is, in the 
ase where t < (r/2)(2r+1), we a
hieve whatis essentially a quadrati
 redu
tion in resour
e 
osts. In the pro
ess of amending our results, we treat the
ase for t ≤ (1 − ǫ)(r/2)(2r + 1) for any 
onstant ǫ > 0, whi
h yields the further energy savings identi
alto those previously 
laimed; this also improves on our previous result for the fail-stop model. An extendeddis
ussion of previous results is also provided along with a examination of 
ertain pra
ti
al 
onsiderationsregarding the utility of the algorithms we are proposing.4 Single Stream Bad SantaWe now 
onsider the single stream Bad Santa problem. A naive algorithm is to query n/2+1 bits uniformlyat random. The expe
ted 
ost for this algorithm is Θ(n) sin
e the adversary will pla
e the 1's at the endof the stream. The following is an improved algorithm.Single Stream Strategy1. Perform √
n queries uniformly at random from the �rst half of the stream. Stop immediately upon�nding a 1.2. If no 1 has been found, starting with the �rst bit in the se
ond half of the stream, query ea
h
onse
utive bit until a 1 is obtained.Lemma 1. The expe
ted 
ost of the above strategy is O(

√
n).Proof. Assume that there are i

√
n 1s in the �rst half of the stream where i ∈ [0,

√
n

2 ]. This implies thatthere are then (n/2)− i
√

n 1s in the se
ond half of the stream. By querying √
n slots uniformly at randomin the �rst half of the stream, the probability that the algorithm fails to obtain a 1 in the �rst half is nomore than:

(

1 − i
√

n

(n/2)

)√
n

=

(

1 − 2i√
n

)√
n

7



for an expe
ted overall 
ost not ex
eeding:
√

n +

(

1 − 2i√
n

)√
n

· i
√

n.We �nd the maximum by taking the derivative:
d

di

(

1 − 2i√
n

)√
n

· i
√

n =
√

n

(

1 − 2i√
n

)√
n

− 2i
√

n

(

1 − 2i√
n

)√
n−1and setting it to zero while solving for i gives i =

√
n

2(
√

n+1)
. Plugging this into the expe
ted 
ost fun
tiongives an expe
ted 
ost of O(

√
n).We now show that this bound is optimal to within a 
onstant fa
tor. In the proof of the following, let Õdenote that logarithmi
 fa
tors are ignored.Lemma 2. Ω(

√
n) expe
ted queries are ne
essary in the single stream 
ase.Proof. We follow Yao's min-max method [25℄ to prove lower bounds on any randomized algorithm thaterrs with probability no greater than λ = 1/2Õ(

√
n): We des
ribe an input distribution and show that anydeterministi
 algorithm that errs with toleran
e (average error) less than 2λ = 1/2Õ(

√
n) on this input dis-tribution requires Ω(

√
n) queries on average for this distribution. By [25℄, this implies that the 
omplexityof any randomized algorithm with error λ has 
ost (1/2)Ω(

√
n) = Ω(

√
n). Let [a, b] denote the bits inposition a, a + 1, ..., b − 1, b of the stream. The distribution is as follows:CASE 1. With probability 1/2, √n uniformly distributed random bits in [1, n/2] are set to 1 and theremaining bits in that interval are 0, [n/2 + 1, n/2 +

√
n] are all set to 0, and the remaining bits are 1.CASE 2.x: For x= 0, ...,

√
n − 1, with probability 1/(2

√
n), [1, ..., n/2] 
ontains a uniformly distributedrandom set of x 0's and the rest are 1's; [n/2 + 1, n/2 +

√
n] 
ontains a uniformly distributed random setof x 1's and the rest are 0's; and the remaining bits in the stream are 0.Analysis: Let A be a deterministi
 algorithm whi
h errs with average probability less than 2λ. Note that

A is 
ompletely spe
i�ed by a list L of indi
es of bits to query while it has not yet dis
overed a 1, sin
e itstops as soon as it sees a 1. Let x be the number of queries in the list that lie in [1, n/2]. For a 
onstantfra
tion of inputs in CASE 1, A will not �nd a 1 in [1, n/2] within √
n queries. Hen
e either x ≥ √

nor A must �nd a 1 with high probability in [n/2 + 1, n]. Now suppose x <
√

n. We show that A's list
L must 
ontain greater than √

n − x bit positions in [n/2 + 1, n/2 +
√

n]. To show this, assume this isuntrue. Then A will err on the input in CASE 2.x in whi
h all the x positions queried in [1, n/2] andthe √
n − x positions queried in [n/2 + 1, n/2 +

√
n] are 0. Note that this input o

urs with probability

(2
√

n)−1
(
n/2
x

)−1(√n
x

)−1
≥ 2λ in the distribution. Therefore, the algorithm errs with probability at least

2λ; this is a 
ontradi
tion. We 
on
lude that any algorithm erring with probability less than 2λ must eitherhave x ≥ √
n or queries greater than √

n − x bits of [n/2 + 1, n/2 +
√

n].Now we show that any su
h deterministi
 algorithm in
urs an average 
ost of Ω(
√

n) on the CASE1 strings in this distribution. If x ≥ √
n then for a 
onstant fra
tion of strings in CASE 1, the algorithmwill ask at least √n queries in [1, n/2] without �nding a 1. If x <

√
n, then with 
onstant probability thealgorithm will in
ur a 
ost of x in [1, ..n/2] and go on to in
ur a 
ost of √n − x in [n/2 + 1, n/2 +

√
n]sin
e all the values there are 0. Therefore, we have shown that the distributional 
omplexity with error 2λis Ω(

√
n). It follows from [25℄ that the randomized 
omplexity with error λ is Ω(

√
n).Theorem 1 follows immediately from Lemma 1 and Lemma 2. We �nish this se
tion by showing that if thefra
tion of 1s in the single stream 
ase, δ, is less than 1/2, then the number of expe
ted queries is Ω(n).The proof is very similar to that of Theorem 2.Theorem 8. For the single round dynami
 Bad Santa problem with δ = 1

2 − ǫ, the number of queries inexpe
tation is Ω(n) for an arbitrarily small 
onstant ǫ > 0.8



Proof. We apply the min-max method of [25℄ to prove lower bounds on any randomized algorithm thatfails with probability no greater than λ = 2−Θ(n log n). An input distribution is used to show that anydeterministi
 algorithm failing with probability less than 2λ = 2−Θ(n log n) on this input distribution requires
Ω(n) queries. By [25℄, this implies that the 
omplexity of any randomized algorithm with error λ has 
ost
Ω(n). Let [a, b] denote the bits in position a, a + 1, ..., b − 1, b of the stream. Our input distribution is asfollows:

• Case 1: With probability 1/2, a 
onstant number of bits, c, 
hosen uniformly at random withoutrepla
ement in [1, δn] are set to 1 and the remaining bits in that interval are 0. In [δn+1, (1−δ)n+c]all bits are set to 0, and the remaining bits are set to 1.
• Case 2.x: For x= 0, ..., δn − 1, with probability 1/(2δn), [1, δn] 
ontains a uniformly distributedrandom set (without repla
ement) of x 0s and the rest are 1s; [δn + 1, (1 − δ)n + c] 
ontains auniformly distributed random set (without repla
ement) of x 1s and the rest are 0s. The remainingbits in the stream are 0.Cost Analysis: Let A be a deterministi
 algorithm whi
h fails with probability less than 2λ. Note that A is
ompletely spe
i�ed by a list L of indi
es of bits to query while it has not yet dis
overed a 1. Let y be thenumber of queries in the list that lie in [1, δn]. With 
onstant probability A will fail to �nd a 1 in [1, δn]within (δ − ǫ′)n queries where ǫ′ > 0 is an arbitrarily small 
onstant. This is be
ause sampling withoutrepla
ement, the probability that A fails is ∏(δ−ǫ′)n

i=1

(

1 − c
(δn)−i

)

≥
(
1 − c

ǫ′n

)(δ−ǫ′)n
= Θ(1). Therefore,either y ≥ (δ− ǫ′)n or A must �nd a 1 with high probability in [δn + 1, n]. Now suppose y < (δ − ǫ′)n. Weshow that L must 
ontain greater than (1−2δ)n+ c− y bit positions in [δn+1, (1− δ)n+ c]. To show this,assume this is untrue. Then A will fail on the input in Case 2x in whi
h all the y positions queried in [1, δn]and the (1− 2δ)n + c− y positions queried in [δn + 1, (1− δ)n + c] are 0. Note that this input o

urs withprobability (

1
2δn

) (
δn
y

)−1( (1−2δ)n+c
(1−2δ)n+c−y

)−1
=

(
1

2δn

) (
δn
y

)−1((1−2δ)n+c
y

)−1 ≥
(

1
2δn

) (
y2

δne2((1−2δ)+c)

)y

≥ 2λ for
y = 0, ..., (δ − ǫ′)n − 1 and for su�
iently large n. Therefore, the algorithm fails with probability at least
2λ whi
h is a 
ontradi
tion. We 
on
lude that any algorithm failing with probability less than 2λ musteither have y ≥ (δ − ǫ′)n or queries greater than (1 − 2δ)n + c − y bits in [δn + 1, (1 − δ)n + c].Finally, we 
an prove the average 
ost that any su
h deterministi
 algorithm in
urs on the Case 1strings in our distribution. As we saw above, if y ≥ (δ− ǫ′)n then for a 
onstant fra
tion of strings in Case1, the algorithm will ask at least (δ − ǫ′)n queries in [1, δn] without �nding a 1. Else, if y < (δ − ǫ′)n, thenwith 
onstant probability the algorithm will in
ur a 
ost of y in [1, δn] and go on to in
ur a 
ost of at least
(1 − 2δ)n + c− y in [δn + 1, (1− δ)n + c] sin
e all the values there are 0; regardless, the 
ost is Ω(n) (notethat this is not the 
ase if δ ≥ 1/2). Therefore, the distributional 
omplexity with error 2λ is Ω(n). Itfollows dire
tly from [25℄ that the randomized 
omplexity is Ω(n).While the optimal expe
ted 
ost for the single stream is Θ(n), it is still possible to obtain asymptoti
savings over multiple streams when δ < 1/2 and we address this in the next se
tion.4.1 The Multiple Streams Bad Santa ProblemWe de�ne a (α, β)-strategy to be an algorithm whi
h o

urs over no more than α streams, ea
h with at leasta (possibly di�erent) set of at least Θ(n) values of 1, and whi
h in
urs expe
ted 
ost (number of queries)at most β. To be expli
it, for multiple streams, we 
an handle the 
ase where the fra
tion of boxes that
ontain a 1, denoted by δ, 
an be less than 1/2. The previous se
tion demonstrated a (1, O(

√
n))-strategy.We now 
onsider the following proto
ol over (k + 1) streams.Multi-Stream Sele
tion StrategyFor i = k to 1

