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Abstract

We address the problem of minimizing power consumption when broadcasting a message from one
node to all the other nodes in a radio network. To enable power savings for such a problem, we introduce
a compelling new data streaming problem which we call the Bad Santa problem. Our results on this
problem apply for any situation where: 1) a node can listen to a set of n nodes, out of which at least
half are non-faulty and know the correct message; and 2) each of these n nodes sends according to some
predetermined schedule which assigns each of them its own unique time slot. In this situation, we show
that in order to receive the correct message with probability 1, it is necessary and sufficient for the
listening node to listen to a ©(y/n) expected number of time slots. Moreover, if we allow for repetitions
of transmissions so that each sending node sends the message O(log™ n) times (i.e. in O(log™ n) rounds
each consisting of the n time slots), then listening to O(log™ n) expected number of time slots suffices.
We show that this is near optimal.

We describe an application of our result to the popular grid model for a radio network. Each node
in the network is located on a point in a two dimensional grid, and whenever a node sends a message
m, all awake nodes within Lo, distance r receive m. In this model, up to ¢ < 5(2r + 1) nodes within
any 2r +1 by 2r + 1 square in the grid can suffer Byzantine faults. Moreover, we assume that the nodes
that suffer Byzantine faults are chosen and controlled by an adversary that knows everything except
for the random bits of each non-faulty node. This type of adversary models worst-case behavior due to
malicious attacks on the network; mobile nodes moving around in the network; or static nodes losing
power or ceasing to function. Let n = r(2r 4+ 1). We show how to solve the broadcast problem in this
model with each node sending and receiving an expected O(nlog® |m| + v/n|m|) bits where |m| is the
number of bits in m, and, after broadcasting a fingerprint of m, each node is awake only an expected
O(y/n) time slots. Moreover, for ¢ < (1 — €)(r/2)(2r + 1), for any constant € > 0, we can achieve an
even better energy savings. In particular, if we allow each node to send O(log* n) times, we achieve
reliable broadcast with each node sending O(nlog? |m| + (log* n)|m|) bits and receiving an expected
O(nlog? |m| + (log* n)|m|) bits and, after broadcasting a fingerprint of m, each node is awake for only
an expected O(log™ n) time slots. Our results compare favorably with previous protocols that required
each node to send O(|m|) bits, receive ©(n|m|) bits and be awake for O(n) time slots.
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1 Introduction

Power is one of the most critical resources in radio networks. The wireless network cards on radio network
devices offer a number of different modes typically with states such as off, sleeping, idle, receiving and
sending [1]. The energy costs across these modes can vary significantly. Remarkably, the cost of the idle,
receiving, and sending states are roughly equivalent, and these costs are an order of magnitude larger than
the cost of the sleep state.! Thus, to a first approximation, the amount of time spent in the sleep state
gives an excellent estimate of the energy efficiency of a given algorithm [4]. In this paper, we consider
a node to be either asleep or awake (listening and/or sending). Here, our goal is to design an algorithm
that allows a single node to broadcast a message so that eventually all non-faulty nodes learn the correct
message; this is the problem of reliable broadcast. All previous work on the reliable broadcast problem
ignores energy efficiency, assuming the nodes are spending a substantial amount of time listening. In this
paper, we directly address the problem of designing energy-efficient algorithms for reliable broadcast; our
approach depends upon the analysis of a new data streaming problem that we call the Bad Santa problem.

1.1 The Bad Santa Problem

Consider the following scenario. A child is presented with n boxes, one after another. When given each
box, the child must immediately decide whether or not to open it. If the child decides not to open a box,
he is never allowed to revisit it. At least half the boxes have presents in them, but the decision as to which
boxes have presents is made by an adversarial Santa who wants the child to open as many empty boxes as
possible. The child wants to find a present, while opening the smallest expected number of boxes. This is
the Bad Santa problem.

More formally, an adversary sends a stream of n bits of which at least half are 1. The adversary
sets the bits of the stream prior to sending the first bit. The algorithm may query any bit as it passes,
but once a bit passes without being queried, it is lost. The algorithm is correct if it always finds a 1.
The adversary knows the (randomized) algorithm ahead of time but not its random bits. The cost of an
algorithm on an input is the number of expected queries executed until it finds a 1. The goal is to design
a correct algorithm with minimum expected cost over the worst case input. At first glance, it may appear
that randomly sampling O(logn) presents trivially solves the single stream Bad Santa problem. However,
this strategy has a (small) probability of failure, which is unacceptable.

We are interested in two variants of this problem. First is the single stream case described above.
Second is the multi-stream case where there are multiple n-bit streams that the algorithm queries con-
secutively. Each stream has a constant fraction of 1 bits, but the values (1s and 0s) may be distributed
differently in each stream; note, in the multi-stream case, the fraction of 1 bits can be less than 1/2 . A
correct algorithm must find one 1 bit in one of the streams. The cost is the expected number of queries
over the worst case set of such streams.

1.2 Reliable Broadcast Grid Model

We demonstrate the applicability of the Bad Santa problem on a network model that has been studied
extensively in the distributed computing literature, which we will refer to as the reliable radio broadcast
grid model [5, 6, 7, 8]. In this model, each node is situated on a point in a two-dimensional grid. Whenever
a node sends a message, all awake nodes within L., distance r receive the message.? Communication is
synchronous. If two nodes broadcast simultaneously, the messages interfere, so nodes in the intersection of
the neighborhoods of both senders receive no message. We make some additional remarks regarding the
flexibility of the grid model later on in Section 5.5.

IThe difference in energy consumption between the idle/send/receive states and the sleep state differs depending on the
type of card and the communication standard being employed. For example, using the IEEE 802.11 standard with a 11 Mbps
card, the ratios between power consumption of the idle/send/receive states and the sleep state are all more than 12 [2]. In [3],
with a different setup employing TinyOS and a TR1000 transceiver, the measured ratios are over 1000.

2The distance between two points (z1,y1) and (z2,y2) in the Loo metric is max{|z1 — 2], |y1 — y2|}. We can use other
metrics; the choice determines the fraction of faulty nodes we can tolerate in any (2r 4+ 1) x (2r + 1) square of the grid.



1.2.1 Faults

Every node in the grid may suffer faults, but as in [5, 6, 7, 8] we assume that no more than ¢ nodes in any
2r + 1 by 2r 4+ 1 square are faulty and that no node can spoof another node’s identity. We consider the
cases where these faults are either all fail-stop: the t nodes are all deleted from the network; or Byzantine:
the t nodes are taken over by an adversary and deviate from our protocol arbitrarily.® We assume that
all of the nodes that suffer faults are chosen by a single adversary who controls these nodes to coordinate
attacks on the network. This adversary knows everything except for the random bits of the non-faulty
nodes.

1.2.2 Schedule of Transmission

We assume there is a distinguished node s known as the source that holds an initial message m. We assume
without loss of generality that the source node has coordinates (0,0) on the grid, i.e. all nodes know the
source. We discuss relaxing this assumption in Section 2.2. All known protocols designed for the reliable
broadcast grid model proceed in steps where the source of the message sends to its neighbors, which in
turn send to their neighbors, until all nodes receive the message. The predecessor set G, of a correct node
p is a particular set of nodes such that if p listens to all nodes in G}, and majority filters on the received
messages, p will obtain the correct message; we give a precise definition of G, in Section 5. Following the
literature, we assume that each node has a predecessor set of n = r(2r 4+ 1) nodes assigned to distinct
time slots and that the entire schedule repeats every (2r 4+ 1)? time slots. We call each schedule repetition
a round. An example of a broadcast schedule is given in [§]: In each round, each node in position (z,y)
broadcasts in time slot ((z mod (2r+1)) x (2r+1)+(y mod (2r+1))) mod (2r+1)?. For the remainder
of the paper, it suffices to assume each round has O(n) time slots and each node within L., distance r of
some node p is assigned to a distinct time slot. If ¢ < n/2 then each node has a predecessor set of which
strictly less than half of the nodes are faulty, or it can listen directly to the source which we assume is
correct [5, 6]. For simplicity, we assume the source initially broadcasts the message size and, thereafter,
time slots are long enough to send the entire message.* The cost of listening to a message is proportional
to the message length.

2 The Bad Santa Problem & The Reliable Broadcast Problem

In this section, we sketch the methods for applying the solutions of the Bad Santa problem to the problem
of reliable broadcast. We will reduce the expected listening time (i.e. number of time slots in an awake
state) and the expected bit complexity required for a node to learn the message from its n predecessors.
We can use the algorithm for the single stream Bad Santa problem to do so provided that: (1) at least half
of the predecessors have the correct message and, in the case of Byzantine faults, the listening node can
determine if a message is correct; (2) the listening node knows the location of the source node and time
of broadcast (to determine when to start the Bad Santa protocol and to which set of n nodes to possibly
listen). If ¢ < n/2; faults are fail-stop; and the time of broadcast and length of the message is known in
advance; conditions (1) and (2) are clearly satisfied. Thus, the message can be transmitted safely from
one set of predecessors to another, with each node using the Bad Santa protocol to decide which of its
predecessors to listen to and thereby learn the message. In this case, there is no change to the latency of
the broadcast; each node sends once.

We can reduce listening time further by using the multi-stream Bad Santa protocol. Here the fraction
of faulty predecessors can exceed 1/2 and we show that multiple streams are required if we wish to obtain
savings. If we use k + 1 streams, then there are k + 1 rounds of sending before the message is passed from
one set of nodes to another; each node sends k+ 1 times and the latency increases by a factor of k+ 1 over
the single round case.

3 Although, Byzantine nodes must also abide by the schedule as in [5, 6, 8|

4 An alternative is that the source node preprocesses the message by dividing it into pieces that each fit into a time slot.
However, both the broadcasting of the message size and the details of how the message might be formatted for sending are
outside the scope of this paper.



| Notation | Definition

r Radius of broadcast for all nodes.
t Number of Byzantine peers in a (2r + 1) x (2r + 1) square of the radio network.
p(z,y) A node p located at coordinate (z,y) in the grid network model.
N(p) or N(x,y) | Set of nodes within the broadcast radius of node p(z,y).
n In the context of the Bad Santa Problem, n is the number of boxes in a stream. In the

context of a radio network, n is the size of predecessor set where n = r(2r + 1).
Number of streams used in the problem definition of the Bad Santa Problem.

s Source node (or dealer) in the problem of reliable broadcast.
m Message sent by the source node in the problem of reliable broadcast.
|m| Number of bits in the message m.
A secure hash function.
f(m) Fingerprint resulting from applying the hash function f to m.

Table 1: Summary of frequently used notation.

Failure is Not An Option: Why do we insist on allowing no error in the Bad Santa problem? Why not
just use random sampling? Random sampling has a probability of error that depends on n, which is on the
order of the number of nodes in the transmission radius; we stress that n depends on r and is not the total
number of nodes in the network. If the network’s total size is much larger than n, then even if the failure
probability for a single listener is exponentially small in n, the probability that some node in the network
fails to learn the message will still be quite large. For example, if the total network size is exponential
in n and the probability of failure for a single listener is O(27™), then with constant probability, reliable
broadcast will fail.

2.1 Byzantine Fault Model: Known Start Time and Source

To satisfy condition (1) when the faults are Byzantine, our protocol has two stages. In the first stage, the
source uses a secure (cryptographic) hash function (for more on such hash functions see [9], Chapter 4) to
generate a fingerprint of size (logy |m|)? where |m| is the message length®, and broadcasts this fingerprint
to all the other nodes in the network using a previously known energy-inefficient method in [6]. In the
second stage, the source broadcasts the full message with each node using a Bad Santa protocol. Each node
compares the hash value of each full message received against the true fingerprint to determine if it agrees
and is thus presumably correct. If the adversary is unable to discover a false message whose hash matches
the fingerprint, then the only message which matches the fingerprint is the correct message. Each node
can determine if the message it receives is correct. Thus, at each stage, all non-faulty nodes transmit the
correct message and condition (1) is satisfied. This introduces a possibility of error into the transmission
which depends on the relative size of the fingerprint to the message and the resources of the adversary.
In this model, the set of faulty nodes can differ from one stream to the next as chosen by the adversary;
however, for a given stream, the adversary must decide whether a node is corrupt prior to its selection or
non-selection by a protocol.

