Byzantine Agreement in Polynomial Expected Time

Jared Saia

Joint with Valerie King

New Mexico

UNM CS Research

Group Decisions

- Periodically, components unite in a decision
- Idea: components vote. Problem: Who counts the votes?

Idea: Majority Filtering

Input

Output

Idea: Majority Filtering

Input

Output

Problem

Byzantine Agreement

- Each processor starts with a bit
- Goal: 1) all good procs output the same bit; and 2) this bit equals an input bit of a good proc

• t = # bad procs controlled by an adversary

Problem

All good procs always output same bit

Input

If majority bit held by >= 3 good procs, then all procs will output majority bit Input Output Byzantine 0 Agreement 0

Impossibility Result

 1982: FLP show that 1 fault makes deterministic BA impossible in asynch model

 2007: Nancy Lynch wins Knuth Prize for this result, called "fundamental in all of Computer Science"

Applications

Peer-to-peer networks

"These replicas cooperate with one another in a **Byzantine agreement** *protocol to choose the final commit order for updates."* [KBCCEGGRWWWZ '00]

• Rule Enforcement

"... requiring the manager set to perform a **Byzantine agreement protocol**" [NWD '03]

• Game Theory (Mediators)

"deep connections between implementing mediators and various agreement problems, such as Byzantine agreement" [ADH '08]

Applications

Peer-to-peer networks

"These replicas cooperate with one another in a **Byzantine agreement** *protocol to choose the final commit order for updates."* [KBCCEGGRWWWZ '00]

Rule Enforcement

"... requiring the manager set to perform a **Byzantine agreement protocol**" [NWD '03]

• Game Theory (Mediators)

"deep connections between implementing mediators and various agreement problems, such as Byzantine agreement" [ADH '08]

 Also: Databases, State Machine Replication, Secure Multiparty Computation, Sensor Networks, Cloud Computing, Control systems, etc.

Model

• Public channels

• Asynchronous

Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total

Previous Work

- **Time** is defined to be the maximum length of any chain of messages
- In '83, Ben-Or described the first algorithm to solve BA in this model
- His algorithm requires expected exponential time
- [Ben-Or et al., '06] : ``In the case of an asynchronous network, achieving even a polynomial rounds BA protocol is open."

Previous Work

- **Time** is defined to be the maximum length of any chain of messages Computation is instantaneous
- In '83, Ben-Or described the first algorithm to solve BA in this model
- His algorithm requires expected exponential time
- [Ben-Or et al., '06] : ``In the case of an asynchronous network, achieving even a polynomial rounds BA protocol is open."

Our Result

 First algorithm that runs in expected polynomial time in this model

• Our algorithm runs in expected O(n^{2.5}) time

THEOREM 1. Let n be the number of processors. There is a $t = \Theta(n)$ such that Byzantine Agreement can be solved in expected time $O(n^{2.5})$ and expected polynomial bits of communication, in the asynchronous message passing model with an adaptive, full-information adversary that controls up to t processors.

BA with Global Coin, GC Ben-Or's Algorithm

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If *fraction* >= 2/3, set vote to majority bit; else set vote to GC

BA with Global Coin, GC Ben-Or's Algorithm

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If *fraction* >= 2/3, set vote to majority bit; else set vote to GC

Output your vote

fraction >= 2/3. I'm voting for 0.

fraction < 2/3. I'm checking the coin.

fraction < 2/3. I'm checking the coin.

fraction $\ge 2/3$. I'm voting for 0.

Note: The procs with *fraction* >= 2/3 will all change vote to same value

fraction < 2/3. I'm checking the coin.

fraction >= 2/3. I'm voting for 0.

fraction < 2/3. I'm checking the coin.

fraction $\ge 2/3$. I'm voting for 0.

fraction < 2/3. I'm checking the coin.

fraction $\ge 2/3$. I'm voting for 0.

Once this happens, all votes of good procs will be equal evermore

fraction < 2/3. I'm checking the coin.

fraction >= 2/3. I'm voting for 0.