• Perform 1
δ ln(i)(n) queries uniformly at random over the entire stream. Stop if a 1 is obtained.9



If no value of 1 has been found, then if δ ≥ 1/2, use the single stream strategy on the �nal stream. Other-wise, for δ < 1/2, open ea
h of the n boxes in order in the �nal stream until a 1 is lo
ated.Lemma 3. For a 
onstant δ, the above proto
ol is a (k + 1, O(log(k)(n) + k))-strategy.Proof. Corre
tness is 
lear be
ause in the worst 
ase, we use the 
orre
t the single stream strategy, or openall boxes, in the �nal stream. The expe
ted 
ost is:
≤ δ−1 ln(k) n +

[
1∑

i=k−1

(1 − δ)
δ−1 ln(i+1) n · O

(

δ−1 ln(i) n
)
]

+ (1 − δ)
δ−1 ln n · O(n)

≤ δ−1 ln(k) n +

[
1∑

i=k−1

e− ln(k) n · O
(

δ−1 ln(k−1) n
)
]

+ e− lnn · O(n)

= O(log(k)(n) + k)Lemma 4. If there are ln∗ (n)+1 streams and δ is a 
onstant, then the multi-stream algorithm provides a
(O(log∗ n), O(log∗ n))-strategy.Proof. By the de�nition of the iterated logarithm:

ln∗ n =

{

0 for n ≤ 1
1 + ln∗(lnn) for n > 1if k = ln∗ n, we 
an plug this value into the last line of the proof of Lemma 3 whi
h 
ontains two termsinside the big-O notation. The �rst term is 1/δ, by de�nition of ln∗ n, and the se
ond is O(ln∗ n), for atotal expe
ted 
ost of O(ln∗ n).4.2 Lower bound for multiple streamsFirst, we show the following lemma. For ease of exposition, we assume δ = 1/2; however, any 
onstant δwill su�
e with little modi�
ation to the proof:Lemma 5. Ω(log(i+2) n) expe
ted queries are required for a randomized algorithm that errs with probabilityless than λ = (ln(i) n)−ǫ on one stream of length n. In parti
ular, when i = 0, Ω(log log n) expe
ted queriesare required for a randomized algorithm with error less than 1/nǫ, for any 
onstant ǫ > 0.Proof. We apply Yao's min-max method [25℄ and 
onsider the distribution in whi
h with probability 1/3,one of the I1 = [1, n/3], I2 = [n/3 + 1, 2n/3], and I3 = [2n/3 + 1, n] intervals is all 0's, and the othertwo ea
h 
ontain exa
tly n/4 1's with the 1's distributed uniformly at random. Let L denote the list ofqueries of a deterministi
 algorithm, and let xi be the number of queries in L∩Ii. The probability that thealgorithm fails to �nd a 1 in any interval Ii is (n/3−xi

n/4

)
/
(n/3
n/4

)
= n/12

n/3
n/12−1
n/3−1 ...n/12−xi+1

n/3−xi+1 > (n/12−xi+1
n/3−xi+1 )

xi

>

(1
4 − 3xi

n )xi > (1
4 − ǫ)xi > ( 1

e7/4 )xi = e−7xi/4 when xi = o(n) for su�
iently large n. Let Ii and Ij be theintervals that are not all 0's. Then the probability of failing to �nd a 1 in either Ii and Ij is > e−7(xi+xj)/4for su�
iently large n when xi + xj = o(n). Hen
e the probability of not �nding a 1 over all intervals is
> (1/3)e−7(xi+xj)/4 > 2λ if xi + xj < (3/7)ǫ lg(i+1) n. We 
on
lude that a deterministi
 algorithm withaverage error less than 2λ 
an have at most one xi, i = 1, 2, 3 su
h that xi < (3/14)ǫ lg(i+1) n.Now we examine the 
ost of su
h an algorithm. Suppose x1 ≥ (3ǫ/14)(ln(i+2) n) then with probability
1/3 I1 is all 0's and the 
ost in
urred is x1, for an average 
ost of (ǫ/14)(ln(i+2) n). Now suppose x1 <

(3ǫ/14) ln(i+2) n. From above, we know x2 > (3ǫ/14) ln(i+1) n). Then with probability 1/3, I2 is all 0's andwith probability > e−7x1/4 > (ln(i+1) n)−3ǫ/8, the algorithm does not �nd a 1 in I1 and in
urs a 
ost of10



(3ǫ/14) lg(i+1) n in I2 for an average 
ost of at least (ǫ/14)(ln(i+1) n)1−3ǫ/8. Hen
e the average 
ost of anysu
h deterministi
 algorithm is at least min{(ǫ/14)(ln(i+2) n), (ǫ/14)(lg(i+1) n)1−3ǫ/8} = Ω(ln(i+2) n). ByYao's min-max method [25℄, any randomized algorithm with error λ is bounded below by 1/2 the average
ost of a deterministi
 algorithm with average error 2λ on any distribution. The lemma now follows.Lemma 6. For k > 0, Ω(ln(2k) n) expe
ted queries are ne
essary to �nd a 1 from k + 1 streams withprobability 1.Proof. We use indu
tion on the number of streams:Base Case: Let k = 1. Either the algorithm �nds a 1 in the �rst pass or the se
ond pass. From Lemma ,for any 
onstant ǫ any algorithm that fails to �nd a 1 in the �rst pass with probability ≤ n−ǫ has expe
ted
ost Ω(log log n). If the algorithm fails to �nd a 1 in the �rst pass with probability at least n−ǫ then theexpe
ted 
ost to the algorithm is at least the probability it fails in the �rst pass times the expe
ted 
ost ofalways �nding a 1 in the se
ond and �nal pass, whi
h is n−ǫ ·Ω(
√

n). (The se
ond fa
tor is from Lemma 2.Choosing ǫ < 1/2, the expe
ted 
ost is Ω(log log n).Indu
tive Hypothesis: For k > 1, Ω(ln(2k) n) expe
ted queries are ne
essary to �nd a 1 from k + 1 streamswith probability 1.Indu
tive Step: Now assume the hypothesis is true for up to k > 1 streams. Assume we have k + 1streams. Any randomized algorithm either fails to �nd a 1 in the �rst stream with probability less than
(1/ ln(2k−2) n)ǫ, in whi
h 
ase by Lemma 5, the expe
ted 
ost of the algorithm when it pro
esses the �rststream is Ω(ln(2k) n) or the probability that it fails in the �rst pass is at least (1/ ln(2k−2) n)ǫ. In that 
ase,the expe
ted 
ost deriving from queries of the se
ond stream is at least (1/ ln(2k−2) n)ǫ ·Ω(ln(2k−2) n) wherethe se
ond fa
tor of this expression is the expe
ted number of queries needed to �nd a 1 in k streams,as given by the indu
tion hypothesis. The minimum expe
ted 
ost of any randomized algorithm is theminimum of these two possibilities, whi
h is Ω(ln(2k) n).Theorem 2 then follows immediately from Lemmas 3, 4, 5 and 6.5 Reliable Broad
ast Proto
olsWe begin by re
alling some notation from Table 1 and brie�y reviewing the proto
ol of [6℄. Let p(x, y)denote the node p at lo
ation (x, y) in the grid. We de�ne a 
orridor of width 2r + 1 starting at thesour
e lo
ated at point (0, 0) and ending at node p = (x, y). We will use N(p) or N(x, y) to denote theset of nodes within radius r of q(x, y); this is the neighborhood of q. Additionally, we de�ne the perturbedneighborhood PN(p) of p(a, b) as PN(p) = N(a + 1, b) ∪ N(a − 1, b) ∪ N(a, b + 1) ∪ N(a, b − 1). Thefollowing proto
ol for reliable broad
ast in the presen
e of Byzantine faults is by Bhandari and Vaidya [6℄.In this proto
ol, the message 
ommit(i, v) signi�es that node i has 
ommitted to value v, and the messageheard(j, i, v) signi�es that node j has heard a message 
ommit(i, v).Reliable Broad
ast Proto
ol (Bhandari and Vaidya, 2005)

• Initially, the sour
e s does a lo
al broad
ast of v.
• Ea
h node i ∈ N(s) 
ommits to the �rst value it re
eives from s and does a one-time broad
ast of
ommit(i, v).
• The following proto
ol is exe
uted by ea
h node j (in
luding those nodes in the previous two steps):� On re
eipt of a 
ommit(i, v) message from a neighbor i, j re
ords the message and broad
astsheard(j, i, v).� On re
eipt of a heard(j′, i, v), j re
ords this message.11



� Upon re
eiving 
ommit or heard messages that 1) 
laim v as the 
orre
t value and 2) arere
eived along at least t + 1 node disjoint paths that all lie within a single neighborhood, thennode j 
ommits to v and does a one time broad
ast of 
ommit(j, v).Proving that this proto
ol is 
orre
t is non-trivial and we refer the reader to [6℄ for details. To brie�ysummarize, the proof in [6℄ works by showing that for ea
h node p in PN(a, b)−N(a, b), there exist 2t +1paths P1, ..., P2t+1 belonging to a single neighborhood N(a, b + r + 1), ea
h having one of the forms listedbelow:
• Pi = (q, p) whi
h is a one hop path q → p or
• Pi = (q, q′, p) whi
h is a two hop path q → q′ → pwhere q, q′, p are distin
t nodes and q, q′ lie in a single neighborhood N(a, b + r + 1), and q ∈ N(a, b)where, 
riti
ally, nodes in N(a, b) have 
ommitted to the 
orre
t message. The existen
e of these 2t + 1paths, and the fa
t that ea
h broad
ast neighborhood has at most t < r/2(2r + 1) Byzantine faults, issu�
ient to prove that reliable broad
ast is a
hieved by the proto
ol. For simpli
ity, we 
an 
onsider

p ∈ N(a, b + 1) sin
e the analysis is nearly identi
al for the 
ases where p ∈ N(a + 1, b), p ∈ N(a − 1, b),and p ∈ N(a, b − 1).The node p lies in N(a, b + 1)−N(a, b) and 
an be 
onsidered to have lo
ation (a− r + z, b + r + 1) where
0 ≤ z ≤ 2r. Now, summarizing the proof in [6℄, we demonstrate that there exist r(2r + 1) node-disjointpaths P1, ..., Pr(2r+1) all lying within the same neighborhood:

• One-Hop Paths: the set of nodes Ap = {q(x, y) | (a − r) ≤ x ≤ (a + z) and (b + 1) ≤ y ≤ (b + r)}lie in N(a, b) and are neighbors of p. Therefore, there are r(r + z + 1) paths of the form q → p where
q ∈ Ap.