2.2 Byzantine Fault Model: Unknown Start Time and Source(s)

We also deal with the case where the start time of the message is not known in advance, or the location of
the source is not known. Moreover, our protocol allows any node to send a message i.e. become a source
node. We note that this is also possible under the original protocols of [5, 6, 8]; however, we explicitly deal
with this case and show how to accomplish an energy savings if ¢t < ﬁ for any constant € > 0. More
specifically, we require that no more than a 1/2 — ¢ fraction of the nodes are faulty in any r/2 by r/2
square. In this model, the adversary is adaptive in the sense that it can decide which nodes to take over

based on which nodes have previously committed to the correct message.

5We make the random oracle assumption about the hash function used to generate the fingerprint of m.



3 Our Results

Our five main results are summarized in the theorems below. Theorem 1 is given in Section 4; Theorem 2
in Section 4.1; Theorem 3 and Theorem 4 are addressed in Sections 5.1& 5.2; Theorem 5 and Theorem 6
in Section 5.3; Theorem 7 in Section 5.4. For ease of exposition, we have aggregated the notation we most
commonly use throughout the paper in Table 1. Finally, throughout, let lgn denote the logarithm base 2
and let log(k) n denote log- - - log n.

———

k

Theorem 1. For the single stream Bad Santa problem, the optimal expected number of queries is ©(y/n).

Theorem 2. For the k stream Bad Santa problem, the optimal expected number of queries is O(log(k) (n)+

k) and Q(log(%) n). In particular, for k = ©(log" n), we can ensure the expected number of queries is
O(log" n).

The next two theorems about energy-efficient broadcast are established by algorithms based on solutions
to the Bad Santa problem. We again repeat that n = r(2r + 1) and so n depends on the broadcast radius;
it is not the total number of nodes in the network. The algorithms apply to a grid of finite or infinite size.
In the former case, we achieve the standard result that all nodes, except those on the boundary of width
r, commit to the correct message. In the latter case, for Byzantine faults, our result translates into a finite
portion of the grid obtaining the correct message and this is dependent on the computational power of the
adversary. Theorem 3 essentially follows directly from Theorems 1 and 2. Theorem 4 requires a fingerprint
of the message to first be broadcast through the network.

Theorem 3. Assume we have a network where at most t < 5(2r + 1) nodes suffer fail-stop faults in any
square of size 2r + 1 by 2r + 1 and that the start time and source of a message are known. Then there
exists an algorithm for reliable broadcast which has the following properties:

e Fach node is awake for O(\/n) time slots in expectation.

e FEach node broadcasts O(y/n|m|) bits and receives |m| bits.

In the next theorem, we use the notion of computational steps in the context of the adversary. By this, we
mean the number of times the adversary can create an input z’, apply a secure hash function f to 2’ and
check for a match between the output fingerprint f(z’) and some other fingerprint for which the adversary
is attempting generate a collision.

Theorem 4. Assume we have a network where at most t < 5(2r + 1) of the nodes suffer Byzantine faults
in any square of size 2r + 1 by 2r + 1 and that the start time and source of a message are known. Further
assume that the number of computational steps available to the adversary is bounded by s. Then there exists
an algorithm for guaranteeing reliable broadcast with a probability of failure O(s/|m|€™). In an initial
stage, the algorithm requires a fingerprint of size 1g* |m| to be initially broadcast to the network. However,
in the second stage, when the message m itself is broadcast, the algorithm has the following properties:

e FEach node is awake for O(y/n) time slots in expectation,

Over both stages, the algorithm has the following costs:
e Each node broadcasts O(nlog® |m|+v/n|m|) bits and receives an expected O(nlog® |m|+ /n|m|) bits.

We also present results on increased energy-savings for values of ¢ within an arbitrary constant factor of
optimal. In particular, we consider the case where ¢ < (1 — €)5(2r + 1) for any constant € > 0 where we
have the following results:

Theorem 5. Assume we have a network where, for any constant € > 0, at mostt < (1 —¢)5(2r+1) nodes
suffer fail-stop faults in any square of size 2r +1 by 2r 4+ 1 and that the start time and source of a message
are known. Then there exists an algorithm which guarantees reliable broadcast and which has the following
properties:



e For any k between 1 and In™ n, the algorithm requires each node to be awake for an expected O(log(k) n)
time slots.

e FEach node broadcasts O(k|m|) bits and receives |m| bits.

Therefore, the above algorithm requires each node to broadcast O(k) times which translates into a higher
latency given that nodes must adhere to a broadcast schedule; however, nodes expend far more energy in
expectation.

Theorem 6. Assume we have a network where, for any constant € >0, at most t < (1 —e€)5(2r+1) of the
nodes suffer Byzantine faults in any square of size 2r + 1 by 2r + 1 and that the start time and source of
a message are known. Further assume that the number of computational steps available to the adversary
is bounded by s. Then there exists an algorithm which guarantees reliable broadcast with a probability of
failure O(s/|m|lg‘m|). In an initial stage, the algorithm requires all nodes to be awake for every slot during
which a fingerprint of size lg2 |m| is initially broadcast to the network. However, in the second stage, when
the message m itself is broadcast, the algorithm has the following properties:

e For any k between 1 and In* n, requires all nodes to be awake an expected O(log(k) n) time slots.

Over both stages, the algorithm has the following costs:

e For any k between 1 and In* n, each node broadcasts O(nlog® |m|+k|m|) bits and receives an expected
O(nlog? |m| + (log™ n)|m|) bits.

Finally, we deal with the case where the start time and the source of the message is unknown. In this

situation, if ¢ < g%, we have the following result:

Theorem 7. If the start time and source of a message are unknown, there is a protocol for reliable broadcast
in which each node (1) sends O(|m|) bits per round, (2) is awake an amortized constant number of time
slots per round and (8) receives an amortized O(|m|) bits per round.

For this last result given in Theorem 7, all nodes may receive the message; that is, those nodes on the
boundary are not excluded as with our previous results.

To contrast our results with previous work, we note that under the previous algorithms for reliable
broadcast [5, 6], each node 1) is awake for (2t + 1) = ©(n) time slots, 2) broadcasts ©(|m|) bits; 3) receives
O(|m|) bits in the fail-stop model; and 4) can be forced by the adversary to receive O(n|m|) bits in the
Byzantine fault model. Therefore, in both fault models, our algorithms are saving substantially on the
amount of time a node must be awake for listening to the full message. For the fail-stop case, for k > 1, we
are trading a small factor increase in traffic for these savings . Moreover, in the Byzantine case, we greatly
reduce the total bit complexity. Finally, note that |m| need not be large to make the probability of finding
a message with the same fingerprint very small. For example, if |m| = 1 kB, the probability of a collision
is already less than 1073°.

3.1 Related Work

The reliable broadcast problem over the radio network model described above has been extensively studied
in [5, 6, 7, 8, 10]. In [8], Koo showed that reliable broadcast with Byzantine faults is impossible if ¢ >
5(2r+1) in the Lo norm. In [5, 6], Bhandari and Vaidya presented a clever algorithm that achieved reliable
broadcast tolerating Byzantine faults for any ¢ < £(2r + 1); our Theorem 4 appies to this scenario. There
the authors also achieve ¢ < r(2r + 1) for the fail-stop fault model whereas our result applies only when
t < 5(2r+1) or when t < (1 —¢€)(r/2)(2r + 1) for any constant € > 0. Therefore, we are a constant factor
from the optimal tolerance in the fail-stop model. Koo et al., in [7], described an algorithm that achieves
reliable broadcast even when the faulty nodes can spoof addresses of honest nodes or cause collisions; this
is a more challenging fault model than is addressed in our work or in any other previous work. All prior
algorithms proposed for the reliable broadcast problem require each node in the network to be awake for a
constant fraction of the time slots and thus are not energy-efficient. Our algorithm from Theorem 4 makes



use of the algorithm from [6] to broadcast a fingerprint of the message. Finally, under different models of
a radio network, the problems of consensus [11, 12], reliable broadcast under the fail-stop fault model [13]
and reliable broadcast under adversarial faults [14] have been studied. Work in [15] deals with broadcast
protocols in a time-slotted network where the number of times a node can transmit is constrained; this is
called "k-shot broadcasting". The authors focus on establishing bounds on the number of rounds each node
must transmit in order to achieve broadcast; hence, there is a focus on the tradeoff between energy (i.e. the
number of shots needed) and latency of the broadcast. However, despite this similarity, the network model
used in [15] does not incorporate adversarial behaviour and captures more general topologies; consequently,
the techniques and results differ significantly from our work.

Data streaming problems have been popular in the last several years [16, 17]. Generally, past work in
this area focuses on computing statistics on the data using a small number of passes over the data stream.
In [16], the authors treat their data stream as a directed multi-graph and examine the space requirements of
computing certain properties regarding node degree and connectedness. Munro and Paterson [18] consider
the problem of selection and sorting with a limited number of passes over one-way read-only memory.
Guha and McGregor [19, 20] examine the problem of computing statistics over data streams where the
data objects are ordered either randomly or arbitrarily. Alon, Matias and Szegedy [21] examine the space
complexity of approximating the frequency of moments with a single pass over a data stream. In all of
these cases, and others [22, 23], the models differ substantially from our proposed data streaming problem.
Rather than computing statistics or selection problems, we are concerned with the guaranteed discovery of
a particular value, and under our model, expected query complexity takes priority over space complexity.

A preliminary version of the results in this paper appeared in [24]. This current version contains a
complete description of our protocols along with the full proofs of our results. We also correct an error
regarding the energy-savings achieved in [24]. That is, in the case where ¢ < (r/2)(2r 4+ 1), we achieve what
is essentially a quadratic reduction in resource costs. In the process of amending our results, we treat the
case for t < (1 — €)(r/2)(2r + 1) for any constant € > 0, which yields the further energy savings identical
to those previously claimed; this also improves on our previous result for the fail-stop model. An extended
discussion of previous results is also provided along with a examination of certain practical considerations
regarding the utility of the algorithms we are proposing.

4 Single Stream Bad Santa

We now consider the single stream Bad Santa problem. A naive algorithm is to query n/2+1 bits uniformly
at random. The expected cost for this algorithm is ©(n) since the adversary will place the 1’s at the end
of the stream. The following is an improved algorithm.

Single Stream Strategy
1. Perform +/n queries uniformly at random from the first half of the stream. Stop immediately upon
finding a 1.

2. If no 1 has been found, starting with the first bit in the second half of the stream, query each
consecutive bit until a 1 is obtained.

Lemma 1. The expected cost of the above strategy is O(y/n).

Proof. Assume that there are i\/n 1s in the first half of the stream where i € [0, 4] This implies that
there are then (n/2) —iy/n 1s in the second half of the stream. By querying /n slots uniformly at random
in the first half of the stream, the probability that the algorithm fails to obtain a 1 in the first half is no

more than:
<1 - g/z))ﬁ - (1 - %)I




for an expected overall cost not exceeding:

Vn + (1—%)ﬁ~i\/ﬁ

We find the maximum by taking the derivative:
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and setting it to zero while solving for ¢ gives i = 2(\/‘/;_1). Plugging this into the expected cost function
gives an expected cost of O(y/n). O

We now show that this bound is optimal to within a constant factor. In the proof of the following, let 0
denote that logarithmic factors are ignored.

Lemma 2. Q(y/n) expected queries are necessary in the single stream case.