Once this happens, all votes of good procs will be equal evermore

Prob of failure $= (1/2)^{clogn}$

Once this happens, all votes of good procs will be equal evermore

Prob of failure $= (1/2)^{clogn}$

 $= 1/n^{c}$

Once this happens, all votes of good procs will be equal evermore

Prob of failure = $(1/2)^{clogn}$

 $= 1/n^{c}$

Prob of success $= 1 - 1/n^c$

Once this happens, all votes of good procs will be equal evermore

Prob of failure = $(1/2)^{clogn}$

 $= 1/n^{c}$

Prob of success = $(1 - 1/n^2)$ whp

Idea for fail-stop faults (see e.g. [AC '08])

- Flip n² coins. Let heads be +1 and tails be -1, and dev be the sum of all coins
- With constant probability, |dev| ≥ kn for any constant k
- If $|dev| \ge kn$
 - Direction of dev gives a fair global coin
 - Direction of dev is robust to loosing some coins

Key Idea

- Each proc flips n coins; deviation (dev) is the sum of all n²
- If dev \ge kn, direction of dev is a fair global coin
- Problem: Bad procs may lie about their coinflips
- Q: Can we determine which procs are bad by studying deviation of coinflips?

Deviation Probabilities

deviation

Deviation Probabilities

deviation

Key Idea

- With constant probability, the direction of **good** dev gives a fair global coin
- Bad nodes need to generate bad dev. in the opposite direction of equal magnitude to foil this good event
- Problem (for bad): There are fewer bad procs than good ones; if the few bad procs generate large amounts of bad dev. repeatedly, we can find them

Reliable Broadcast (Bracha)

- All coinflip values sent using reliable broadcast
- Ensures if a message is "received" by a good proc, same message is eventually "received" by all procs
- Prevents equivocation
- Doesn't solve BA
 - If a bad player reliably broadcasts, may be case that **no** good player "receives" the message

Coinflip Messages

- We can ensure the following:
 - Each processor broadcasts no more than n coinflips
 - Bad procs forced to be consistent about their coinflip values
 - Most (n-4t) good processors receive all but 2 coinflips from all good processors

Deviation

- We assume all coinflips are either +1 or -1
- The **deviation** of p in an iteration is the absolute value of the sum of p's coinflips
- The **direction** of p in an iteration is the sign of the sum of p's coinflips
- idev(S,i): absolute value of all coinflips sent by procs in S in iteration i

Perspective

- In reality, different processors may receive different sets of coinflips
- To be precise, we should have subscripts for terms like **idev** to indicate the n different perspectives
- In this talk, we omit subscripts and assume perspective of a processor that receives all coinflips

Iterations and Epochs

• In each iteration, we run Ben-Or

- There are cn iterations in an epoch
- In each epoch, we expect a constant fraction of iterations to be good i.e. dev. of good procs is ≥ B in right direction (B = c'n for a fixed c')

Iterations and Epochs

• In each iteration, we run Ben-Or

- There are cn iterations in an epoch
- In each epoch, we expect a constant fraction of iterations to be good i.e. dev. of good procs is ≥ B in right direction (B = c'n for a fixed c')
- In a good iteration, bad procs must have dev. $\ge B/2$
- (Remaining "good" deviation undone by scheduler)

Key fact

In every non-terminating epoch e, there is a set of c_2n iterations I_e and a set of $\leq t$ processors B_e , such that for all i in I_e :

 $idev(B_{e,i}) \ge B/2$

Bipartite Graph

Bipartite Graph

edge between each proc p and each iter i with weight = dvtn of p in iter i

iterations

processors

Bipartite Graph

cumdev(p)

- cumdev(p) starts at 0
- In each epoch, for every proc p in B_e, cumdev(p) += "deviation of each processor p in direction of B_e, summed over all iterations I_e"
- We blacklist any proc p when **cumdev(p)** exceeds n^{1.5}(ln n)

Algorithm

Algorithm

- Run an epoch (cn iterations of modified Ben-Or)
- If the epoch fails, find sets Be and Ie
- Increase cumdev scores for every proc in B_e by amount they contributed to dev in each iter in I_e
- Blacklist blacklist any proc p when cumdev(p) exceeds n^{1.5}(ln n)
- (We also blacklist any proc which has highly unlikely dev in any iteration (> c'n^{.5} log n))

cumdev facts

Let X be the sum of cumdev(p) for all procs p
Fact 1: X is upper bounded by ~n^{2.5}(ln n)
Fact 2: X increases by (B/2)c₂n ~ n² in every epoch Thus there are ~n^{.5}(ln n) epochs

Lemma 12

Lemma 12: Assume the number of blacklisted procs is $\leq t$. Then in every non-terminating epoch e, there is a set of c_2n iterations I_e and a set of $\leq t$ processors B_e , such that for all i in I_e :

 $idev(B_{e,i}) \ge B/2$

Lemma 14

• Lemma 14: The number of blacklisted good procs is no more than t (whp).