• Two-Hop Paths: 
onsider the sets Bp = {q(x, y) | (a+z+1) ≤ x ≤ (a+r) and (b+1) ≤ y ≤ (b+r)}and B′
p = {q′(x′, y′) | (a + z + 1 − r) ≤ x′ ≤ a and (b + r + 1) ≤ y′ ≤ (b + 2r)}. The nodes in Bp liein N(a, b) while the nodes in B′

p lie in N(p). Moreover, the set B′
p is obtained by shifting left by runits and up by r units. Therefore, there is a one-to-one mapping between the nodes in Bp and thenodes in B′

p. For u ∈ Bp, we will 
all the 
orresponding node u′ ∈ B′
p, the sister node of u. Notethat ea
h node has at most two sister nodes; this 
an be seen in Figure 3. Hen
e, there are r(r − z)paths of the form q → q′ → p.Therefore, there are a total of r(r + z + 1) + r(r − z) = r(2r + 1) disjoint paths all lying in a singleneighborhood N(a, b + r + 1). Figure 1 illustrates aspe
ts of the dis
ussion above where a, b = 0. Now,note that the prede
essor set Gp = Ap ∪ B′

p is the set of nodes to whi
h p must listen in order to gatherinformation that will allow it to 
ommit to the 
orre
t message.In Se
tion 5.1 and Se
tion 5.2, we explain our proto
ols for reliable broad
ast under both the fail-stop and Byzantine fault models, respe
tively. Our proto
ols rely heavily on the results of Bhandari andVaidya [6℄ dis
ussed above. In parti
ular, we assume that ea
h node p knows a prede
essor set Gp of nodesto whi
h node p should listen for messages. As we have just reviewed, the existen
e of Gp is shown by the
onstru
tive proofs in [6℄. Our proto
ols spe
ify when ea
h node p should listen to nodes in Gp and whenea
h node p should broad
ast the message to whi
h it has 
ommitted. The set Gp has size n = r(2r + 1)and, in exe
uting our proto
ol for the 
ase where t < (r/2)(2r + 1), we assume that at least n/2 of thenodes in Gp are 
orre
t. Our algorithms for the Bad Santa problem then apply by having a node samplefrom nodes in Gp in order to listen for a message.Error Toleran
e in the Bad Santa Proto
ols and in Reliable Broad
ast Proto
ols: Before de-s
ribing our reliable broad
ast proto
ols, we �rst address a possible point of 
onfusion: Previous workunder the Byzantine fault model assumed t < n/2 whereas in this work we are allowing t ≤ n/2 in ouralgorithms for the single-stream Bad Santa problem. This should not be 
onstrued as 
ontradi
ting thelower bound proved in [8℄. In order to perform reliable broad
ast t < n/2 must indeed hold true and,12
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y=b+r+1

(a−r+z, b+r+1)

Sister NodesFigure 1: An illustration of the sets Ap, Bp, and B′
p where z = 0, r = 3 and a, b = 0. Node p is lo
ated atposition (a − r + z, b + r + 1). A pair of sister nodes, one in B′ and the other in B, are highlighted.as we shall see in Se
tion 5.2, this needs to be the 
ase for Stage 1 of our proto
ol in order to propagatethe �ngerprint. However, in Stage 2, the set Gp 
an hold t ≤ n/2 faulty nodes due to our results on thesingle-stream Bad Santa problem.Reliable Broad
ast Along a Corridor: The presentation of our proto
ols is limited to demonstratingreliable broad
ast along a 
orridor of width 2r + 1 moving along the positive y-
oordinates. That is, weshow reliable broad
ast for a node p(x, y) where −r ≤ x ≤ r and y ≥ 0. This greatly simpli�es thedes
ription of our results. Furthermore, it is easy to see that reliable broad
ast is possible along other
orridors traversing the x-
oordinates or negative y-
oordinates using a syn
hronization of sending andlistening similar to what we des
ribe. The grid 
an be 
overed pie
e-wise with su
h re
tilinear 
orridors ina number of ways; for example, a spiral su�
es (see Figure 2). Alternatively, 
orridors 
an be appendedin many other ways in order to a
hieve propagation of a message depending on s
enario in question. Inany event, proving reliable broad
ast for this 
orridor is su�
ient to prove reliable broad
ast for the gridin general.5.1 Proto
ol for Fail-Stop FaultsWe des
ribe our reliable broad
ast proto
ol that tolerates fail-stop faults; the proof is deferred until theend of Se
tion 5.2 sin
e it is subsumed by the proof for the Byzantine 
ase. The pseudo
ode below showshow broad
ast 
an be a
hieved along a 
orridor of width 2r + 1, where −r ≤ x ≤ r, moving along thepositive y-
oordinates. As mentioned earlier, restri
ting the movement in this way greatly simpli�es ourpresentation without sa
ri�
ing 
ompleteness.We assume that the nodes in the network know the time slot when the sour
e node will broad
asta message. We will let tstart denote the time slot at whi
h the sour
e sends out a message m. The sour
enode lo
ated at (0,0) broad
asts m at time slot tstart and all 
orre
t nodes in N(0, 0) are assumed to re
eive

m from the sour
e and 
ommit internally. Node in N(0, 0) then broad
ast that they have 
ommitted to mfor the next 2r 
onse
utive rounds during their respe
tive allotted time slots.We now des
ribe how ea
h node p(x, y), for −r ≤ x ≤ r and y ≥ r+1, listens for and sends messagesand, �nally, how it broad
asts its 
ommittal. Let tq denote the time slot when q is s
heduled to broad
astin round tstart + 2(y − r). Using tq values, ea
h node p 
reates an ordered set Sp ⊂ Gp where the elementsof Sp are 
hosen a

ording to the (1, O(
√

n)) strategy for the Bad Santa problem. Node p then awakensfrom the energy-e�
ient sleep mode and listens (in order) to nodes in Sp in round tstart + 2(y − r). If atany point, p re
eives a message, it 
ommits to this message internally. During the 
ourse of the proto
ol,node p also fa
ilitates the passage of messages along the two-hop paths. While node p has not 
ommitted13



internally, p listens to ea
h sister node u(x′′, y′′) in round tstart +2(y′′−r)+1. If p re
eives a message, then
p does the following: (1) 
ommits internally to this message and (2) during its assigned slots p broad
asts
m for 2r 
onse
utive rounds starting at round tstart + 2(y′′ − r) + 2. Finally, in terms of sending, if at anytime a node p(x, y) has 
ommitted internally to a message in round tstart + 2(y − r) (i.e. used the BadSanta proto
ol to 
ommit), p waits until round tstart + 2(y − r) + 1 and then broad
asts its message for
2r 
onse
utive rounds during its assigned time slots. Again, note that in the following pseudo
ode, ea
hnode p(x, y) is su
h that −r ≤ x ≤ r and y ≥ 0.
(1, O(

√
n) Reliable Broad
ast for the Fail-Stop Fault Model1. At time slot tstart, the sour
e d(0, 0) does a one-time lo
al broad
ast of m and ea
h node in N(d)
ommits internally to m.2. All nodes in N(0, 0) broad
ast their 
ommittal to m for the next 
onse
utive 2r rounds.The following portion of the proto
ol is followed by all nodes not in N(0, 0):3. If node p(x, y) has 
ommitted internally to a message in round tstart + 2(y − r) (i.e. in Step 5), then

p waits until round tstart + 2(y − r) + 1 and then broad
asts its message for 2r 
onse
utive roundsduring its assigned time slots.4. While node p(x, y) has not 
ommitted internally to a message, node p listens to ea
h sister node
u(x′′, y′′) in round tstart +2(y′′−r)+1. If p re
eives the message m from u, then p does the following:(1) 
ommits internally m and (2) during its assigned slots p broad
asts m for 2r 
onse
utive roundsstarting at round tstart + 2(y′′ − r) + 2.5. While node p(x, y) has not 
ommitted internally to a message, p does the following. For a node
q ∈ Gp, let tq denote the time slot when q is s
heduled to broad
ast in round tstart + 2(y − r). Using
tq values, node p 
reates an ordered set Sp ⊂ Gp where the elements of Sp are 
hosen a

ording tothe (1,

√
n) Bad Santa strategy. Then p does the following:

• Node p(x, y) listens to q ∈ Sp in round tstart + 2(y − r). If at any point p re
eives a message m,then p 
ommits to m internally, breaks the for-loop and pro
eeds to Step 3.5.2 Proto
ol for Byzantine FaultsOur proto
ol for the Byzantine fault model runs in two stages. In the �rst stage, the sour
e propagatesa �ngerprint f(m) of the message m it wants to broad
ast. This �ngerprint is assumed to be of size atleast lg2 |m| bits. Propagation of f(m) is again done using the algorithm in [6℄. The se
ond stage is verysimilar to the previous proto
ol for the fail-stop faults. In the se
ond stage, the sour
e broad
asts themessage m at time slot tstart and all 
orre
t nodes in N(0, 0) are assumed to re
eive m from the sour
eand 
ommit internally. Ea
h node q(x′, y′) ∈ N(0, 0) then broad
asts its 
ommittal to m over the next 2r
onse
utive rounds. A node p listens to messages from a set Gp just as in the proto
ol for fail-stop model.The di�eren
e o

urs when, at any point a message m′ is re
eived. Node p then 
he
ks f(m′) against the�ngerprint fmaj to whi
h it 
ommitted in the �rst stage. If they mat
h, p 
ommits to m′ internally andexe
utes the broad
ast instru
tions mentioned previously.We assume that the network alternates between the �rst stage, where nodes are 
onstantly awake,and the se
ond stage, where nodes are a
hieving signi�
ant power savings. For instan
e, it is plausiblethat internal software 
ould syn
hronize periodi
 
hange-overs between these two stages in mu
h the sameway that radio network alternate periodi
ally between sleep and fully a
tive states to 
onserve power inpra
ti
e. These details are outside the s
ope of our work and we do not dis
uss them further.Finally, note that a faulty node might broad
ast an in
orre
t message m′ su
h that |m′| > |m| where
m is the 
orre
t message. To avoid 
ompli
ations, we assume that nodes in the network know the sizeof m and, therefore, 
an stop listening after re
eiving |m| bits. For instan
e, this 
ould be implemented14
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(A) (B) (C)Figure 2: The sour
e is denoted by the brown node whi
h has lo
ation (0, 0). (A) Movement in the positive
y dire
tion establishing a (2r+1)×(2r+1) square of 
ommitted nodes above N(0, 0); this is the 
orridor weexpli
itly address in the proofs of 
orre
tness for our proto
ols. (B) Spiraling out from N(0, 0), movementin the negative x dire
tion and then the negative y dire
tion. (C) Further depi
tion of the spiral expansionof 
ommitted nodes along a 
orridor of width 2r + 1.by having the sour
e broad
ast the message size in the �rst stage or having a prede�ned upper limit onmessages size. The details of su
h solutions would be di
tated by 
ontext and we omit further dis
ussionof this issue.
(1, O(