Proof. We follow Yao’s min-max method [25] to prove lower bounds on any randomized algorithm that
errs with probability no greater than A\ = 1/20(\/5): We describe an input distribution and show that any
deterministic algorithm that errs with tolerance (average error) less than 2\ = 1/20(\/5) on this input dis-
tribution requires Q(y/n) queries on average for this distribution. By [25], this implies that the complexity
of any randomized algorithm with error A has cost (1/2)Q(y/n) = Q(y/n). Let [a,b] denote the bits in
position a,a + 1,...,b — 1,0 of the stream. The distribution is as follows:

CASE 1. With probability 1/2, y/n uniformly distributed random bits in [1,7n/2] are set to 1 and the
remaining bits in that interval are 0, [n/2 + 1,n/2 + \/n] are all set to 0, and the remaining bits are 1.

CASE 2.x: For x= 0,...,4/n — 1, with probability 1/(2y/n), [1,...,n/2] contains a uniformly distributed
random set of x 0’s and the rest are 1’s; [n/2 + 1,n/2 + \/n] contains a uniformly distributed random set
of x 1’s and the rest are 0’s; and the remaining bits in the stream are 0.

Analysis: Let A be a deterministic algorithm which errs with average probability less than 2\. Note that
A is completely specified by a list L of indices of bits to query while it has not yet discovered a 1, since it
stops as soon as it sees a 1. Let z be the number of queries in the list that lie in [1,n/2]. For a constant
fraction of inputs in CASE 1, A will not find a 1 in [1,n/2] within \/n queries. Hence either z > /n
or A must find a 1 with high probability in [n/2 + 1,n]. Now suppose z < y/n. We show that A’s list
L must contain greater than \/n — x bit positions in [n/2 + 1,n/2 + /n]. To show this, assume this is
untrue. Then A will err on the input in CASE 2.x in which all the = positions queried in [1,n/2] and
the /n — x positions queried in [n/2 + 1,n/2 + \/n| are 0. Note that this input occurs with probability

(2\/5)_1("42)_1 (\f) ' > 2 in the distribution. Therefore, the algorithm errs with probability at least
2; this is a contradiction. We conclude that any algorithm erring with probability less than 2\ must either
have > \/n or queries greater than \/n — x bits of [n/2 + 1,n/2 + \/n].

Now we show that any such deterministic algorithm incurs an average cost of Q(y/n) on the CASE
1 strings in this distribution. If x > /n then for a constant fraction of strings in CASE 1, the algorithm
will ask at least \/n queries in [1,n/2] without finding a 1. If < y/n, then with constant probability the
algorithm will incur a cost of z in [1,..n/2] and go on to incur a cost of \/n — z in [n/2 + 1,n/2 4+ \/n]
since all the values there are 0. Therefore, we have shown that the distributional complexity with error 2\
is Q(y/n). It follows from [25] that the randomized complexity with error A is Q(y/n). O

Theorem 1 follows immediately from Lemma 1 and Lemma 2. We finish this section by showing that if the
fraction of 1s in the single stream case, §, is less than 1/2, then the number of expected queries is Q(n).
The proof is very similar to that of Theorem 2.

Theorem 8. For the single round dynamic Bad Santa problem with 6 = 3 — €, the number of queries in

2
expectation is Q(n) for an arbitrarily small constant € > 0.



Proof. We apply the min-max method of [25] to prove lower bounds on any randomized algorithm that
fails with probability no greater than A = 279187  Ap input distribution is used to show that any
deterministic algorithm failing with probability less than 2\ = 2-©(1°27) op this input distribution requires
Q(n) queries. By [25], this implies that the complexity of any randomized algorithm with error A\ has cost
Q(n). Let [a,b] denote the bits in position a,a + 1,...,b — 1,b of the stream. Our input distribution is as
follows:

e Case 1: With probability 1/2, a constant number of bits, ¢, chosen uniformly at random without
replacement in [1, dn| are set to 1 and the remaining bits in that interval are 0. In [dn+1, (1—3§)n+ ]
all bits are set to 0, and the remaining bits are set to 1.

e Case 2.x: For x= 0,...,6n — 1, with probability 1/(26n), [1,dn] contains a uniformly distributed
random set (without replacement) of x 0s and the rest are 1s; [dn + 1,(1 — d)n + ¢| contains a
uniformly distributed random set (without replacement) of x 1s and the rest are 0s. The remaining
bits in the stream are 0.

Cost Analysis: Let A be a deterministic algorithm which fails with probability less than 2. Note that A is
completely specified by a list L of indices of bits to query while it has not yet discovered a 1. Let y be the
number of queries in the list that lie in [1,dn]. With constant probability A will fail to find a 1 in [1, dn]
within (§ — €/)n queries where ¢ > 0 is an arbitrarily small constant. This is because sampling without

replacement, the probability that A fails is Hgi_lel)n (1 - (M—C)_J > (1- ﬁ)(é_e n_ O(1). Therefore,
either y > (6 — €')n or A must find a 1 with high probability in [6n + 1, n]. Now suppose y < (6 — € )n. We
show that L must contain greater than (1 —20)n + ¢ — y bit positions in [dn + 1, (1 —d)n+¢]. To show this,
assume this is untrue. Then A will fail on the input in Case 2x in which all the y positions queried in [1, dn]

and the (1 —26)n + ¢ — y positions queried in [dn + 1, (1 — §)n + ¢] are 0. Note that this input occurs with
-1 2

-1 —28)ntc |1 ny 1 —20)n+c Y
probability (z4:) () ((oimiis) = () () (720 2 () (o) = 2 for
y=0,..,(0 —)n —1 and for sufficiently large n. Therefore, the algorithm fails with probability at least
2\ which is a contradiction. We conclude that any algorithm failing with probability less than 2\ must
either have y > (§ — ¢/)n or queries greater than (1 —2§)n+ ¢ —y bits in [on+ 1, (1 — §)n + ¢.

Finally, we can prove the average cost that any such deterministic algorithm incurs on the Case 1
strings in our distribution. As we saw above, if y > (6 — €)n then for a constant fraction of strings in Case
1, the algorithm will ask at least (6 — €/)n queries in [1, dn] without finding a 1. Else, if y < (6 — €')n, then
with constant probability the algorithm will incur a cost of y in [1,n] and go on to incur a cost of at least
(I1=20n+c—yin [on+1,(1 —§)n + | since all the values there are 0; regardless, the cost is Q(n) (note
that this is not the case if 6 > 1/2). Therefore, the distributional complexity with error 2X is Q(n). It
follows directly from |25] that the randomized complexity is ©(n). O

While the optimal expected cost for the single stream is ©(n), it is still possible to obtain asymptotic
savings over multiple streams when ¢ < 1/2 and we address this in the next section.

4.1 The Multiple Streams Bad Santa Problem

We define a («, §)-strategy to be an algorithm which occurs over no more than « streams, each with at least
a (possibly different) set of at least ©(n) values of 1, and which incurs expected cost (number of queries)
at most 4. To be explicit, for multiple streams, we can handle the case where the fraction of boxes that
contain a 1, denoted by d, can be less than 1/2. The previous section demonstrated a (1, O(y/n))-strategy.
We now consider the following protocol over (k + 1) streams.

Multi-Stream Selection Strategy
Fori=Fktol

e Perform %ln(i) (n) queries uniformly at random over the entire stream. Stop if a 1 is obtained.



If no value of 1 has been found, then if 6 > 1/2, use the single stream strategy on the final stream. Other-
wise, for § < 1/2, open each of the n boxes in order in the final stream until a 1 is located.

Lemma 3. For a constant §, the above protocol is a (k + 1,0(log™™ (n) + k))-strategy.

Proof. Correctness is clear because in the worst case, we use the correct the single stream strategy, or open
all boxes, in the final stream. The expected cost is:

< 5 'm® 4 (1-38)° ™m0 (5—1 In® n) +(1-6)° " 0m)

1

I
- 77~

< 5 i1 m® g4 e_lr‘(k) .0 (5_1 In—1 n)
i=k—1

= O(log™(n) + k)

+ e—lnn . O(?’L)

O

Lemma 4. If there are In* (n)+ 1 streams and § is a constant, then the multi-stream algorithm provides a
(O(log™ n), O(log™ n))-strategy.

Proof. By the definition of the iterated logarithm:

¥ — 0 forn <1
nn= 1+In"(Inn) forn>1

if k = In" n, we can plug this value into the last line of the proof of Lemma 3 which contains two terms
inside the big-O notation. The first term is 1/4, by definition of In* n, and the second is O(In* n), for a
total expected cost of O(In* n). O

4.2 Lower bound for multiple streams

First, we show the following lemma. For ease of exposition, we assume § = 1/2; however, any constant §
will suffice with little modification to the proof:

Lemma 5. Q(log(iﬂ) n) expected queries are required for a randomized algorithm that errs with probability

less than \ = (ln(i) n)~¢ on one stream of length n. In particular, when i = 0, Q(loglogn) expected queries
are required for a randomized algorithm with error less than 1/n¢, for any constant € > 0.

Proof. We apply Yao’s min-max method [25] and consider the distribution in which with probability 1/3,
one of the I1 = [1,n/3], I = [n/3 + 1,2n/3], and I3 = [2n/3 + 1,n] intervals is all 0’s, and the other
two each contain exactly n/4 1’s with the 1’s distributed uniformly at random. Let L denote the list of
queries of a deterministic algorithm, and let z; be the number of queries in LN I;. The probability that the

algorithm fails to find a 1 in any interval I; is ("/j/jf) / (Zﬁ) = 7:1/—/132 ’;/ /132:11 7;/ /132:;?:11 (7;/ /132:;?:11 )ml

(38w 5 (L _gm > (2)" = e~ "i/% when x; = o(n) for sufficiently large n. Let I; and I; be the
intervals that are not all 0’s. Then the probability of failing to find a 1 in either I; and I; is > e~ T(@ite;)/4
for sufficiently large n when x; + x; = o(n). Hence the probability of not finding a 1 over all intervals is
> (1/3)e 7@ te)/4 5 9N if 2 4+ x; < (3/7)elg™ ™ n. We conclude that a deterministic algorithm with
average error less than 2X can have at most one z;,7 = 1,2,3 such that z; < (3/14)elg" ) n.

Now we examine the cost of such an algorithm. Suppose 27 > (3¢/14)(In"+? n) then with probability
1/3 Iy is all 0’s and the cost incurred is @1, for an average cost of (¢/14)(In"*? n). Now suppose z1 <
(3¢/14) In"*? 5. From above, we know 25 > (3¢/14) In“"*Y n). Then with probability 1/3, I is all 0’s and
with probability > e~ 7#1/4 > (ln(”l) n)~3¢/8 the algorithm does not find a 1 in I; and incurs a cost of
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(3¢/14) 1"tV in I, for an average cost of at least (¢/14)(In"1) n)1=3¢/8 Hence the average cost of any
such deterministic algorithm is at least min{(e/14)(In"*? n), (e/14)(1g0 Y n)t=3/8} = Q(In*? n). By
Yao’s min-max method [25], any randomized algorithm with error A is bounded below by 1/2 the average
cost of a deterministic algorithm with average error 2\ on any distribution. The lemma now follows. [

Lemma 6. For k > 0, Q(ln(%) n) expected queries are necessary to find a 1 from k + 1 streams with
probability 1.

Proof. We use induction on the number of streams:

Base Case: Let k = 1. Either the algorithm finds a 1 in the first pass or the second pass. From Lemma ,
for any constant € any algorithm that fails to find a 1 in the first pass with probability < n™° has expected
cost Q(loglogn). If the algorithm fails to find a 1 in the first pass with probability at least n~¢ then the
expected cost to the algorithm is at least the probability it fails in the first pass times the expected cost of
always finding a 1 in the second and final pass, which is n=¢-Q(y/n). (The second factor is from Lemma 2.
Choosing € < 1/2, the expected cost is Q(loglogn).