 Let GOOD be the set of good procs, BAD be set of bad procs; cumdev(S,e) = amount added to cumdev for all procs in S in epoch e

- Let GOOD be the set of good procs, BAD be set of bad procs; cumdev(S,e) = amount added to cumdev for all procs in S in epoch e
- Lemma 13: Whp, for any epoch e, cumdev(GOOD,e) ≤ (B/5)c₂n

- Let GOOD be the set of good procs, BAD be set of bad procs; cumdev(S,e) = amount added to cumdev for all procs in S in epoch e
- Lemma 13: Whp, for any epoch e, cumdev(GOOD,e) ≤ (B/5)c₂n

- Fact 2: X increases by (B/2)c₂n in every epoch
- Thus: cumdev(BAD \cap Be,e) \geq (3 B/10)c₂n

• cumdev(GOOD,e) increases by $\leq (2 \text{ B}/10)c_2n$

• cumdev(BAD \cap B_e,e) increases by $\geq (3 \text{ B}/10)c_2n$

• You can see where this is going!

Proof of Lemma 13

• Let $G = GOOD \cap B_e$

- Fix a set G, a set I_e and a mapping, d, from iterations in I_e to {-1,+1}
- Let Y = sum of coins generated by G in iterations I_e in directions given by d

Proof of Lemma 13

Lemma 13: Whp, for any epoch e, **cumdev(GOOD,e)** $\leq (B/5)c_2n$

- Let $G = GOOD \cap B_e$
- Fix a set G, a set I_e and a mapping, d, from iterations in I_e to {-1,+1}
- Let Y = sum of coins generated by G in iterations I_e in directions given by d

Proof of Lemma 13

Lemma 13: Whp, for any epoch e, **cumdev(GOOD,e) \leq (B/5)c_2n**

- Let $G = GOOD \cap B_e$
- Fix a set G, a set I_e and a mapping, d, from iterations in I_e to {-1,+1}
- Let Y = sum of coins generated by G in iterations I_e in directions given by d

We use Y to bound amount added to **cumdev**(G) in epoch e

Bounding Y

Chernoff bound

 $Pr(Y \ge (\beta/6)(c_2n)) \le e^{-(c_2n\beta/6)^2/2(|G|c_2n^2)} \\ \le e^{-.026c_2n^2/t}$

Bounding Y

Chernoff bound

 $Pr(Y \ge (\beta/6)(c_2n)) \le e^{-(c_2n\beta/6)^2/2(|G|c_2n^2)} \\ \le e^{-.026c_2n^2/t}$

Let ξ be event that $Y \ge (\beta/6)(c_2n)$ for any G, I_e , and mapping d

- $\binom{cn}{c_2n} \leq (ce/c_2)^{c_2n}$ ways to pick the iterations I_e
- $\sum_{i=1}^{t} \binom{n}{i} \leq 2^n$ ways to pick the set G

• $2^{c_2 n}$ ways to pick the mapping d

Let ξ be event that $Y \ge (\beta/6)(c_2n)$ for any G, I_e , and mapping d

- $\binom{cn}{c_2n} \leq (ce/c_2)^{c_2n}$ ways to pick the iterations I_e
- $\sum_{i=1}^{t} \binom{n}{i} \leq 2^{n}$ ways to pick the set G

• 2^{c_2n} ways to pick the mapping d

Union Bound

$$Pr(\xi) \leq (ce/c_2)^{c_2n} 2^n 2^{c_2n} e^{-.026c_2n^2/t}$$

$$\leq e^{11c_2n - (.026c_2n^2/t)}$$

$$\leq e^{-\Omega(n)} \quad \text{Setting } n/t \geq 500$$

Union Bound

$$Pr(\xi) \leq (ce/c_2)^{c_2n} 2^n 2^{c_2n} e^{-.026c_2n^2/t}$$

$$\leq e^{11c_2n - (.026c_2n^2/t)}$$

$$\leq e^{-\Omega(n)} \quad \text{Setting } n/t \geq 500$$

Another union bound over the polynomial number of epochs and (views of) all good procs completes the proof.

Conclusion

- First expected polynomial time algorithm for traditional Byzantine agreement
- Previous best algorithm (Ben-or's) was expected exponential time
- New technique: design of algorithms that force attackers into **statistically** deviant behavior that is detectable

Open Problems

- Can we improve resilience (currently we must have t ≤ n/500)
- Our algorithm requires exponential computation. Can we reduce this to polynomial computation?
 - Computational problem is similar to finding a hidden high-weight subgraph
- Can we improve other randomized algorithms by forcing bad procs into detectably deviant behavior?

Questions