√
n)) Reliable Broad
ast for the Byzantine Fault ModelStage 1:1. At time t0, the sour
e uses the reliable broad
ast proto
ol of [6℄ to broad
ast the �ngerprint f(m) toall nodes in the grid.Stage 2:2. At time slot tstart, the sour
e d(0, 0) does a one-time lo
al broad
ast of m and ea
h node in N(d)
ommits internally to m.3. All nodes in N(0, 0) broad
ast their 
ommittal to m for the next 
onse
utive 2r rounds.The following portion of the proto
ol is followed by all nodes not in N(0, 0):4. If node p(x, y) has 
ommitted internally to a message in round tstart + 2(y − r) (i.e. in Step 6), pwaits until round tstart + 2(y − r) + 1 and then broad
asts its message for 2r 
onse
utive roundsduring its assigned time slots.5. While node p(x, y) has not 
ommitted internally to a message, node p listens to ea
h sister node

u(x′′, y′′) in round tstart + 2(y′′ − r) + 1. If the message mu that p re
eives from u equals the fmajvalue, then p does the following: (1) 
ommits internally mu and (2) during its assigned slots pbroad
asts mu for 2r 
onse
utive rounds starting at round tstart + 2(y′′ − r) + 2.6. While node p(x, y) has not 
ommitted internally to a message, p does the following. For a node
q ∈ Gp, let tq denote the time slot when q is s
heduled to broad
ast in round tstart + 2(y − r). Using
tq values, node p 
reates an ordered set Sp ⊂ Gp where the elements of Sp are 
hosen a

ording tothe (1,

√
n) Bad Santa strategy. Then p does the following:

• Node p(x, y) listens to q ∈ Sp in round tstart + 2(y − r). In listening to ea
h q, p will obtain avalue mq (or nothing, if q is Byzantine and sends nothing). If at any point f(mq) equals the
fmaj value of p, then p 
ommits to mq internally, breaks the for-loop and pro
eeds to Step 4.15



We now establish the following preliminary lemma whi
h we will need for our proto
ols. Label theset of nodes in the 
orridor as Scor = Sx,cor ∪ Sy,cor where Sx,cor = {q(x′, y′) | (r + 1 ≤ x′ ≤ x) ∧ (y − r ≤
y′ ≤ y + r)} and Sy,cor = {q(x′, y′) | (−r ≤ x′ ≤ r) ∧ (0 ≤ y′ ≤ y + 2r)}. Figure 3(a) illustrates a 
orridorfor r = 3. Finally, re
all that a round is one iteration through the broad
ast s
hedule.The following Lemma 7 is useful for our Byzantine-tolerant proto
ols. In parti
ular, it provides ananalysis of the previous proto
ol in [6℄ with the minor modi�
ation that a node waits for the (at most) twomessages from its sister nodes before issuing heard messages. We then later use this result to address thene
essary delay between Stage 1, where a �ngerprint is propagated, and Stage 2 of our proto
ol, when thefull message is sent. Note that in Lemma 7, we deal with arbitrary x and y values.Lemma 7. Assume a broad
ast s
hedule where no 
ollisions o

ur and ea
h node 
an broad
ast on
e everyround as dis
ussed in Se
tion 1.2.2. Consider a sour
e, d(0, 0), that broad
asts a �ngerprint f at time slot
t0 under either the fail-stop or Byzantine fault models where t < r

2 (2r + 1). Then by using the proto
olof [6℄, node p(x, y) is able to 
ommit to f by round t0 + 2(|x| + |y|).Proof. We are essentially following the argument for 
orre
tness given in [6℄ and dis
ussed in Se
tion 5;however, we are restri
ting our view to those nodes in Scor. That is, nodes in Scor will only a

eptmessages from other nodes in Scor and they will ignore all messages they re
eive from nodes outside the
orridor. Clearly, this 
an only result in a slowdown in the propagation of the broad
ast value; moreover,the re
tilinear shape of the 
orridor 
an only slow down the rate of propagation in 
omparison to theoriginal propagation des
ribed in [6℄. An argument identi
al to that in [6℄ 
an be used to show that ea
h
orre
t node q(x′, y′) ∈ Scor will 
ommit to the 
orre
t �ngerprint by re
eiving messages along at least
2t+1 node disjoint paths of the form (ui, q) and (ui, u

′
i, q) as shown in Figure 3(a). While we do not repeatthe entire argument here, Figure 3(b) illustrates the set Gp for ea
h node p in a row of the 
orridor alongin
reasing y-values. That is, the regions Ap, Bp and B′

p are illustrated for ea
h position in the 
ontext ofthe proof dis
ussed in Se
tion 5.We now 
onsider the time required until p(x, y) 
an 
ommit to f regardless of whi
h nodes in the
orridor fail; p does so by listening to the nodes in Gp. Without loss of generality, assume that x, y arepositive 
oordinates and that the broad
ast �rst moves nodes in Sy,cor (moving up) and then along nodesin Sx,cor (moving right). At t0, the sour
e broad
asts f and all nodes in N(0, 0) 
ommit to f . Considera node q(a, r + 1) where −r ≤ a ≤ r. It takes at most one round for q to re
eive messages along paths ofthe form (ui, q) from region A. Con
urrently, in this one round, nodes ui 
an transmit messages to nodes
u′

i along paths of the form (ui, u
′
i, q) (region B to B′) where the heard messages from the (at most) twosister nodes are appended in a single message. At most an additional round is required to send from nodes

ui to q. Therefore, at most two rounds are required before q 
an 
ommit. Note that this holds for allnodes with 
oordinates (a, r + 1) for −r ≤ a ≤ r; this entire row 
an 
ommit after at most two rounds. Itfollows that all nodes up to and in
luding row y in Sy,cor are 
ommitted to f after t0 + 2(y + r) rounds;the remaining r rows in Sy,cor do not 
ommit. An identi
al argument shows that all nodes in Sx,cor are
ommitted to f after t0 + 2(x − r) rounds. Therefore, p 
ommits after at most t0 + 2(x + y) rounds; if xand y 
an take on negative values, this be
omes t0 + 2(|x| + |y|).The next lemma proves that, if we assume that the adversary 
annot 
ause a 
ollision with fmaj, thenea
h node 
an 
ommit to the 
orre
t message using our proto
ol. In parti
ular, it establishes that these
ond stage of our proto
ol a
hieves the 2t+1 
onne
tedness ne
essary for reliable broad
ast. The lemmaalso establishes that the broad
asting and re
eiving a
tions by ea
h node are 
orre
t. Finally, the resour
e
osts per node for Stage 2 follow immediately. Note that this stops short of proving Theorem 4 sin
e theissue of �ngerprints has not yet been addressed. While we in
lude it for 
ompleteness, we stress that the
2t + 1 
onne
tedness 
omponent of the proof is essentially an adaptation of the proof found in [6℄ whi
hwas reviewed in the beginning of Se
tion 5. Again, the proof fo
uses on movement along the positive
y-
oordinates along a 
orridor of width 2r + 1 where −r ≤ x ≤ r. Figure 4 illustrates how our proto
olpro
eeds when r = 3.Lemma 8. Assume a broad
ast s
hedule where no 
ollisions o

ur and ea
h node 
an broad
ast on
eevery round as dis
ussed in Se
tion 1.2.2. Furthermore, assume ea
h node already possesses fmaj prior16
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z=2

z=3

B’

B
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B’

B
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z=4
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z=6

B’
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2r+1

2r+1

d(0,0)

p(x,y)

E

q(x’,y’)

F

G

BA

r

B’

(a) (b)Figure 3: Let p be a node that is not at the boundary of width r in the grid. (a) A depi
tion of a 
orridorfor r = 3. Together the nodes in region E and F 
onstitute Sy,cor while the nodes in G 
onstitute Sx,cor.Node disjoint paths of the form (ui, q) originate from nodes ui in region A. As dis
ussed in [5, 6℄, nodedisjoint paths of the form (ui, u
′
i, q) originate from nodes ui in region B and traverse through nodes u′

i in
B′ to rea
h node q. (b) The regions A, B and B′ are illustrated for ea
h node along a row of Sy,cor. Thevalue for z is given for ea
h position in the 
ontext of the proof reviewed in Se
tion 5.to re
eiving any other messages and that if a message m re
eived by a 
orre
t node p 
orresponds to the�ngerprint fmaj propagated in the �rst step, then m is the 
orre
t message. Under these assumptions, the
(1, O(

√
n)) Reliable Broad
ast for the Byzantine Fault Model proto
ol has the following properties:

• Ea
h node p(x, y) where −r ≤ x ≤ r (ex
ept those on the boundary of width r if the grid is �nite)
ommits to the 
orre
t message m by round max{2(y − r), 0}.
• Ea
h node is awake for O(

√
n) time slots in expe
tation. Ea
h node sends and re
eives O(

√
n|m|)bits in expe
tation.Proof. For simpli
ity, we normalize su
h that tstart is round 0. Our proof is by indu
tion and throughoutwe assume that ea
h node has an x-
oordinate su
h that −r ≤ x ≤ r:Base Case: Ea
h node in N(0, 0) 
ommits to the 
orre
t message m immediately upon hearing it dire
tlyfrom the dealer. Therefore, ea
h node p(x, y) ∈ N(0, 0) 
ommits to m by round 0 ≤ max{2(y − r), 0}.Indu
tion Hypothesis: For simpli
ity, we will assume as before that p ∈ N(a, b + 1) where −r ≤ a ≤ r; theother 
ases for proving the statement for p ∈ PN(a, b) follow by symmetry. In this 
ontext, the indu
tionhypothesis is as follows: if ea
h p′(x′, y′) ∈ N(a, b) has 
ommitted to m by round 2(y′ − r), then ea
h
orre
t node p(x, y) ∈ N(a, b + 1) − N(a, b) is able to 
ommit to m by round 2(y − r).Indu
tion Step: As we reviewed before in the beginning of Se
tion 5, we show 2t + 1 
onne
tedness in asingle neighborhood. We will argue simultaneously about the time required for p to hear messages alongthese disjoint paths. The node p(x, y) lies in N(a, b + 1) − N(a, b) and 
an be 
onsidered to have lo
ation

(a − r + z, b + r + 1) where 0 ≤ z ≤ r (the 
ase for r + 1 ≤ z ≤ 2r follows by symmetry). We demonstratethat there exist r(2r + 1) node-disjoint paths P1, ..., Pr(2r+1) all lying within the same neighborhood andthat the syn
hronization pres
ribed by our proto
ol is 
orre
t:17



• One-Hop Paths: the set of nodes Ap = {q(x, y) | (a − r) ≤ x ≤ (a + z) and (b + 1) ≤ y ≤ (b + r)}lie in N(a, b) and are neighbors of p. Therefore, there are r(r + z + 1) paths of the form q → p where
q ∈ Ap.By their position relative to p(x, y), ea
h 
orre
t node q(x′, y′) ∈ Ap is su
h that y − r ≤ y′ ≤ y − 1.Therefore, by the indu
tion hypothesis, a 
orre
t node q ∈ Ap 
ommits in round 2(y − 2r) at theearliest and 2(y − r − 1) at the latest. Consequently, a 
orre
t node in Ap starts broad
asting its
ommittals in round 2(y − 2r) + 1 at the earliest and 2(y − r − 1) + 1 at the latest. In the former
ase, re
all that broad
asting o

urs for 2r rounds, whi
h means that q is broad
asting from round
2(y−2r)+1 to 2(y−r), in
lusive, at the earliest. In the latter 
ase, q is broad
asting from 2(y−r−1)+1to 2(y − 1), in
lusive. Therefore, all 
orre
t nodes in Ap are broad
asting a 
ommittal message inround 2(y − r) and so p(x, y) 
an re
eive a message from ea
h 
orre
t node in Ap in this round.