Inductive Hypothesis: For k > 1, Q(ln(%) n) expected queries are necessary to find a 1 from & + 1 streams
with probability 1.

Inductive Step: Now assume the hypothesis is true for up to & > 1 streams. Assume we have k + 1
streams. Any randomized algorithm either fails to find a 1 in the first stream with probability less than
(1/1n(2k_2) n)¢, in which case by Lemma 5, the expected cost of the algorithm when it processes the first
stream is Q(ln(%) n) or the probability that it fails in the first pass is at least (1/ In(2+=2) n)¢. In that case,
the expected cost deriving from queries of the second stream is at least (1/In®*=2 ). Q(In®*~2) n) where
the second factor of this expression is the expected number of queries needed to find a 1 in k streams,
as given by the induction hypothesis. The minimum expected cost of any randomized algorithm is the
minimum of these two possibilities, which is Q(In®*) n). O

Theorem 2 then follows immediately from Lemmas 3, 4, 5 and 6.

5 Reliable Broadcast Protocols

We begin by recalling some notation from Table 1 and briefly reviewing the protocol of [6]. Let p(z,y)
denote the node p at location (x,y) in the grid. We define a corridor of width 2r + 1 starting at the
source located at point (0,0) and ending at node p = (z,y). We will use N(p) or N(z,y) to denote the
set of nodes within radius r of ¢(x,y); this is the neighborhood of ¢. Additionally, we define the perturbed
neighborhood PN(p) of p(a,b) as PN(p) = N(a+ 1,b) U N(a — 1,b) U N(a,b+ 1) U N(a,b —1). The
following protocol for reliable broadcast in the presence of Byzantine faults is by Bhandari and Vaidya [6].
In this protocol, the message coMMIT(4,v) signifies that node 7 has committed to value v, and the message
HEARD(J, 7, v) signifies that node j has heard a message comMmmIT(i,v).

Reliable Broadcast Protocol (Bhandari and Vaidya, 2005)
e Initially, the source s does a local broadcast of v.

e Each node i € N(s) commits to the first value it receives from s and does a one-time broadcast of
COMMIT (%, v).

e The following protocol is executed by each node j (including those nodes in the previous two steps):

— On receipt of a cOMMIT(Z,v) message from a neighbor 4, j records the message and broadcasts
HEARD(j, 1, v).

— On receipt of a HEARD(j',4,v), j records this message.

11



— Upon receiving COMMIT or HEARD messages that 1) claim v as the correct value and 2) are
received along at least ¢ + 1 node disjoint paths that all lie within a single neighborhood, then
node j commits to v and does a one time broadcast of COMMIT(j, v).

Proving that this protocol is correct is non-trivial and we refer the reader to [6] for details. To briefly
summarize, the proof in [6] works by showing that for each node p in PN(a,b) — N(a,b), there exist 2t 4 1
paths Py, ..., Pa;y1 belonging to a single neighborhood N(a,b+ r + 1), each having one of the forms listed
below:

e P, = (q,p) which is a one hop path ¢ — p or
e P, = (q,q,p) which is a two hop path ¢ — ¢ — p

where ¢,¢’,p are distinct nodes and ¢, ¢’ lie in a single neighborhood N(a,b+ r + 1), and ¢ € N(a,b)
where, critically, nodes in N(a,b) have committed to the correct message. The existence of these 2t + 1
paths, and the fact that each broadcast neighborhood has at most ¢t < r/2(2r 4+ 1) Byzantine faults, is
sufficient to prove that reliable broadcast is achieved by the protocol. For simplicity, we can consider
p € N(a,b+ 1) since the analysis is nearly identical for the cases where p € N(a + 1,b), p € N(a — 1,b),
and p € N(a,b—1).

The node p lies in N(a,b+ 1) — N(a,b) and can be considered to have location (@ —r + z,b+r + 1) where
0 < z < 2r. Now, summarizing the proof in [6], we demonstrate that there exist r(2r + 1) node-disjoint
paths P, ..., P.(2p41) all lying within the same neighborhood:

e One-Hop Paths: the set of nodes 4, = {q(z,y) | (a—7) <z <(a+z)and (b+1) <y < (b+r)}
lie in N(a,b) and are neighbors of p. Therefore, there are r(r 4+ z + 1) paths of the form ¢ — p where
q €A

e Two-Hop Paths: consider the sets B, = {¢(z,y) | (a+2+1) <z < (a+7) and (b+1) <y < (b+7r)}
and B, = {¢'(z',y') | (a+2+1—-7r) <2’ <aand (b+r+1) <y < (b+2r)}. The nodes in By, lie
in N(a,b) while the nodes in B}, lie in N(p). Moreover, the set B, is obtained by shifting left by r
units and up by r units. Therefore, there is a one-to-one mapping between the nodes in B, and the
nodes in B;. For v € B, we will call the corresponding node v’ € B;, the sister node of u. Note
that each node has at most two sister nodes; this can be seen in Figure 3. Hence, there are r(r — 2)
paths of the form ¢ — ¢ — p.

Therefore, there are a total of r(r + 2z + 1) + r(r — z) = r(2r + 1) disjoint paths all lying in a single
neighborhood N(a,b+ r + 1). Figure 1 illustrates aspects of the discussion above where a,b = 0. Now,
note that the predecessor set G, = A, U B]'D is the set of nodes to which p must listen in order to gather
information that will allow it to commit to the correct message.

In Section 5.1 and Section 5.2, we explain our protocols for reliable broadcast under both the fail-
stop and Byzantine fault models, respectively. Our protocols rely heavily on the results of Bhandari and
Vaidya [6] discussed above. In particular, we assume that each node p knows a predecessor set G, of nodes
to which node p should listen for messages. As we have just reviewed, the existence of GG}, is shown by the
constructive proofs in [6]. Our protocols specify when each node p should listen to nodes in G}, and when
each node p should broadcast the message to which it has committed. The set G}, has size n = r(2r + 1)
and, in executing our protocol for the case where ¢t < (r/2)(2r + 1), we assume that at least n/2 of the
nodes in G, are correct. Our algorithms for the Bad Santa problem then apply by having a node sample
from nodes in G, in order to listen for a message.

Error Tolerance in the Bad Santa Protocols and in Reliable Broadcast Protocols: Before de-
scribing our reliable broadcast protocols, we first address a possible point of confusion: Previous work
under the Byzantine fault model assumed ¢ < n/2 whereas in this work we are allowing ¢ < n/2 in our
algorithms for the single-stream Bad Santa problem. This should not be construed as contradicting the
lower bound proved in [8]. In order to perform reliable broadcast ¢ < n/2 must indeed hold true and,
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Figure 1: An illustration of the sets A,, B,, and Bl’j where z =0, r = 3 and a,b = 0. Node p is located at
position (@ —r + z,b4 r+ 1). A pair of sister nodes, one in B” and the other in B, are highlighted.

as we shall see in Section 5.2, this needs to be the case for Stage 1 of our protocol in order to propagate
the fingerprint. However, in Stage 2, the set G, can hold ¢ < n/2 faulty nodes due to our results on the
single-stream Bad Santa problem.

Reliable Broadcast Along a Corridor: The presentation of our protocols is limited to demonstrating
reliable broadcast along a corridor of width 2r + 1 moving along the positive y-coordinates. That is, we
show reliable broadcast for a node p(z,y) where —r < 2 < r and y > 0. This greatly simplifies the
description of our results. Furthermore, it is easy to see that reliable broadcast is possible along other
corridors traversing the z-coordinates or negative y-coordinates using a synchronization of sending and
listening similar to what we describe. The grid can be covered piece-wise with such rectilinear corridors in
a number of ways; for example, a spiral suffices (see Figure 2). Alternatively, corridors can be appended
in many other ways in order to achieve propagation of a message depending on scenario in question. In
any event, proving reliable broadcast for this corridor is sufficient to prove reliable broadcast for the grid
in general.

5.1 Protocol for Fail-Stop Faults

We describe our reliable broadcast protocol that tolerates fail-stop faults; the proof is deferred until the
end of Section 5.2 since it is subsumed by the proof for the Byzantine case. The pseudocode below shows
how broadcast can be achieved along a corridor of width 2r + 1, where —r < z < r, moving along the
positive y-coordinates. As mentioned earlier, restricting the movement in this way greatly simplifies our
presentation without sacrificing completeness.

We assume that the nodes in the network know the time slot when the source node will broadcast
a message. We will let ¢4+ denote the time slot at which the source sends out a message m. The source
node located at (0,0) broadcasts m at time slot ts¢q,+ and all correct nodes in N (0, 0) are assumed to receive
m from the source and commit internally. Node in N(0,0) then broadcast that they have committed to m
for the next 2r consecutive rounds during their respective allotted time slots.

We now describe how each node p(z,y), for —r < 2 <r and y > r+1, listens for and sends messages
and, finally, how it broadcasts its committal. Let ¢, denote the time slot when ¢ is scheduled to broadcast
in round tg4r1 + 2(y — ). Using ¢, values, each node p creates an ordered set S, C G, where the elements
of S, are chosen according to the (1,0(y/n)) strategy for the Bad Santa problem. Node p then awakens
from the energy-efficient sleep mode and listens (in order) to nodes in S, in round tg 4 + 2(y — 7). If at
any point, p receives a message, it commits to this message internally. During the course of the protocol,
node p also facilitates the passage of messages along the two-hop paths. While node p has not committed
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internally, p listens to each sister node u(z”,y") in round tgqt +2(y” — 1)+ 1. If p receives a message, then
p does the following: (1) commits internally to this message and (2) during its assigned slots p broadcasts
m for 2r consecutive rounds starting at round tszqrt + 2(y” — r) + 2. Finally, in terms of sending, if at any
time a node p(z,y) has committed internally to a message in round tsqr+ + 2(y — ) (i.e. used the Bad
Santa protocol to commit), p waits until round tsa,+ + 2(y — ) + 1 and then broadcasts its message for
2r consecutive rounds during its assigned time slots. Again, note that in the following pseudocode, each
node p(z,y) is such that —r <z <r and y > 0.

(1,0(y/n) Reliable Broadcast for the Fail-Stop Fault Model

1. At time slot tstqrt, the source d(0,0) does a one-time local broadcast of m and each node in N(d)
commits internally to m.

2. All nodes in N(0,0) broadcast their committal to m for the next consecutive 2r rounds.

The following portion of the protocol is followed by all nodes not in N(0,0):

3. If node p(z,y) has committed internally to a message in round tg4.¢ +2(y — ) (i.e. in Step 5), then
p waits until round tgqrt + 2(y — ) + 1 and then broadcasts its message for 2r consecutive rounds
during its assigned time slots.

4. While node p(z,y) has not committed internally to a message, node p listens to each sister node
u(z”,y") in round tstart +2(y" —r)+ 1. If p receives the message m from u, then p does the following:
(1) commits internally m and (2) during its assigned slots p broadcasts m for 2r consecutive rounds
starting at round g + 2(y" — 1) + 2.

5. While node p(x,y) has not committed internally to a message, p does the following. For a node
q € Gy, let t, denote the time slot when ¢ is scheduled to broadcast in round ¢g4,¢ + 2(y — ). Using
t, values, node p creates an ordered set S, C G, where the elements of S, are chosen according to
the (1,/n) Bad Santa strategy. Then p does the following:

e Node p(z,y) listens to g € S, in round tgq.¢ + 2(y — 7). If at any point p receives a message m,
then p commits to m internally, breaks the for-loop and proceeds to Step 3.

5.2 Protocol for Byzantine Faults

Our protocol for the Byzantine fault model runs in two stages. In the first stage, the source propagates
a fingerprint f(m) of the message m it wants to broadcast. This fingerprint is assumed to be of size at
least 1g? |m| bits. Propagation of f(m) is again done using the algorithm in |6]. The second stage is very
similar to the previous protocol for the fail-stop faults. In the second stage, the source broadcasts the
message m at time slot tg4¢ and all correct nodes in N(0,0) are assumed to receive m from the source
and commit internally. Each node ¢(z’,y") € N(0,0) then broadcasts its committal to m over the next 2r
consecutive rounds. A node p listens to messages from a set G, just as in the protocol for fail-stop model.
The difference occurs when, at any point a message m’ is received. Node p then checks f(m') against the
fingerprint f,,,; to which it committed in the first stage. If they match, p commits to m’ internally and
executes the broadcast instructions mentioned previously.

We assume that the network alternates between the first stage, where nodes are constantly awake,
and the second stage, where nodes are achieving significant power savings. For instance, it is plausible
that internal software could synchronize periodic change-overs between these two stages in much the same
way that radio network alternate periodically between sleep and fully active states to conserve power in
practice. These details are outside the scope of our work and we do not discuss them further.

Finally, note that a faulty node might broadcast an incorrect message m’ such that |m’| > |m| where
m is the correct message. To avoid complications, we assume that nodes in the network know the size
of m and, therefore, can stop listening after receiving |m/| bits. For instance, this could be implemented
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Figure 2: The source is denoted by the brown node which has location (0,0). (A) Movement in the positive
y direction establishing a (2r+1) x (2r+1) square of committed nodes above N (0, 0); this is the corridor we
explicitly address in the proofs of correctness for our protocols. (B) Spiraling out from N(0,0), movement
in the negative  direction and then the negative y direction. (C) Further depiction of the spiral expansion
of committed nodes along a corridor of width 2r 4 1.

by having the source broadcast the message size in the first stage or having a predefined upper limit on
messages size. The details of such solutions would be dictated by context and we omit further discussion
of this issue.

(1,0(y/n)) Reliable Broadcast for the Byzantine Fault Model

Stage 1:

1. At time tg, the source uses the reliable broadcast protocol of [6] to broadcast the fingerprint f(m) to
all nodes in the grid.

Stage 2:

2. At time slot tgszqrt, the source d(0,0) does a one-time local broadcast of m and each node in N(d)
commits internally to m.

3. All nodes in N(0,0) broadcast their committal to m for the next consecutive 2r rounds.

The following portion of the protocol is followed by all nodes not in N (0, 0):

4. If node p(x,y) has committed internally to a message in round g4t + 2(y — ) (i.e. in Step 6), p
waits until round tgzqr+ + 2(y — 7) + 1 and then broadcasts its message for 2r consecutive rounds
during its assigned time slots.

5. While node p(x,y) has not committed internally to a message, node p listens to each sister node
w(z”,y") in round tsqr + 2(y” — 1) + 1. If the message m,, that p receives from u equals the fp,q;
value, then p does the following: (1) commits internally m, and (2) during its assigned slots p
broadcasts m,, for 2r consecutive rounds starting at round tszqre + 2(y” — ) + 2.

6. While node p(z,y) has not committed internally to a message, p does the following. For a node
q € Gy, let t, denote the time slot when ¢ is scheduled to broadcast in round tgq,¢ +2(y — ). Using
tq values, node p creates an ordered set S, C G, where the elements of S, are chosen according to
the (1,+/n) Bad Santa strategy. Then p does the following:

e Node p(z,y) listens to ¢ € S, in round teqre + 2(y — 7). In listening to each ¢, p will obtain a
value m, (or nothing, if ¢ is Byzantine and sends nothing). If at any point f(mg) equals the
fmaj value of p, then p commits to m, internally, breaks the for-loop and proceeds to Step 4.
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We now establish the following preliminary lemma which we will need for our protocols. Label the
set of nodes in the corridor as Scor = Sy cor U Sy.cor where Sy cor = {q(2/,¢) | r +1 <2/ <z)A(y—7r <
v <y+r)}and Sycor = {q(2',y) | (—r <2’ <r)A(0 <y <y+2r)}. Figure 3(a) illustrates a corridor
for r = 3. Finally, recall that a round is one iteration through the broadcast schedule.

The following Lemma 7 is useful for our Byzantine-tolerant protocols. In particular, it provides an
analysis of the previous protocol in [6] with the minor modification that a node waits for the (at most) two
messages from its sister nodes before issuing HEARD messages. We then later use this result to address the
necessary delay between Stage 1, where a fingerprint is propagated, and Stage 2 of our protocol, when the
full message is sent. Note that in Lemma 7, we deal with arbitrary « and y values.

Lemma 7. Assume a broadcast schedule where no collisions occur and each node can broadcast once every
round as discussed in Section 1.2.2. Consider a source, d(0,0), that broadcasts a fingerprint f at time slot
to under either the fail-stop or Byzantine fault models where t < 5(2r + 1). Then by using the protocol
of [6], node p(x,y) is able to commit to [ by round to + 2(|x| + |y|)-

Proof. We are essentially following the argument for correctness given in [6] and discussed in Section 5;
however, we are restricting our view to those nodes in S.,.. That is, nodes in S, will only accept
messages from other nodes in S, and they will ignore all messages they receive from nodes outside the
corridor. Clearly, this can only result in a slowdown in the propagation of the broadcast value; moreover,
the rectilinear shape of the corridor can only slow down the rate of propagation in comparison to the
original propagation described in [6]. An argument identical to that in [6] can be used to show that each
correct node q(2’,y") € Scor will commit to the correct fingerprint by receiving messages along at least
2t + 1 node disjoint paths of the form (u;, ¢) and (u;, u}, ¢) as shown in Figure 3(a). While we do not repeat
the entire argument here, Figure 3(b) illustrates the set G, for each node p in a row of the corridor along
increasing y-values. That is, the regions A,, B, and Bj, are illustrated for each position in the context of
the proof discussed in Section 5.

We now consider the time required until p(x,y) can commit to f regardless of which nodes in the
corridor fail; p does so by listening to the nodes in G,,. Without loss of generality, assume that z,y are
positive coordinates and that the broadcast first moves nodes in Sy cor (moving up) and then along nodes
in Sy cor (moving right). At o, the source broadcasts f and all nodes in N(0,0) commit to f. Consider
a node ¢g(a,r + 1) where —r < a < r. It takes at most one round for ¢ to receive messages along paths of
the form (u;,q) from region A. Concurrently, in this one round, nodes u; can transmit messages to nodes
u} along paths of the form (u;,u},q) (region B to B’) where the HEARD messages from the (at most) two
sister nodes are appended in a single message. At most an additional round is required to send from nodes
u; to q. Therefore, at most two rounds are required before ¢ can commit. Note that this holds for all
nodes with coordinates (a,r + 1) for —r < a < r; this entire row can commit after at most two rounds. It
follows that all nodes up to and including row y in S .o are committed to f after ¢g + 2(y + r) rounds;
the remaining r rows in Sy cor do not commit. An identical argument shows that all nodes in S, .o are
committed to f after to + 2(z — r) rounds. Therefore, p commits after at most ¢y + 2(x + y) rounds; if x
and y can take on negative values, this becomes to + 2(|x| + |y|). O

The next lemma proves that, if we assume that the adversary cannot cause a collision with f,4;, then
each node can commit to the correct message using our protocol. In particular, it establishes that the
second stage of our protocol achieves the 2¢ + 1 connectedness necessary for reliable broadcast. The lemma
also establishes that the broadcasting and receiving actions by each node are correct. Finally, the resource
costs per node for Stage 2 follow immediately. Note that this stops short of proving Theorem 4 since the
issue of fingerprints has not yet been addressed. While we include it for completeness, we stress that the
2t 4+ 1 connectedness component of the proof is essentially an adaptation of the proof found in [6] which
was reviewed in the beginning of Section 5. Again, the proof focuses on movement along the positive
y-coordinates along a corridor of width 2r + 1 where —r < z < r. Figure 4 illustrates how our protocol
proceeds when r = 3.

Lemma 8. Assume a broadcast schedule where no collisions occur and each node can broadcast once
every round as discussed in Section 1.2.2. Furthermore, assume each node already possesses fpq.; prior
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Figure 3: Let p be a node that is not at the boundary of width r in the grid. (a) A depiction of a corridor
for » = 3. Together the nodes in region £ and F' constitute Sy ., while the nodes in G constitute S; cor-
Node disjoint paths of the form (u;,q) originate from nodes w; in region A. As discussed in [5, 6], node
disjoint paths of the form (u;, u}, q) originate from nodes u; in region B and traverse through nodes u} in
B’ to reach node ¢. (b) The regions A, B and B’ are illustrated for each node along a row of Sy cor. The
value for z is given for each position in the context of the proof reviewed in Section 5.

to receiving any other messages and that if a message m received by a correct node p corresponds to the
fingerprint fm.; propagated in the first step, then m is the correct message. Under these assumptions, the
(1,0(y/n)) Reliable Broadcast for the Byzantine Fault Model protocol has the following properties:

e FEach node p(x,y) where —r < x < r (except those on the boundary of width r if the grid is finite)
commits to the correct message m by round max{2(y —r),0}.

e FEach node is awake for O(y/n) time slots in expectation. Fach node sends and receives O(y/n|m|)
bits in expectation.

Proof. For simplicity, we normalize such that tssq,+ is round 0. Our proof is by induction and throughout
we assume that each node has an z-coordinate such that —r < x <r:

Base Case: Each node in N(0,0) commits to the correct message m immediately upon hearing it directly
from the dealer. Therefore, each node p(z,y) € N(0,0) commits to m by round 0 < max{2(y —r),0}.

Induction Hypothesis: For simplicity, we will assume as before that p € N(a,b+ 1) where —r < a < r; the
other cases for proving the statement for p € PN (a,b) follow by symmetry. In this context, the induction
hypothesis is as follows: if each p'(2’,y’) € N(a,b) has committed to m by round 2(y’ — r), then each
correct node p(x,y) € N(a,b+ 1) — N(a,b) is able to commit to m by round 2(y — r).

Induction Step: As we reviewed before in the beginning of Section 5, we show 2¢ + 1 connectedness in a
single neighborhood. We will argue simultaneously about the time required for p to hear messages along
these disjoint paths. The node p(z,y) lies in N(a,b+ 1) — N(a,b) and can be considered to have location
(a—7r+4+z,b+7r+1) where 0 < z < r (the case for r + 1 < z < 2r follows by symmetry). We demonstrate
that there exist r(2r + 1) node-disjoint paths Pi, ..., P.(2,41 all lying within the same neighborhood and
that the synchronization prescribed by our protocol is correct:
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e One-Hop Paths: the set of nodes A, = {¢(z,y) | (a —r) <z <(a+z)and b+1)<y<(b+1)}
lie in N(a,b) and are neighbors of p. Therefore, there are r(r + z 4+ 1) paths of the form ¢ — p where
qeE A,

By their position relative to p(x,y), each correct node ¢(z’,y’) € A, is such that y —r <y’ <y — 1.
Therefore, by the induction hypothesis, a correct node ¢ € A, commits in round 2(y — 2r) at the
earliest and 2(y — 7 — 1) at the latest. Consequently, a correct node in A, starts broadcasting its
committals in round 2(y — 2r) + 1 at the earliest and 2(y — r — 1) + 1 at the latest. In the former
case, recall that broadcasting occurs for 2r rounds, which means that ¢ is broadcasting from round
2(y—2r)+1 to 2(y—r), inclusive, at the earliest. In the latter case, ¢ is broadcasting from 2(y—r—1)+1
to 2(y — 1), inclusive. Therefore, all correct nodes in A, are broadcasting a committal message in
round 2(y — r) and so p(z,y) can receive a message from each correct node in A4, in this round.

e Two-Hop Paths: consider the sets B, = {¢(z,y) | (a+2z+1) <z < (a+r) and (b+1) <y < (b+7)}
and B, = {¢'(z,y) | (a+2z+1—-7r) <z <(a)and (b+7r+1) <y < (b+2r)}. The nodes in B, lie
in N(a,b) while the nodes in B), lie in N(p). Moreover, the set B, is obtained by shifting left by r
units and up by r units. Recall that there is a one-to-one mapping between the nodes in B, and the
nodes in B;; these are sister nodes. There are 7(r — z) paths of the form ¢ — ¢’ — p.