• Two-Hop Paths: 
onsider the sets Bp = {q(x, y) | (a+z+1) ≤ x ≤ (a+r) and (b+1) ≤ y ≤ (b+r)}and B′
p = {q′(x, y) | (a + z + 1 − r) ≤ x ≤ (a) and (b + r + 1) ≤ y ≤ (b + 2r)}. The nodes in Bp liein N(a, b) while the nodes in B′

p lie in N(p). Moreover, the set B′
p is obtained by shifting left by runits and up by r units. Re
all that there is a one-to-one mapping between the nodes in Bp and thenodes in B′

p; these are sister nodes. There are r(r − z) paths of the form q → q′ → p.Consider a 
orre
t node q(x′, y′) ∈ Bp and its sister node q′(x′′, y′′) ∈ B′
p. Again, given the lo
ationof q(x′, y′) relative to p(x, y), by the indu
tion hypothesis, the earliest q ∈ N(a, b) has 
ommitted is

2(y − 2r) and the latest is 2(y − r − 1). Therefore, by proto
ol, q starts broad
asting its 
ommittal
2r times starting in round 2(y − 2r) + 1 at the earliest and 2(y − r − 1) + 1 at the latest. The sisternode of q, q′ ∈ B′

p, listens to q in the �rst round that q broad
asts. If q′ re
eives a 
orre
t m, then q′broad
asts this 2r times; therefore, this o

urs in round 2(y − 2r) + 2 = 2(y − 2r + 1) at the earliestand 2(y − r − 1) + 2 = 2(y − r) at the latest. In the former 
ase, re
all that q′ broad
asts for 2r
onse
utive rounds and therefore is broad
asting until round 2(y − r + 1)− 1 > 2(y − r). Therefore,all 
orre
t nodes in B′
p with a message to broad
ast are doing so in round 2(y − r) and so p(x, y) 
anhear a message from any su
h q′ ∈ B′

p in this round.Therefore, there are a total of r(r + z + 1) + r(r − z) = r(2r + 1) node-disjoint paths from N(a, b) to
PN(a, b), all lying in in a single neighborhood N(a, b + r + 1). By our argument above, ea
h 
orre
t node
p(x, y) re
eives the one-hop and two-hop messages over these paths by round 2(y − r). We note that (1)more than half of these paths will provide the 
orre
t message and (2) the sampling follows the Bad Santaproto
ol whi
h is a Las Vegas algorithm. Therefore, we are guaranteed that p will obtain a message m that
orresponds to fmaj . Finally, by our initial assumption regarding the inability of the adversary to forge a
ollision, this means that m is the 
orre
t message.We now analyze the resour
e bounds for our proto
ol. Consider the situations where p must deal with(either broad
asting or re
eiving) a message: (1) p re
eives messages in order to 
ommit, (2) p broad
astsit has 
ommitted, and (3) p fa
ilitates two-hop messages. We 
onsider ea
h 
ase. To address (1), note that
p uses the Bad Santa proto
ol; while in the streaming problem, we attempt to obtain a 1 at unit 
ost perquery, here node p is attempting to sele
t a 
orre
t node at the 
ost of listening to |m| bits per sele
tion.6This method of sampling from Gp means p re
eives O(

√
n) messages in expe
tation. To address (2), notethat p broad
asts that it has 
ommitted 2r = O(

√
n) times. To address (3), we 
onsider p ∈ PN(a, b + 1)as before, and note that p belongs to many B′

q sets for di�erent nodes q; however, regardless of whi
h B′
qset, p only ever has two sister nodes. Therefore, 
onsidering broad
ast along the x and y 
oordinates, thenumber of sister nodes is O(1); the number of broad
asts due to two-hop paths is thus O(r). In 
on
lusion(not 
ounting the �ngerprint, sin
e we are dealing only with the se
ond stage of our proto
ol) ea
h nodeis awake for O(

√
n) time slots in expe
tation, sends O(

√
n|m|) bits and re
eives O(

√
n|m|) bits.With Lemma 7 and Lemma 8 in hand, we 
an now give the proof for Theorem 4:6Sele
ting a random node is ne
essary; if not, the adversary might have faulty nodes send 
orre
t �ngerprints in the �rstround and, if p sele
ts nodes from Gp in a deterministi
 fashion, the adversary may for
e p to listen to many messages thatdo not hash to fmaj . 18
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Send [2,8]Listen [6]

Listen [1] Send [2,8]
& Listen[6] Send[7,12]

(B)

Figure 4: A depi
tion of the (1, O(
√

n)) Reliable Broad
ast for the Byzantine Fault Model proto
ol for
r = 3. Times for broad
asting and re
eiving are denoted by [a, b] whi
h denotes rounds a through bin
lusive. (A) Shows how a node p in row 4 
an 
ommit by listening to nodes in Gp = Ap ∪ B′

p; we fo
uson nodes on the left-most edge. Note the node in row 4 marked with horizontal lines. This node a
ts aspart of B′
p while also 
ommitting as other nodes in row 4 do; later, it will a
t as a node in B′

i and Aj forother nodes i and j by sending in rounds [3, 8]. Note that this node is sending from round 2 to 8 (in
lusive)but we separate this into [2, 8] and [3, 8] to make the di�erent roles expli
it. (B) & (C) Depi
tions of thetiming of broad
asting and re
eiving as nodes in rows 5 and 6 
ommit, respe
tively.Proof. We begin by proving 
orre
tness and we start with Stage 1. Stage 1 of the proto
ol is no di�erentthan the broad
ast presented in [6℄ where the value being transmitted is a �ngerprint. Consequently, every
orre
t node will be able to derive a majority �ngerprint fmaj.We now analyze Stage 2. Lemma 8 assumes that (1) we have an appropriate s
hedule, (2) ea
h node has
fmaj prior to re
eiving any other messages, and (3) if m 
orresponds to fmaj then m is 
orre
t. We goabout addressing these three 
riteria:

• First, we 
an assume the s
hedule of [8℄ whi
h satis�es the properties required by Lemma 8.
• Se
ond, 
onsider all nodes in a square of size 3(2r + 1) × 3(2r + 1) 
entered about (0, 0); the nodeat the top-right has position (3r + 1, 3r + 1). By sele
ting tstart at least 2(6r + 2) rounds after thetime of sending of the �ngerprint, t0 (that is tstart ≥ t0 + 2(6r + 2)), then Lemma 7 guaranteesthat by time tstart, all nodes in a square of size 3(2r + 1) × 3(2r + 1) 
entered about (0, 0) will have
ommitted to the �ngerprint. If we assume, as mentioned earlier prior to presenting the pseudo
ode,that the message expands via a spiral 
orridor of width 2r+1 from N(0, 0), then this guarantees thatthe propagation of the �ngerprint will always be su�
iently far ahead of the propagation of the fullmessage to allow nodes to �rst 
ommit to the �ngerprint. Note that if m is propagated in a di�erentfashion (i.e. not a spiral) then the timing o�set would need to be adjusted a

ordingly.
• Third, by assumption, f is a se
ure hash fun
tion and the size of the �ngerprint is lg2 m. Therefore,19



given f(x), the probability that the adversary obtains a value x′ su
h that f(x′) = f(x) is 2− lg2 |m| =
|m|− lg |m|. It will take the adversary superpolynomial time in m to forge su
h an x′ and so fmaj will
orrespond to the 
orre
t value m. Re
all that s is the number of 
omputational steps a�orded to theadversary; i.e. the number of times the adversary 
an 
reate an input x′, apply f to x′ and 
he
k fora mat
h between the output �ngerprint f(x′) and fmaj . Therefore, given that p re
eives a messagefrom a 
orre
t node in Gp that when hashed mat
hes the �ngerprint to whi
h p 
ommitted, witherror O(s/|m|lg |m|), this message is the 
orre
t message sent by the sour
e where s is the number of
omputational steps available to the adversary.Finally, we analyze resour
e 
osts. Lemma 8 
on�rms the amount of awake time spe
i�ed by Theorem 4 afterthe sending of the �ngerprint. Regarding the bit 
omplexity over both Stages 1 and 2, we need 
onsiderthe additional 
ost due to sending the �ngerprint. Ea
h node p broad
asts and re
eives O(r2) = O(n)�ngerprints, for a total of O(n log2 |m|) bits in Stage 1. Therefore, the expe
ted bit 
omplexity over bothstages is O(n log2 |m| + √

n|m|).The above proof essentially subsumes the proof for Theorem 3; however, we in
lude it here for 
ompleteness:Proof. The proof of 
orre
tness for the fail-stop model di�ers in two pla
es from the proof of Theorem 4.For 
riteria (2), there is no need for a �ngerprint. For 
riteria (3), sin
e messages are never 
orrupted,only lost if a fault o

urs, p is guaranteed that the message it re
eives from a 
orre
t q ∈ Gp is 
orre
t.Finally, for the fail-stop model, the resour
e 
osts are easy to analyze. The awake times due to listeningfollow dire
tly from the fa
t that ea
h node broad
asts O(
√

n) times and uses the Bad Santa problemfor listening; therefore, a total of O(
√

n) time slots in expe
tation. In terms of bit 
omplexity, ea
h node
p broad
asts |m| for r rounds times and listens to m on
e. Therefore, p broad
asts Ω(

√
n|m|) bits andre
eives |m| bits.It may seem that, with some modi�
ations to the proto
ol, we 
an employ a multi-stream Bad Santastrategy to a
hieve further expe
ted savings. We now explain why this is not the 
ase. Note that su
ha 
hange would require ea
h node to send O(r · k · |m|) bits while redu
ing the expe
ted listening 
ost to

O(k · |m|). However, sin
e the 
osts for sending and re
eiving are of the same magnitude, we do not a
hievean overall asymptoti
 savings when we 
onsider the addition of these two 
ommuni
ation 
osts.Finally, we 
omment on the di�eren
e in running time between our algorithms for the fail-stop andByzantine fault models. Clearly, the need to propagate a �ngerprint in the Byzantine 
ase in
urs additionaltime. However, as we have seen, the dealer need wait only 2(6r + 2) rounds after sending the �ngerprintbefore broad
asting the full message.5.3 Reliable Broad
ast when t ≤ (1 − ǫ) r
2
(2r + 1)When t ≤ (1 − ǫ) r