Consider a correct node g(2',y’) € B, and its sister node ¢'(z",y") € B},. Again, given the location
of q(«’,y") relative to p(x,y), by the induction hypothesis, the earliest ¢ € N(a,b) has committed is
2(y — 2r) and the latest is 2(y — r — 1). Therefore, by protocol, ¢ starts broadcasting its committal
2r times starting in round 2(y — 2r) 4+ 1 at the earliest and 2(y — r — 1) + 1 at the latest. The sister
node of ¢, ¢ € B,,, listens to g in the first round that ¢ broadcasts. If ¢’ receives a correct m, then ¢’
broadcasts this 27 times; therefore, this occurs in round 2(y — 2r) + 2 = 2(y — 2r + 1) at the earliest
and 2(y —r — 1) + 2 = 2(y — r) at the latest. In the former case, recall that ¢’ broadcasts for 2r
consecutive rounds and therefore is broadcasting until round 2(y — r 4+ 1) — 1 > 2(y — r). Therefore,
all correct nodes in B, with a message to broadcast are doing so in round 2(y —r) and so p(x,y) can
hear a message from any such ¢’ € B; in this round.

Therefore, there are a total of r(r + z + 1) + r(r — z) = r(2r + 1) node-disjoint paths from N(a,d) to
PN(a,b), all lying in in a single neighborhood N(a,b+ r + 1). By our argument above, each correct node
p(z,y) receives the one-hop and two-hop messages over these paths by round 2(y — r). We note that (1)
more than half of these paths will provide the correct message and (2) the sampling follows the Bad Santa
protocol which is a Las Vegas algorithm. Therefore, we are guaranteed that p will obtain a message m that
corresponds to fy,q;. Finally, by our initial assumption regarding the inability of the adversary to forge a
collision, this means that m is the correct message.

We now analyze the resource bounds for our protocol. Consider the situations where p must deal with
(either broadcasting or receiving) a message: (1) p receives messages in order to commit, (2) p broadcasts
it has committed, and (3) p facilitates two-hop messages. We consider each case. To address (1), note that
p uses the Bad Santa protocol; while in the streaming problem, we attempt to obtain a 1 at unit cost per
query, here node p is attempting to select a correct node at the cost of listening to |m/| bits per selection.®
This method of sampling from G, means p receives O(y/n) messages in expectation. To address (2), note
that p broadcasts that it has committed 2r = O(y/n) times. To address (3), we consider p € PN (a,b+ 1)
as before, and note that p belongs to many B(’Z sets for different nodes ¢; however, regardless of which B(’Z
set, p only ever has two sister nodes. Therefore, considering broadcast along the x and y coordinates, the
number of sister nodes is O(1); the number of broadcasts due to two-hop paths is thus O(r). In conclusion
(not counting the fingerprint, since we are dealing only with the second stage of our protocol) each node
is awake for O(y/n) time slots in expectation, sends O(y/n|m|) bits and receives O(y/n|m|) bits. O

With Lemma 7 and Lemma 8 in hand, we can now give the proof for Theorem 4:

6Selecting a random node is necessary; if not, the adversary might have faulty nodes send correct fingerprints in the first
round and, if p selects nodes from G in a deterministic fashion, the adversary may force p to listen to many messages that
do not hash to fimaj.
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Figure 4: A depiction of the (1,0(y/n)) Reliable Broadcast for the Byzantine Fault Model protocol for
r = 3. Times for broadcasting and receiving are denoted by [a,b] which denotes rounds a through b
inclusive. (A) Shows how a node p in row 4 can commit by listening to nodes in G, = A, U B; we focus
on nodes on the left-most edge. Note the node in row 4 marked with horizontal lines. This node acts as
part of B]'D while also committing as other nodes in row 4 do; later, it will act as a node in B; and A; for
other nodes ¢ and j by sending in rounds [3,8]. Note that this node is sending from round 2 to 8 (inclusive)
but we separate this into [2,8] and [3,8] to make the different roles explicit. (B) & (C) Depictions of the
timing of broadcasting and receiving as nodes in rows 5 and 6 commit, respectively.

Proof. We begin by proving correctness and we start with Stage 1. Stage 1 of the protocol is no different
than the broadcast presented in [6] where the value being transmitted is a fingerprint. Consequently, every
correct node will be able to derive a majority fingerprint f,q;.

We now analyze Stage 2. Lemma 8 assumes that (1) we have an appropriate schedule, (2) each node has
fmaj prior to receiving any other messages, and (3) if m corresponds to fi,q; then m is correct. We go
about addressing these three criteria:

e First, we can assume the schedule of [8] which satisfies the properties required by Lemma 8.

e Second, consider all nodes in a square of size 3(2r + 1) x 3(2r + 1) centered about (0,0); the node
at the top-right has position (3r + 1,37 + 1). By selecting tstq,+ at least 2(6r 4+ 2) rounds after the
time of sending of the fingerprint, ¢¢ (that is tsiare > to + 2(6r + 2)), then Lemma 7 guarantees
that by time Zg4.¢, all nodes in a square of size 3(2r 4+ 1) x 3(2r + 1) centered about (0,0) will have
committed to the fingerprint. If we assume, as mentioned earlier prior to presenting the pseudocode,
that the message expands via a spiral corridor of width 2r+1 from N(0,0), then this guarantees that
the propagation of the fingerprint will always be sufficiently far ahead of the propagation of the full
message to allow nodes to first commit to the fingerprint. Note that if m is propagated in a different
fashion (i.e. not a spiral) then the timing offset would need to be adjusted accordingly.

e Third, by assumption, f is a secure hash function and the size of the fingerprint is lg2 m. Therefore,

19



given f(z), the probability that the adversary obtains a value 2’ such that f(z') = f(z)is 278" Iml =
|m|~ 181" It will take the adversary superpolynomial time in m to forge such an z’ and so fmaj will
correspond to the correct value m. Recall that s is the number of computational steps afforded to the
adversary; i.e. the number of times the adversary can create an input 2/, apply f to 2’ and check for
a match between the output fingerprint f(z’) and f,,;. Therefore, given that p receives a message
from a correct node in G, that when hashed matches the fingerprint to which p committed, with
error O(s/|m/|'8!™!), this message is the correct message sent by the source where s is the number of
computational steps available to the adversary.

Finally, we analyze resource costs. Lemma 8 confirms the amount of awake time specified by Theorem 4 after
the sending of the fingerprint. Regarding the bit complexity over both Stages 1 and 2, we need consider
the additional cost due to sending the fingerprint. Each node p broadcasts and receives O(r?) = O(n)
fingerprints, for a total of O(nlog? |m|) bits in Stage 1. Therefore, the expected bit complexity over both
stages is O(nlog? |m| + /n|m|). O

The above proof essentially subsumes the proof for Theorem 3; however, we include it here for completeness:

Proof. The proof of correctness for the fail-stop model differs in two places from the proof of Theorem 4.
For criteria (2), there is no need for a fingerprint. For criteria (3), since messages are never corrupted,
only lost if a fault occurs, p is guaranteed that the message it receives from a correct ¢ € G,, is correct.
Finally, for the fail-stop model, the resource costs are easy to analyze. The awake times due to listening
follow directly from the fact that each node broadcasts O(y/n) times and uses the Bad Santa problem
for listening; therefore, a total of O(y/n) time slots in expectation. In terms of bit complexity, each node
p broadcasts |m| for r rounds times and listens to m once. Therefore, p broadcasts Q(y/n|m|) bits and
receives |m/| bits. O

It may seem that, with some modifications to the protocol, we can employ a multi-stream Bad Santa
strategy to achieve further expected savings. We now explain why this is not the case. Note that such
a change would require each node to send O(r - k - |m|) bits while reducing the expected listening cost to
O(k-|m|). However, since the costs for sending and receiving are of the same magnitude, we do not achieve
an overall asymptotic savings when we consider the addition of these two communication costs.

Finally, we comment on the difference in running time between our algorithms for the fail-stop and
Byzantine fault models. Clearly, the need to propagate a fingerprint in the Byzantine case incurs additional
time. However, as we have seen, the dealer need wait only 2(67 + 2) rounds after sending the fingerprint
before broadcasting the full message.

5.3 Reliable Broadcast when ¢ < (1 —€)5(2r + 1)

When ¢ < (1 —¢€)5(2r + 1) for any constant € > 0, we show how to achieve an even larger energy savings

by employing the (k + 1,0(log™ (n/2) + k)) strategy to the Bad Santa problem for k > 1. As we will
show, a correct node may listen to at least (r/2)(2r 4+ 1) messages, of which a (1 — ¢)-fraction may be
faulty; therefore, we are now allowing more than a 1/2 fraction of paths to deliver faulty messages. We
know by Theorem 8, that employing a single stream Bad Santa strategy in this scenario does not yield
any asymptotic savings; hence, we deal only with £k > 1. We also point out that, in actuality, our results
hold for ¢ < (1 —€)(1 + 7 + r?) which is larger than (1 — €)(r/2)(2r + 1) by an amount of (1 —¢)(1 +r/2).
However, asymptotically, this difference is negligible and we phrase the result in this manner to illustrate
that we are within an arbitrary constant fraction of the optimal tolerance.

In this case, we present a Byzantine fault-tolerant reliable broadcast protocol; the protocol for
tolerating fail-stop faults is straightforward and we omit it. The protocol is very similar to our (1, 0(y/n))
Reliable Broadcast for the Byzantine Fault Model presented in Section 5.2 where here we use the (k +
1, O(log(k) (n) +k)) strategy; however, there are important distinctions. In particular, the sets A, B), and
B, are defined in a slightly different manner in the correctness proof for our protocol later on. Furthermore,
each node broadcasts for O(k) (rather than r) consecutive rounds and the synchronization of broadcasting
and receiving is altered. Essentially, r rows of a corridor are committing every k+ 2 rounds; this is different
from the previous protocols where each row committed in a different round. The Bl’j and B, sets are
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no longer changing in size with the position of the node p; rather, these sets are r x r squares. The
pseudocode is given below and, again, deals with movement along the positive y-coordinates in a corridor
of width 2r + 1, where nodes have an x-coordinate such that —r < a <.

(k +1,0(log® (n) 4+ k)) Reliable Broadcast for the Byzantine Fault Model

Stage 1:

1. At time slot tg, the source uses the reliable broadcast protocol of [6] to broadcast the fingerprint
f(m) to all nodes in the grid.

Stage 2:

2. At time slot tgszqrt, the source d(0,0) does a one-time local broadcast of m and each node in N(d)
commits internally to m.

3. All nodes in N(0,0) broadcast their committal to m for the next consecutive k + 2 rounds.

The following portion of the protocol is followed by all nodes not in N (0, 0):

4. If node p(z,y) has committed internally to a message via listening to a set Sy, ; for i = 0,...,k (i.e.
Step 6), node p uses its allotted time slot to broadcast this fact for k + 2 consecutive rounds; that is,
from round (k + 2) (LyT_lJ) +1to (k+2) (LUT_lJ + 1) inclusive.

5. While node p(x,y) has not committed to a message, node p listens to each sister nodes in round
(k+2) (L”_THJ) + 1. If the message m,, that p receives from u equals the f,,,; value, then p does
the following: (1) commits internally m,, and (2) during its assigned slots p broadcasts m,, for k + 1
consecutive rounds: from round (k +2) (|£==]) + 2 to round (k +2) (|£==| + 1), inclusive.

6. While node p(z,y) has not committed internally to a message, p does the following. For a node
q € Gp, let t4 denote the time slot when ¢ is scheduled to broadcast in round (k + 2) (L%AJ) + 2.
Using t, values, node p creates ordered sets Sy, ..., Sp,x where S, ; C G, for i = 0, ...,k where the
elements of each S, ; are chosen according to the (k4 1,0(log™ (n) + k)) Bad Santa strategy. Then
for i =0,..., k, p does the following;:

e Node p(z,y) listens to each node ¢ € Sp,; for k + 1 consecutive rounds: that is, from round
(k+2) (Ly%_lj) + 2 to round (k + 2) (Ly%_lJ +1). If at any point ¢ receives a message mq
such that f(mg) equals the fy,,; value of p, then p commits to m, internally, breaks the for-loop
and proceeds to Step 4.

To avoid possible confusion, we draw attention to the fact that nodes acting as members of A, sets broadcast
for k£ + 2 times, even though the corresponding Bad Santa protocol uses k + 1 streams. This is because
of the extra delay of one round incurred by the two-hop messages; we note that nodes in B; sets that
facilitate these messages broadcast for k + 1 consecutive rounds. The correctness of this protocol can be
demonstrated in a similar fashion to the preceding protocols; however, there is a difference in that now
the proof deals with all nodes in  rows rather than a single row. Figure 5 illustrates how this protocol
proceeds when r = 3 and k& = 3. For completeness, establish Theorem 6 although we again only consider
movement along the positive y-coordinates.

Proof. The proof is again by induction and, for simplicity, we assume ts 4+ = 0 and we again assume
that each node in the corridor has an x-coordinate such that —r < 2 < r. We show 2¢ + 1 connect-
edness inside a single neighborhood and that each node p(z,y), for —r < 2z < r, commits by round
(k+2) (max {| =L ] +1,0}).
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Figure 5: A depiction of the (k + 1,0(log® (n) 4 k)) Reliable Broadcast for the Byzantine Fault Model
protocol for r = 3 and k = 3. Times for broadcasting and receiving are denoted by [a,b] which denotes
rounds a through b inclusive. (A) Shows how all nodes in rows 4, 5, and 6 commit; we focus on nodes along
the leftmost edge. Node p; along the edge in row 4 can commit by listening to all nodes in G, = A, U Bz’,.
In contrast, p3 in row 6 can sample from only the top row in A,, which consists of  nodes, and all of Bz’),
which consists of 72 nodes. (B) & (C) Depictions of the timing of broadcasting and receiving as nodes in
rows 7, 8,9 and, subsequently, nodes in rows 10, 11, 12 commit, respectively.

Base Case: Each node in N(0,0) commits to the correct message m immediately upon hearing it directly
from the dealer; that is, by round 0.

Induction Hypothesis: Rather than dealing with nodes in p € N(a,b+ 1) — N(a,b), our proof differs in
that we address all nodes in in p € N(a,b+1r) — N(a,b) i.e. all nodes in the r rows above row b and for
simplicity we will assume b > 0 (we do not deal with the nodes in N(0,0)) and that —r < a < r. In

particular, the induction hypothesis is as follows: if each node p/(2’,y’) in rows b+ 1,...,b + r of N(a,b)
commit to m in round (k + 2) Q#J + 1), then each correct node p(z,y) € N(a,b+ r) — N(a,b)
commits to m in round (k + 2) (LU_THJ +1).

Induction Step: We show 2t + 1 connectedness and simultaneously prove the correctness of the timing for
broadcasting and receiving. The node p(z,y) lies in N(a,b+ r) — N(a,b) and can be considered to have
location (a —r + z,b+ 7+ 1+ ¢) where 0 < z < r (the case for r + 1 < z < 2r follows by symmetry) and
0 <c <r—1. We demonstrate that there exist at least 1 + r + 72 node-disjoint paths P, ..., Py, 2 all
lying within the same neighborhood and that the synchronization prescribed by our protocol is correct. As
we mentioned previously, the sets A, B; and B, are defined slightly differently than previously; there are
defined below in our proof and Figure 6 depicts these sets.
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Figure 6: The sets A,,, B, and B, fori =1,2,3 and r = 3. (A) For the node p; with a y-coordinate such
that y mod r = 1, the sets are defined the same way. (B) Node ps has an A,, set which consists only of
the two top rows of A4,,. (C) Node p3 has an A,, set which consists only of the top row of A,,. Finally,
note that B), = B, = B, since p;,ps and p3 share the same 2-coordinate.

e One-Hop Paths: the set of nodes 4, = {¢(z,y) | (a—r) <z <aand (b+1+c) <y <(b+7)} lie
in N(a,b+r+1). Therefore, node p(a —r + z,b+ 7+ 1+ ¢) can receive broadcasts from nodes in at
least 7 — ¢ > 1 row(s) of A, which amounts to at least r + 1 nodes.

Consider a correct node ¢(z’,y’) in the r rows b+ 1,....b + r of N(a,b) and recall p(z,y) is in
some row b+ 17+ 1,...,b 4+ 2r. The induction hypothesis guarantees that ¢ has committed by round
(k+ 2)(L¥J +1) = (k+2)([£==]). Then, by the protocol, ¢ broadcasts for k + 2 consecutive
rounds; that is, from round (k +2)(|2—==1]) + 1 to round (k +2)(|X==]) + k + 2, inclusive. Node
p is scheduled to begin listening in round (k + 2)([”%_”) + 2 and so p can receive a message

from each such ¢ for k + 1 consecutive rounds. Therefore, p hears all one-hop messages by round
(k+2)((==]+1)

e Two-Hop Paths: consider the sets B, = {¢(z,y) | (a+1) <x < (a+r)and (b+1) <y <(b+7)}
and B, = {¢'(z,y) | (a—r+2z+1) <z <(a+2)and (b+7r+1—c) <y < (b+2r)}. The nodes in
By, form an r x 7 square within N (a,b) while the nodes in B, again an 7 x r square, both lie in the
neighborhood N(a,b+r+1). Note that now the set B, is no longer necessarily obtained by shifting
left by 7 units and up by 7 units; now it is obtained by shifting left by » — z units and up by r units.
There is still a one-to-one mapping between the nodes in B, and the nodes in B;; these are sister
nodes. There are 72 paths of the form ¢ — ¢/ — p.

From the point of view of p(z,y), consider a correct node ¢(z',y’) € B,. By the induction hypothesis,
g in one of the rows b+ 1,....b + r of N(a,b) has committed by round (k + 2)(L¢J +1) =
(k +2)(|=2=1]). By the protocol, its sister node ¢’ € By listened at the first of these time slots;
hence, ¢’ can receive a message from ¢ in round (k +2)([£—==|) + 1. If ¢’ received a correct m, then
¢ would broadcast m starting in round (k +2)(| 2=t ]) +2 for k+ 1 consecutive rounds. Therefore,
g broadcasts a correct message from round (k + 2)([”%_”) + 2 to round (k+ 2)( LU_THJ) +k+2=
(k+ 2)([%7” +1) (inclusive). Node p is scheduled to begin round (k + 2)(| =22 | + 1) and so p
can receive a message from each such ¢’ € B; for k + 1 consecutive rounds. Therefore, p hears all
two-hop messages by round (k + 2)([”_7“” +1)

We have shown that there are at least 1 + 7 + r? node-disjoint paths from N(a,b) to node p, all lying in
in a single neighborhood N(a,b + r 4+ 1). Furthermore, we have shown that any correct node p(x,y) can
hear all one-hop and two-hop messages, by round (k + 2)([”%_” +1). Node p can sample these messages

over k 4 1 rounds and, since the O(log™™ (n) + k) Bad Santa strategy is used for selecting Sp,i, node p is
guaranteed to receive a correct message. This completes the induction.

In terms of resource bounds, we can again consider the situations where p must deal with (either
broadcasting or receiving) a message: (1) p receives messages in order to commit, (2) p broadcasts it has
committed, and (3) p facilitates a two-hop message. We consider each case. To address (1), by the Bad
Santa protocol, p listens to O(log(k) n+ k) messages in expectation. To address (2), note that p broadcasts
that it has committed k + 2 = O(k) times. To address (3), we note that p belongs to many By sets for
different nodes ¢; however, regardless of which B('I set, p only ever has at most two sister nodes. Therefore,
considering broadcast along the x and y coordinates, the number of sister nodes is O(1); the number of
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broadcasts due to two-hop paths messages is thus O(k). The same arguments regarding fingerprints as given
in the proof of Theorem 4 apply here which concludes the proof. This leads each node being awake over
O(log'® n+ k) time slots in expectation in Stage 2. Over both stages, each node sends O(nlog? |m|+ k|m|)
bits, and listens to an expected O(nlog? m| + (log® n)|m)|) bits. O

5.4 Unknown Start Time and Source(s)

In our previous protocols, both the source of the message and the time the message was sent out needed to
be pre-established. Furthermore, our previous protocol allowed a savings on the fraction of required awake
time only in Stage 2. The new protocol we present here assumes that every 2r+ 1 by 2r+ 1 square contains
t < 15 faults. Specifically, we require that no more than a 1/2 — ¢ fraction of the nodes are faulty nodes
in any 7/2 by r/2 square. The benefits of this protocol are that it is 1) more energy efficient than using
the protocol of [6]; 2) avoids the need to have the source and sending time pre-specified; and 3) reduces
the awake time over the entire execution. Therefore, this algorithm is preferable when the circumstances
of the fault model permit.

Let Q; refer to the set of nodes in some § x § square in the grid. Our algorithm relies on correctly
transmitting a message m from @Q;_1 to QQ; where Q;_1 and Q); are disjoint and neighboring squares i.e. the
squares are neighbors abutting each other. Critical to our algorithm is an assignment of nodes in Q;_1 to
nodes in ;. This assignment can be viewed as an undirected bipartite graph with the two disjoint sets of
vertices being @;_1 and @; and the assignment represented via edges. For p € @Q;_1 and ¢ € @Q;, p listens to
q and q listens to p if and only if there is an edge between p and q in the bipartite graph. This assignment is
constructed such that all but a small fraction of correct nodes in @); receive a majority of correct messages
from correct nodes in @;—1 (and vice versa). This allows correct nodes in @Q; to majority filter on the
messages they receive and decide upon the correct message. Thus, a message can be transmitted securely
from 3 x 5 square to 5 X 5 square. For a message m and for any square @; to which m is sent by the above
protocol, let G(Q;,m) be the set of correct nodes in @; that receive m after majority filtering over the
accepted messages as described above. A result in [26] establishes the following theorem which we state
without proof:

Theorem 9. For any pair of squares Q;,—1 and Q;, there is non-zero probability of an assignment between
nodes in Q;—1 and nodes in Q; with the following properties:

e the degree of each node is at most a constant C which is independent of r,
o if |G(Qi—1,m)| = (1/2+ €/2)|Qi-1l, then |G(Qi,m)| = (1/2 4 €/2)|Ql.

We will refer to an assignment with the two properties stated in Theorem 9 as a robust assignment.
Although a method of assignment is not specified, Theorem 9 guarantees that a robust assignment must
exist. We now consider the problem of find such an assignment.

Corollary 1. A robust assignment between squares Q;_1 and Q; can be found in time that is exponential

in r2.