2 (2r + 1) for any 
onstant ǫ > 0, we show how to a
hieve an even larger energy savingsby employing the (k + 1, O(log(k) (n/2) + k)) strategy to the Bad Santa problem for k ≥ 1. As we willshow, a 
orre
t node may listen to at least (r/2)(2r + 1) messages, of whi
h a (1 − ǫ)-fra
tion may befaulty; therefore, we are now allowing more than a 1/2 fra
tion of paths to deliver faulty messages. Weknow by Theorem 8, that employing a single stream Bad Santa strategy in this s
enario does not yieldany asymptoti
 savings; hen
e, we deal only with k ≥ 1. We also point out that, in a
tuality, our resultshold for t ≤ (1 − ǫ)(1 + r + r2) whi
h is larger than (1 − ǫ)(r/2)(2r + 1) by an amount of (1 − ǫ)(1 + r/2).However, asymptoti
ally, this di�eren
e is negligible and we phrase the result in this manner to illustratethat we are within an arbitrary 
onstant fra
tion of the optimal toleran
e.In this 
ase, we present a Byzantine fault-tolerant reliable broad
ast proto
ol; the proto
ol fortolerating fail-stop faults is straightforward and we omit it. The proto
ol is very similar to our (1, O(
√

n))Reliable Broad
ast for the Byzantine Fault Model presented in Se
tion 5.2 where here we use the (k +

1, O(log(k) (n)+ k)) strategy; however, there are important distin
tions. In parti
ular, the sets Ap, B′
p and

Bp are de�ned in a slightly di�erent manner in the 
orre
tness proof for our proto
ol later on. Furthermore,ea
h node broad
asts for O(k) (rather than r) 
onse
utive rounds and the syn
hronization of broad
astingand re
eiving is altered. Essentially, r rows of a 
orridor are 
ommitting every k+2 rounds; this is di�erentfrom the previous proto
ols where ea
h row 
ommitted in a di�erent round. The B′
p and Bp sets are20



no longer 
hanging in size with the position of the node p; rather, these sets are r × r squares. Thepseudo
ode is given below and, again, deals with movement along the positive y-
oordinates in a 
orridorof width 2r + 1, where nodes have an x-
oordinate su
h that −r ≤ x ≤ r.
(k + 1, O(log(k) (n) + k)) Reliable Broad
ast for the Byzantine Fault ModelStage 1:1. At time slot t0, the sour
e uses the reliable broad
ast proto
ol of [6℄ to broad
ast the �ngerprint

f(m) to all nodes in the grid.Stage 2:2. At time slot tstart, the sour
e d(0, 0) does a one-time lo
al broad
ast of m and ea
h node in N(d)
ommits internally to m.3. All nodes in N(0, 0) broad
ast their 
ommittal to m for the next 
onse
utive k + 2 rounds.The following portion of the proto
ol is followed by all nodes not in N(0, 0):4. If node p(x, y) has 
ommitted internally to a message via listening to a set Sp,i for i = 0, ..., k (i.e.Step 6), node p uses its allotted time slot to broad
ast this fa
t for k + 2 
onse
utive rounds; that is,from round (k + 2)
(⌊

y−1
r

⌋)
+ 1 to (k + 2)

(⌊
y−1

r

⌋
+ 1

) in
lusive.5. While node p(x, y) has not 
ommitted to a message, node p listens to ea
h sister nodes in round
(k + 2)

(⌊
y−r−1

r

⌋)
+ 1. If the message mu that p re
eives from u equals the fmaj value, then p doesthe following: (1) 
ommits internally mu and (2) during its assigned slots p broad
asts mu for k + 1
onse
utive rounds: from round (k + 2)

(⌊
y−r−1

r

⌋)
+ 2 to round (k + 2)

(⌊
y−r−1

r

⌋
+ 1

), in
lusive.6. While node p(x, y) has not 
ommitted internally to a message, p does the following. For a node
q ∈ Gp, let tq denote the time slot when q is s
heduled to broad
ast in round (k + 2)

(⌊
y−r−1

r

⌋)
+ 2.Using tq values, node p 
reates ordered sets Sp,0, ..., Sp,k where Sp,i ⊂ Gp for i = 0, ..., k where theelements of ea
h Sp,i are 
hosen a

ording to the (k + 1, O(log(k) (n) + k)) Bad Santa strategy. Thenfor i = 0, ..., k, p does the following:

• Node p(x, y) listens to ea
h node q ∈ Sp,i for k + 1 
onse
utive rounds: that is, from round
(k + 2)

(⌊
y−r−1

r

⌋)
+ 2 to round (k + 2)

(⌊
y−r−1

r

⌋
+ 1

). If at any point q re
eives a message mqsu
h that f(mq) equals the fmaj value of p, then p 
ommits to mq internally, breaks the for-loopand pro
eeds to Step 4.To avoid possible 
onfusion, we draw attention to the fa
t that nodes a
ting as members of Ap sets broad
astfor k + 2 times, even though the 
orresponding Bad Santa proto
ol uses k + 1 streams. This is be
auseof the extra delay of one round in
urred by the two-hop messages; we note that nodes in B′
p sets thatfa
ilitate these messages broad
ast for k + 1 
onse
utive rounds. The 
orre
tness of this proto
ol 
an bedemonstrated in a similar fashion to the pre
eding proto
ols; however, there is a di�eren
e in that nowthe proof deals with all nodes in r rows rather than a single row. Figure 5 illustrates how this proto
olpro
eeds when r = 3 and k = 3. For 
ompleteness, establish Theorem 6 although we again only 
onsidermovement along the positive y-
oordinates.Proof. The proof is again by indu
tion and, for simpli
ity, we assume tstart = 0 and we again assumethat ea
h node in the 
orridor has an x-
oordinate su
h that −r ≤ x ≤ r. We show 2t + 1 
onne
t-edness inside a single neighborhood and that ea
h node p(x, y), for −r ≤ x ≤ r, 
ommits by round

(k + 2)
(
max

{⌊
y−r−1

r

⌋
+ 1, 0

}). 21
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Figure 5: A depi
tion of the (k + 1, O(log(k) (n) + k)) Reliable Broad
ast for the Byzantine Fault Modelproto
ol for r = 3 and k = 3. Times for broad
asting and re
eiving are denoted by [a, b] whi
h denotesrounds a through b in
lusive. (A) Shows how all nodes in rows 4, 5, and 6 
ommit; we fo
us on nodes alongthe leftmost edge. Node p1 along the edge in row 4 
an 
ommit by listening to all nodes in Gp = Ap ∪B′
p.In 
ontrast, p3 in row 6 
an sample from only the top row in Ap, whi
h 
onsists of r nodes, and all of B′
p,whi
h 
onsists of r2 nodes. (B) & (C) Depi
tions of the timing of broad
asting and re
eiving as nodes inrows 7, 8, 9 and, subsequently, nodes in rows 10, 11, 12 
ommit, respe
tively.Base Case: Ea
h node in N(0, 0) 
ommits to the 
orre
t message m immediately upon hearing it dire
tlyfrom the dealer; that is, by round 0.Indu
tion Hypothesis: Rather than dealing with nodes in p ∈ N(a, b + 1) − N(a, b), our proof di�ers inthat we address all nodes in in p ∈ N(a, b + r) − N(a, b) i.e. all nodes in the r rows above row b and forsimpli
ity we will assume b > 0 (we do not deal with the nodes in N(0, 0)) and that −r ≤ a ≤ r. Inparti
ular, the indu
tion hypothesis is as follows: if ea
h node p′(x′, y′) in rows b + 1, ..., b + r of N(a, b)
ommit to m in round (k + 2)

(⌊
y′−r−1

r

⌋

+ 1
), then ea
h 
orre
t node p(x, y) ∈ N(a, b + r) − N(a, b)
ommits to m in round (k + 2)

(⌊
y−r−1

r

⌋
+ 1

).Indu
tion Step: We show 2t + 1 
onne
tedness and simultaneously prove the 
orre
tness of the timing forbroad
asting and re
eiving. The node p(x, y) lies in N(a, b + r) − N(a, b) and 
an be 
onsidered to havelo
ation (a − r + z, b + r + 1 + c) where 0 ≤ z ≤ r (the 
ase for r + 1 ≤ z ≤ 2r follows by symmetry) and
0 ≤ c ≤ r − 1. We demonstrate that there exist at least 1 + r + r2 node-disjoint paths P1, ..., P1+r+r2 alllying within the same neighborhood and that the syn
hronization pres
ribed by our proto
ol is 
orre
t. Aswe mentioned previously, the sets Ap, B′

p and Bp are de�ned slightly di�erently than previously; there arede�ned below in our proof and Figure 6 depi
ts these sets.22
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AFigure 6: The sets Api , B′
pi
and Bpi for i = 1, 2, 3 and r = 3. (A) For the node p1 with a y-
oordinate su
hthat y mod r = 1, the sets are de�ned the same way. (B) Node p2 has an Ap2 set whi
h 
onsists only ofthe two top rows of Ap1 . (C) Node p3 has an Ap3 set whi
h 
onsists only of the top row of Ap1 . Finally,note that B′

p1
= B′

p2
= B′

p3
sin
e p1, p2 and p3 share the same x-
oordinate.