Proof. Consider any assignment between squares ;1 and @; as a bipartite graph G as described above.
Both @;—1 and @; have constant size d = % so the number of possible bipartite graphs is at most
2¢ x 2¢ = 224 Note that this is an upper bound on the number of different ways in which the faulty
nodes can be placed in G. We know by Theorem 9 that there is non-zero probability that edges between
Q-1 and Q; satisfy the property that a (3/4 — €)-fraction of the nodes in Q; have a majority of correct
neighbors in Q;_;. Consider each of the at most 22¢ possible configurations of faulty nodes. For each such
configuration, check whether all correct nodes in @Q; have at least a (3/4 — €) fraction of correct neighbors
in Q;—1. By Theorem 5, such a configuration must exist and can be found by this exhaustive search which

requires examining at most 22¢ = 40*/4) graphs. O

Therefore, for r = O(1), following the above procedure in Corollary 1 yields a robust assignment in
constant time. Alternatively, a random regular graph will induce a desired assignment with probability
at least 1 — 1/r¢ for some constant ¢ > 0. Recall that each node is assigned to C neighbors where C is
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independent of r. Therefore, for a sufficiently large value » = ©(1), nodes are listening to a small fraction
of a square. Finally, we note that it is sufficient to find one robust assignment and use it for all pairs ;1
and Q;.

5.4.1 Protocol Using Robust Assignment

We now describe and argue the correctness of a simple algorithm for reliable broadcast which we call ALa.
ALG operates in stages of n = r?/4 rounds. Over all rounds, each node that has committed to a message
will broadcast at its scheduled slot. At every n'" round, a node enters into the listening state for one full
round. That is, during this " round, all nodes are listening to all nodes in its 5 X 5 square throughout
the round. At the end of this round, if a node p has received an identical message from a majority of nodes
in its 2r + 1 X 2r + 1 square, p commits to this message.

For all other 7— 1 rounds in a stage, a node sends and listens as dictated by a robust assignment and
the broadcast schedule. That is, a node p listens to node ¢ 1) if and only if p and ¢ are assigned to each other
under the robust assignment; and 2) when ¢ is scheduled to broadcast. A robust assignment can be found
as stated in Corollary 1 prior to deploying the radio network and this assignment can be preprogrammed
into the nodes and used for all pairs of squares. Any node p may act as a source node. In this case, the
source node will broadcast its message to its 7/2 x r/2 square in its time slot in an n** round when all nodes
are awake; the message should include a declaration that p is acting as a source. As in [8, 5, 6, 7|, every
node in the source’s square commits to m and proceeds to broadcast m during their respective scheduled
time slots. From this point, the message is propagated from § x £ square to 5 x 3 square by sending
and listening according to the robust assignment in a deterministic fashion: a square sends to the squares
above and below and to the left and the right, in that order; Figure 7 illustrates this. Communication
from one square to an adjacent square can be accomplished with a single round used per direction. Note
that if 7 is not divisible by 4, then we simply interrupt on the special #** round, and continue with the
next direction afterwards. Therefore, a correct node will know this order and listen to its adjacent squares
using the corresponding robust assignment in accordance with the broadcast schedule. As before, we may
assume that the partitioning of the network into squares and the ordering and synchronization issues are
dealt with through the nodes’ internal programming; these details are outside the scope of this work. The
exact propagation of a message depends on the robust assignment used and the behaviour of the faulty
nodes; however, we can show correctness for the task of reliable broadcast.

By Theorem 9, at least a (1/2 + €/2) fraction of correct nodes in every square will eventually receive
identical messages from the majority of nodes to which it has been assigned. At this point, such a correct
node can commit to a message and begin broadcasting, again according its robust assignment and scheduled
time slots. Finally, we address the remaining fraction of correct nodes in a r/2 x r/2 square that may
not be able to commit to a message. Recall that at every n" time slot, all nodes are listening for the
entire round. Assuming that a (1/2 + ¢/2)-fraction of the correct nodes in the square have committed to
the correct message, this allows the remaining fraction of correct nodes in a square to majority filter on
incoming messages during this round and commit to the correct message.

In terms of costs, note that each node is always listening to at most C time slots in each of n — 1
rounds and listening to 72 /4 time slots in the ' round; a total cost of C(n — 1) 4+ r2/4 over 1 rounds.
Therefore, each node sends O(|m|) bits per round and has an amortized cost of O(C') time slots per round
and an amortized cost of O(C|m/|) bits per round. Since C' is a constant, this establishes our claims in
Theorem 5.

5.5 Practical Considerations

We finish off this section by remarking on more practical considerations regarding our protocols. To start,
we note that the grid model that we have adopted for applying our Bad Santa protocols is fairly flexible.
Empty locations in the grid may correspond to failed nodes or simply the absence of a device altogether.
The work in [6] generalizes results on reliable broadcast on the grid to arbitrary graphs where the problem
is defined in terms of connectivity; our results easily generalize to such a setting and we refer the reader
to [6] for more details. We also briefly mention that certain classes of random graphs may mapped to the
grid model; the details depend on the type of random graph utilized. For example, if nodes are placed
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Figure 7: An illustration of the reliable broadcast protocol of Section 5.4. (a) Some node in @), acts as a
source node to send a message to its square. Transmission from @, to (b) Qp above, (c) Q. below , (d) Q4
to the left and (e) Q. to the right, using a robust assignment.

uniformly at random in the two-dimensional plane, we can partition the plane into a grid and then map
nodes to their nearest intersection point to achieve the grid model. In general, so long as the number
of faults in a neighborhood does not exceed ¢t < (r/2)(2r 4+ 1), this mapping will work. We are simply
sketching this idea for the interested reader; clearly, the details of how many nodes need to be dropped to
guarantee at most ¢ faults in any neighborhood (with sufficient probability) and how the broadcast radius
should be defined are details that we leave to future work. We refer the interested reader to work in [10]
which deals with issues of probabilistic failures in the grid model and a random network model. Next, we
offer some discussion on the aspects of the storage and processing overhead incurred by our algorithms, as
well as some exploration of the utility of our protocols in terms of bit complexity savings.

5.5.1 Storage and Processing Overhead

Recall that devices in the radio network are considered to be resource constrained. Here, we briefly discuss
the costs associated with our algorithms in terms of processing and storage overhead, and we argue that
these costs are reasonable. In particular, we argue that message storage and message processing costs are
the primary costs. Note that these are costs that must be paid, to an even larger extent, in the original
protocols of [5, 6]. Furthermore, we argue that these costs are negligible in comparison to the cost of
sending/receiving; hence, our algorithms do indeed achieve a power savings.

In terms of storing data, consider our protocols where the send time and location of the source is
known. Each node must store information on the current time slot, the slot when it can broadcast, its
location relative to the source, its set of neighbors in the broadcast region, and information on the type of
Bad Santa protocol being used (i.e. number of streams, the current stream, which time slots it is listening
to); all of these can be stored with a small amount of overhead. The protocol for the case where we have
Byzantine faults also requires storage of fingerprints, which are small compared to an actual message, and
a hash function. The use of hash functions for such resource constrained environments has been tested
in [27] and in [28] (on the MICA series); it appears the storage costs are no obstacle. Therefore, the main
storage overhead in our algorithms appears to result from messages. The length of these messages is likely
application dependent and memory sizes can differ with the device in question. In [29], the MICA2 devices
are stated to have 4KB of memory. However, we note that current memory sizes on these radio network
devices can be sizable. For instance, in [30], the authors report that a flash-memory of 32KB and the
ability to add an additional storage capacity (up to 1GB) for the devices studied. Therefore, memory size
can be chosen for the application and corresponding message sizes in question; but regardless, we do not
anticipate that our algorithms incur an unreasonable amount of storage overhead over what is needed for
storing messages.

The main processing cost of our algorithms differs per case. For the Byzantine fault-tolerant algo-
rithm of Section 5.2, the main cost is likely due to the use of the hash function. Recall that this operation
must be done fairly frequently in order for a node to commit to the correct message. While we do use
a hash function, we note that we don’t use public key cryptography in any of our algorithms which has
generally been considered to be expensive for power constrained nodes due to the need for sending, receiv-
ing, and storing public keys and executing encrypt/decrypt operations [31]. More sophisticated techniques
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are now available which require less energy; however, the costs are still quite high. For instance, in [31],
measurements by the authors using the MICA2DOT unit demonstrate a cost of 2302.70 mWs (microwatt
seconds) and 53.70 mWs for 2048-bit RSA signature generation and verification, respectively. Elliptic
Curve Crytography (ECC) is a popular alternative to RSA since it has smaller key sizes. For 224-bit ECC,
the same authors measure costs with the MICA2DOT unit at 61.54 mWs and 121.98 mWs for signature
generation and verification, respectively. Both RSA-2048 and ECC-224 are recommended by RSA Security
as the new standard in order to protect data past the year 2010 [32]. These costs should be compared to
the cost of broadcast in on the Lucent IEEE 802.11 2Mbps WaveLAN PC Card which is measured at 266
mWSs. Therefore, it is not clear that an algorithm could claim to save significant power by employing full
cryptographic schemes.

On the other hand, hash functions for power constrained environments have been considered in the
literature and it appears the processing costs are reasonable [27]. In particular, the SHA-1 hash function
can be applied with very little power consumption; again with the MICA2DOT unit, the cost is measured
to be 5.9 pWs/byte is measured in [32]. Therefore, hasing a 1Kb message would incur 5.9 mWs; notably
this is far less than the cost of sending or receiving.

For the algorithm of Section 5.4, the most significant processing costs would appear to arise from
the need to majority filter on all incoming messages; however, such a comparison operation is certainly
feasible in radio network devices. Finally, for the fail-stop case, the algorithm of Section 5.1 does not need
to apply a hash function to messages and we do not anticipate significant processing costs here. In some
cases, additional processing overhead will come from comparing hashes and accessing a random number
generator; however, we anticipate that these additional processing overheads will be small in comparison
to the cost of storing and processing messages.

5.5.2 Saving on Bit Complexity

Recall that our Byzantine fault-tolerant reliable broadcast protocol of Section 5.2 achieves asymptotically
lower bit complexity through the use of hashing. However, there is the question of when such savings
would be seen in practice. Packet sizes are discrete, and in many cases, the hash of a message may require
the same number of packets as sending the message itself. If messages are small, then the bit complexity
savings achieved by our protocol will be consequently smaller. However, we note that if messages are
sizable then there is a benefit to the hashing technique.

In the face of large amounts of data collection and querying, data aggregation techniques have
been proposed to reduce the overall communication costs since processing is generally less costly than
sending data (see [33, 34| for more on this). Despite these techniques, there are applications for wireless
networks that require transmission of large amounts of data even after processing. For instance, surveillance
applications that require sending significant amounts of data have been proposed involving image and video
data [35] such as in traffic monitoring [36] and transmitting biometric data in security scenarios [37] where
image data must be sent over wireless networks. Therefore, there are indeed applications where large
messages might be transmitted and we anticipate more such situations will arise in the future. Under such
scenarios, we would expect our algorithms to save substantially on bit complexity.

When considering large messages, there is also the issue of slot size to consider. Modifying time
division multiple access (TDMA) has been considered (see [38]) and it is possible that similar proposals
could be used to allow large messages to be sent within a single time slot without underutilizing bandwidth.
Alternatively, time slots could be reset by the dealer in order to accomodate large future transmissions;
the details of this would likely be application specific and we leave this as a topic for future work.

6 Future Work and Conclusion

We have designed new algorithms for achieving significant energy savings in radio networks. To achieve
these ends, we have defined and analyzed a novel data streaming problem which we call the Bad Santa
problem. We have shown how our results on this problem can be applied to the problem of reliable
broadcast in a grid radio network. Our algorithms for reliable broadcast on a grid consume significantly
less power than any other algorithms for this problem of which we are aware.
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Several open problems remain including: Can we close the gap between the upper and lower-bound

for the multi-round Bad Santa problem? Can we achieve more energy efficiency for the optimal number of
Byzantine faults? Can we tolerate more faults for the fail-stop model and still be energy efficient? Can we
tolerate more faults in the unknown source and message time scenario? Can we generalize our techniques
to radio networks that are not laid out on a two dimensional grid (perhaps classes of random graphs)? Are
there other applications for the Bad Santa problem both in and outside the domain of radio networks?
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