• One-Hop Paths: the set of nodes Ap = {q(x, y) | (a− r) ≤ x ≤ a and (b + 1 + c) ≤ y ≤ (b + r)} liein N(a, b + r + 1). Therefore, node p(a− r + z, b + r + 1 + c) 
an re
eive broad
asts from nodes in atleast r − c ≥ 1 row(s) of Ap whi
h amounts to at least r + 1 nodes.Consider a 
orre
t node q(x′, y′) in the r rows b + 1, ..., b + r of N(a, b) and re
all p(x, y) is insome row b + r + 1, ..., b + 2r. The indu
tion hypothesis guarantees that q has 
ommitted by round
(k + 2)(⌊ y′−r−1

r ⌋+ 1) = (k + 2)(⌊ y−r−1
r ⌋). Then, by the proto
ol, q broad
asts for k + 2 
onse
utiverounds; that is, from round (k + 2)(⌊ y−r−1

r ⌋) + 1 to round (k + 2)(⌊ y−r−1
r ⌋) + k + 2, in
lusive. Node

p is s
heduled to begin listening in round (k + 2)(⌊ y−r−1
r ⌋) + 2 and so p 
an re
eive a messagefrom ea
h su
h q for k + 1 
onse
utive rounds. Therefore, p hears all one-hop messages by round

(k + 2)(⌊ y−r−1
r ⌋ + 1)

• Two-Hop Paths: 
onsider the sets Bp = {q(x, y) | (a + 1) ≤ x ≤ (a + r) and (b + 1) ≤ y ≤ (b + r)}and B′
p = {q′(x, y) | (a − r + z + 1) ≤ x ≤ (a + z) and (b + r + 1 − c) ≤ y ≤ (b + 2r)}. The nodes in

Bp form an r × r square within N(a, b) while the nodes in B′
p, again an r × r square, both lie in theneighborhood N(a, b + r + 1). Note that now the set B′

p is no longer ne
essarily obtained by shiftingleft by r units and up by r units; now it is obtained by shifting left by r − z units and up by r units.There is still a one-to-one mapping between the nodes in Bp and the nodes in B′
p; these are sisternodes. There are r2 paths of the form q → q′ → p.From the point of view of p(x, y), 
onsider a 
orre
t node q(x′, y′) ∈ Bp. By the indu
tion hypothesis,

q in one of the rows b + 1, ..., b + r of N(a, b) has 
ommitted by round (k + 2)(⌊ y′−r−1
r ⌋ + 1) =

(k + 2)(⌊ y−r−1
r ⌋). By the proto
ol, its sister node q′ ∈ B′

p listened at the �rst of these time slots;hen
e, q′ 
an re
eive a message from q in round (k +2)(⌊ y−r−1
r ⌋)+1. If q′ re
eived a 
orre
t m, then

q′ would broad
ast m starting in round (k +2)(⌊ y−r−1
r ⌋)+2 for k +1 
onse
utive rounds. Therefore,

q broad
asts a 
orre
t message from round (k + 2)(⌊ y−r−1
r ⌋)+ 2 to round (k + 2)(⌊ y−r−1

r ⌋)+ k + 2 =

(k + 2)(⌊ y−r−1
r ⌋ + 1) (in
lusive). Node p is s
heduled to begin round (k + 2)(⌊ r−r−1

r ⌋ + 1) and so p
an re
eive a message from ea
h su
h q′ ∈ B′
p for k + 1 
onse
utive rounds. Therefore, p hears alltwo-hop messages by round (k + 2)(⌊ y−r−1

r ⌋ + 1)We have shown that there are at least 1 + r + r2 node-disjoint paths from N(a, b) to node p, all lying inin a single neighborhood N(a, b + r + 1). Furthermore, we have shown that any 
orre
t node p(x, y) 
anhear all one-hop and two-hop messages, by round (k +2)(⌊ y−r−1
r ⌋+1). Node p 
an sample these messagesover k + 1 rounds and, sin
e the O(log(k) (n) + k) Bad Santa strategy is used for sele
ting Sp,i, node p isguaranteed to re
eive a 
orre
t message. This 
ompletes the indu
tion.In terms of resour
e bounds, we 
an again 
onsider the situations where p must deal with (eitherbroad
asting or re
eiving) a message: (1) p re
eives messages in order to 
ommit, (2) p broad
asts it has
ommitted, and (3) p fa
ilitates a two-hop message. We 
onsider ea
h 
ase. To address (1), by the BadSanta proto
ol, p listens to O(log(k) n+k) messages in expe
tation. To address (2), note that p broad
aststhat it has 
ommitted k + 2 = O(k) times. To address (3), we note that p belongs to many B′

q sets fordi�erent nodes q; however, regardless of whi
h B′
q set, p only ever has at most two sister nodes. Therefore,
onsidering broad
ast along the x and y 
oordinates, the number of sister nodes is O(1); the number of23



broad
asts due to two-hop paths messages is thus O(k). The same arguments regarding �ngerprints as givenin the proof of Theorem 4 apply here whi
h 
on
ludes the proof. This leads ea
h node being awake over
O(log(k) n+k) time slots in expe
tation in Stage 2. Over both stages, ea
h node sends O(n log2 |m|+k|m|)bits, and listens to an expe
ted O(n log2 |m| + (log(k) n)|m|) bits.5.4 Unknown Start Time and Sour
e(s)In our previous proto
ols, both the sour
e of the message and the time the message was sent out needed tobe pre-established. Furthermore, our previous proto
ol allowed a savings on the fra
tion of required awaketime only in Stage 2. The new proto
ol we present here assumes that every 2r+1 by 2r+1 square 
ontains
t < n

16+ǫ faults. Spe
i�
ally, we require that no more than a 1/2− ǫ fra
tion of the nodes are faulty nodesin any r/2 by r/2 square. The bene�ts of this proto
ol are that it is 1) more energy e�
ient than usingthe proto
ol of [6℄; 2) avoids the need to have the sour
e and sending time pre-spe
i�ed; and 3) redu
esthe awake time over the entire exe
ution. Therefore, this algorithm is preferable when the 
ir
umstan
esof the fault model permit.Let Qi refer to the set of nodes in some r
2 × r

2 square in the grid. Our algorithm relies on 
orre
tlytransmitting a message m from Qi−1 to Qi where Qi−1 and Qi are disjoint and neighboring squares i.e. thesquares are neighbors abutting ea
h other. Criti
al to our algorithm is an assignment of nodes in Qi−1 tonodes in Qi. This assignment 
an be viewed as an undire
ted bipartite graph with the two disjoint sets ofverti
es being Qi−1 and Qi and the assignment represented via edges. For p ∈ Qi−1 and q ∈ Qi, p listens to
q and q listens to p if and only if there is an edge between p and q in the bipartite graph. This assignment is
onstru
ted su
h that all but a small fra
tion of 
orre
t nodes in Qi re
eive a majority of 
orre
t messagesfrom 
orre
t nodes in Qi−1 (and vi
e versa). This allows 
orre
t nodes in Qi to majority �lter on themessages they re
eive and de
ide upon the 
orre
t message. Thus, a message 
an be transmitted se
urelyfrom r

2 × r
2 square to r

2 × r
2 square. For a message m and for any square Qi to whi
h m is sent by the aboveproto
ol, let G(Qi, m) be the set of 
orre
t nodes in Qi that re
eive m after majority �ltering over thea

epted messages as des
ribed above. A result in [26℄ establishes the following theorem whi
h we statewithout proof:Theorem 9. For any pair of squares Qi−1 and Qi, there is non-zero probability of an assignment betweennodes in Qi−1 and nodes in Qi with the following properties:

• the degree of ea
h node is at most a 
onstant C whi
h is independent of r,
• if |G(Qi−1, m)| ≥ (1/2 + ǫ/2)|Qi−1|, then |G(Qi, m)| ≥ (1/2 + ǫ/2)|Qi|.We will refer to an assignment with the two properties stated in Theorem 9 as a robust assignment.Although a method of assignment is not spe
i�ed, Theorem 9 guarantees that a robust assignment mustexist. We now 
onsider the problem of �nd su
h an assignment.Corollary 1. A robust assignment between squares Qi−1 and Qi 
an be found in time that is exponentialin r2.Proof. Consider any assignment between squares Qi−1 and Qi as a bipartite graph G as des
ribed above.Both Qi−1 and Qi have 
onstant size d = r2

4 so the number of possible bipartite graphs is at most
2d × 2d = 22d. Note that this is an upper bound on the number of di�erent ways in whi
h the faultynodes 
an be pla
ed in G. We know by Theorem 9 that there is non-zero probability that edges between
Qi−1 and Qi satisfy the property that a (3/4 − ǫ)-fra
tion of the nodes in Qi have a majority of 
orre
tneighbors in Qi−1. Consider ea
h of the at most 22d possible 
on�gurations of faulty nodes. For ea
h su
h
on�guration, 
he
k whether all 
orre
t nodes in Qi have at least a (3/4 − ǫ) fra
tion of 
orre
t neighborsin Qi−1. By Theorem 5, su
h a 
on�guration must exist and 
an be found by this exhaustive sear
h whi
hrequires examining at most 22d = 4(r2/4) graphs.Therefore, for r = Θ(1), following the above pro
edure in Corollary 1 yields a robust assignment in
onstant time. Alternatively, a random regular graph will indu
e a desired assignment with probabilityat least 1 − 1/rc for some 
onstant c > 0. Re
all that ea
h node is assigned to C neighbors where C is24



independent of r. Therefore, for a su�
iently large value r = Θ(1), nodes are listening to a small fra
tionof a square. Finally, we note that it is su�
ient to �nd one robust assignment and use it for all pairs Qi−1and Qi.5.4.1 Proto
ol Using Robust AssignmentWe now des
ribe and argue the 
orre
tness of a simple algorithm for reliable broad
ast whi
h we 
all Alg.Alg operates in stages of η = r2/4 rounds. Over all rounds, ea
h node that has 
ommitted to a messagewill broad
ast at its s
heduled slot. At every ηth round, a node enters into the listening state for one fullround. That is, during this ηth round, all nodes are listening to all nodes in its r
2 × r

2 square throughoutthe round. At the end of this round, if a node p has re
eived an identi
al message from a majority of nodesin its 2r + 1 × 2r + 1 square, p 
ommits to this message.For all other η−1 rounds in a stage, a node sends and listens as di
tated by a robust assignment andthe broad
ast s
hedule. That is, a node p listens to node q 1) if and only if p and q are assigned to ea
h otherunder the robust assignment; and 2) when q is s
heduled to broad
ast. A robust assignment 
an be foundas stated in Corollary 1 prior to deploying the radio network and this assignment 
an be preprogrammedinto the nodes and used for all pairs of squares. Any node p may a
t as a sour
e node. In this 
ase, thesour
e node will broad
ast its message to its r/2×r/2 square in its time slot in an ηth round when all nodesare awake; the message should in
lude a de
laration that p is a
ting as a sour
e. As in [8, 5, 6, 7℄, everynode in the sour
e's square 
ommits to m and pro
eeds to broad
ast m during their respe
tive s
heduledtime slots. From this point, the message is propagated from r
2 × r

2 square to r
2 × r

2 square by sendingand listening a

ording to the robust assignment in a deterministi
 fashion: a square sends to the squaresabove and below and to the left and the right, in that order; Figure 7 illustrates this. Communi
ationfrom one square to an adja
ent square 
an be a

omplished with a single round used per dire
tion. Notethat if η is not divisible by 4, then we simply interrupt on the spe
ial ηth round, and 
ontinue with thenext dire
tion afterwards. Therefore, a 
orre
t node will know this order and listen to its adja
ent squaresusing the 
orresponding robust assignment in a

ordan
e with the broad
ast s
hedule. As before, we mayassume that the partitioning of the network into squares and the ordering and syn
hronization issues aredealt with through the nodes' internal programming; these details are outside the s
ope of this work. Theexa
t propagation of a message depends on the robust assignment used and the behaviour of the faultynodes; however, we 
an show 
orre
tness for the task of reliable broad
ast.By Theorem 9, at least a (1/2+ ǫ/2) fra
tion of 
orre
t nodes in every square will eventually re
eiveidenti
al messages from the majority of nodes to whi
h it has been assigned. At this point, su
h a 
orre
tnode 
an 
ommit to a message and begin broad
asting, again a

ording its robust assignment and s
heduledtime slots. Finally, we address the remaining fra
tion of 
orre
t nodes in a r/2 × r/2 square that maynot be able to 
ommit to a message. Re
all that at every ηth time slot, all nodes are listening for theentire round. Assuming that a (1/2 + ǫ/2)-fra
tion of the 
orre
t nodes in the square have 
ommitted tothe 
orre
t message, this allows the remaining fra
tion of 
orre
t nodes in a square to majority �lter onin
oming messages during this round and 
ommit to the 
orre
t message.In terms of 
osts, note that ea
h node is always listening to at most C time slots in ea
h of η − 1rounds and listening to r2/4 time slots in the ηth round; a total 
ost of C(η − 1) + r2/4 over η rounds.Therefore, ea
h node sends O(|m|) bits per round and has an amortized 
ost of O(C) time slots per roundand an amortized 
ost of O(C|m|) bits per round. Sin
e C is a 
onstant, this establishes our 
laims inTheorem 5.5.5 Pra
ti
al ConsiderationsWe �nish o� this se
tion by remarking on more pra
ti
al 
onsiderations regarding our proto
ols. To start,we note that the grid model that we have adopted for applying our Bad Santa proto
ols is fairly �exible.Empty lo
ations in the grid may 
orrespond to failed nodes or simply the absen
e of a devi
e altogether.The work in [6℄ generalizes results on reliable broad
ast on the grid to arbitrary graphs where the problemis de�ned in terms of 
onne
tivity; our results easily generalize to su
h a setting and we refer the readerto [6℄ for more details. We also brie�y mention that 
ertain 
lasses of random graphs may mapped to thegrid model; the details depend on the type of random graph utilized. For example, if nodes are pla
ed25



Qa

Qa

Qb

Qc

Qa Qd Qa Qa Qe(a) (b) (
) (d) (e)Figure 7: An illustration of the reliable broad
ast proto
ol of Se
tion 5.4. (a) Some node in Qa a
ts as asour
e node to send a message to its square. Transmission from Qa to (b) Qb above, (
) Qc below , (d) Qdto the left and (e) Qe to the right, using a robust assignment.uniformly at random in the two-dimensional plane, we 
an partition the plane into a grid and then mapnodes to their nearest interse
tion point to a
hieve the grid model. In general, so long as the numberof faults in a neighborhood does not ex
eed t < (r/2)(2r + 1), this mapping will work. We are simplysket
hing this idea for the interested reader; 
learly, the details of how many nodes need to be dropped toguarantee at most t faults in any neighborhood (with su�
ient probability) and how the broad
ast radiusshould be de�ned are details that we leave to future work. We refer the interested reader to work in [10℄whi
h deals with issues of probabilisti
 failures in the grid model and a random network model. Next, weo�er some dis
ussion on the aspe
ts of the storage and pro
essing overhead in
urred by our algorithms, aswell as some exploration of the utility of our proto
ols in terms of bit 
omplexity savings.5.5.1 Storage and Pro
essing OverheadRe
all that devi
es in the radio network are 
onsidered to be resour
e 
onstrained. Here, we brie�y dis
ussthe 
osts asso
iated with our algorithms in terms of pro
essing and storage overhead, and we argue thatthese 
osts are reasonable. In parti
ular, we argue that message storage and message pro
essing 
osts arethe primary 
osts. Note that these are 
osts that must be paid, to an even larger extent, in the originalproto
ols of [5, 6℄. Furthermore, we argue that these 
osts are negligible in 
omparison to the 
ost ofsending/re
eiving; hen
e, our algorithms do indeed a
hieve a power savings.In terms of storing data, 
onsider our proto
ols where the send time and lo
ation of the sour
e isknown. Ea
h node must store information on the 
urrent time slot, the slot when it 
an broad
ast, itslo
ation relative to the sour
e, its set of neighbors in the broad
ast region, and information on the type ofBad Santa proto
ol being used (i.e. number of streams, the 
urrent stream, whi
h time slots it is listeningto); all of these 
an be stored with a small amount of overhead. The proto
ol for the 
ase where we haveByzantine faults also requires storage of �ngerprints, whi
h are small 
ompared to an a
tual message, anda hash fun
tion. The use of hash fun
tions for su
h resour
e 
onstrained environments has been testedin [27℄ and in [28℄ (on the MICA series); it appears the storage 
osts are no obsta
le. Therefore, the mainstorage overhead in our algorithms appears to result from messages. The length of these messages is likelyappli
ation dependent and memory sizes 
an di�er with the devi
e in question. In [29℄, the MICA2 devi
esare stated to have 4KB of memory. However, we note that 
urrent memory sizes on these radio networkdevi
es 
an be sizable. For instan
e, in [30℄, the authors report that a �ash-memory of 32KB and theability to add an additional storage 
apa
ity (up to 1GB) for the devi
es studied. Therefore, memory size
an be 
hosen for the appli
ation and 
orresponding message sizes in question; but regardless, we do notanti
ipate that our algorithms in
ur an unreasonable amount of storage overhead over what is needed forstoring messages.The main pro
essing 
ost of our algorithms di�ers per 
ase. For the Byzantine fault-tolerant algo-rithm of Se
tion 5.2, the main 
ost is likely due to the use of the hash fun
tion. Re
all that this operationmust be done fairly frequently in order for a node to 
ommit to the 
orre
t message. While we do usea hash fun
tion, we note that we don't use publi
 key 
ryptography in any of our algorithms whi
h hasgenerally been 
onsidered to be expensive for power 
onstrained nodes due to the need for sending, re
eiv-ing, and storing publi
 keys and exe
uting en
rypt/de
rypt operations [31℄. More sophisti
ated te
hniques26



are now available whi
h require less energy; however, the 
osts are still quite high. For instan
e, in [31℄,measurements by the authors using the MICA2DOT unit demonstrate a 
ost of 2302.70 mWs (mi
rowattse
onds) and 53.70 mWs for 2048-bit RSA signature generation and veri�
ation, respe
tively. Ellipti
Curve Crytography (ECC) is a popular alternative to RSA sin
e it has smaller key sizes. For 224-bit ECC,the same authors measure 
osts with the MICA2DOT unit at 61.54 mWs and 121.98 mWs for signaturegeneration and veri�
ation, respe
tively. Both RSA-2048 and ECC-224 are re
ommended by RSA Se
urityas the new standard in order to prote
t data past the year 2010 [32℄. These 
osts should be 
ompared tothe 
ost of broad
ast in on the Lu
ent IEEE 802.11 2Mbps WaveLAN PC Card whi
h is measured at 266mWs. Therefore, it is not 
lear that an algorithm 
ould 
laim to save signi�
ant power by employing full
ryptographi
 s
hemes.On the other hand, hash fun
tions for power 
onstrained environments have been 
onsidered in theliterature and it appears the pro
essing 
osts are reasonable [27℄. In parti
ular, the SHA-1 hash fun
tion
an be applied with very little power 
onsumption; again with the MICA2DOT unit, the 
ost is measuredto be 5.9 µWs/byte is measured in [32℄. Therefore, hasing a 1Kb message would in
ur 5.9 mWs; notablythis is far less than the 
ost of sending or re
eiving.For the algorithm of Se
tion 5.4, the most signi�
ant pro
essing 
osts would appear to arise fromthe need to majority �lter on all in
oming messages; however, su
h a 
omparison operation is 
ertainlyfeasible in radio network devi
es. Finally, for the fail-stop 
ase, the algorithm of Se
tion 5.1 does not needto apply a hash fun
tion to messages and we do not anti
ipate signi�
ant pro
essing 
osts here. In some
ases, additional pro
essing overhead will 
ome from 
omparing hashes and a

essing a random numbergenerator; however, we anti
ipate that these additional pro
essing overheads will be small in 
omparisonto the 
ost of storing and pro
essing messages.5.5.2 Saving on Bit ComplexityRe
all that our Byzantine fault-tolerant reliable broad
ast proto
ol of Se
tion 5.2 a
hieves asymptoti
allylower bit 
omplexity through the use of hashing. However, there is the question of when su
h savingswould be seen in pra
ti
e. Pa
ket sizes are dis
rete, and in many 
ases, the hash of a message may requirethe same number of pa
kets as sending the message itself. If messages are small, then the bit 
omplexitysavings a
hieved by our proto
ol will be 
onsequently smaller. However, we note that if messages aresizable then there is a bene�t to the hashing te
hnique.In the fa
e of large amounts of data 
olle
tion and querying, data aggregation te
hniques havebeen proposed to redu
e the overall 
ommuni
ation 
osts sin
e pro
essing is generally less 
ostly thansending data (see [33, 34℄ for more on this). Despite these te
hniques, there are appli
ations for wirelessnetworks that require transmission of large amounts of data even after pro
essing. For instan
e, surveillan
eappli
ations that require sending signi�
ant amounts of data have been proposed involving image and videodata [35℄ su
h as in tra�
 monitoring [36℄ and transmitting biometri
 data in se
urity s
enarios [37℄ whereimage data must be sent over wireless networks. Therefore, there are indeed appli
ations where largemessages might be transmitted and we anti
ipate more su
h situations will arise in the future. Under su
hs
enarios, we would expe
t our algorithms to save substantially on bit 
omplexity.When 
onsidering large messages, there is also the issue of slot size to 
onsider. Modifying timedivision multiple a

ess (TDMA) has been 
onsidered (see [38℄) and it is possible that similar proposals
ould be used to allow large messages to be sent within a single time slot without underutilizing bandwidth.Alternatively, time slots 
ould be reset by the dealer in order to a

omodate large future transmissions;the details of this would likely be appli
ation spe
i�
 and we leave this as a topi
 for future work.6 Future Work and Con
lusionWe have designed new algorithms for a
hieving signi�
ant energy savings in radio networks. To a
hievethese ends, we have de�ned and analyzed a novel data streaming problem whi
h we 
all the Bad Santaproblem. We have shown how our results on this problem 
an be applied to the problem of reliablebroad
ast in a grid radio network. Our algorithms for reliable broad
ast on a grid 
onsume signi�
antlyless power than any other algorithms for this problem of whi
h we are aware.27



Several open problems remain in
luding: Can we 
lose the gap between the upper and lower-boundfor the multi-round Bad Santa problem? Can we a
hieve more energy e�
ien
y for the optimal number ofByzantine faults? Can we tolerate more faults for the fail-stop model and still be energy e�
ient? Can wetolerate more faults in the unknown sour
e and message time s
enario? Can we generalize our te
hniquesto radio networks that are not laid out on a two dimensional grid (perhaps 
lasses of random graphs)? Arethere other appli
ations for the Bad Santa problem both in and outside the domain of radio networks?A
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