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1 Introduction

Web content is under attack by state and corporate efforts to censor it, for political and commercial
reasons [12, 27, 39]. Peer-to-peer networks are considered more robust against censorship than standard
web servers [28]. However, while it is true that many suggested peer-to-peer architectures are fairly
robust against random faults, the censors can attack carefully chosen weak points in the system. For
example, the Napster [38] file sharing system has been effectively dismembered by legal attacks on the
central server. Additionally, the Gnutella [37] file sharing system, while specifically designed to avoid
the vulnerability of a central server, is highly vulnerable to attack by removing a very small number of
carefully chosen nodes [33].

A more principled approach than the centralized approach taken by Napster or the broadcast search
mechanism of Gnutella is the use of a distributed hash table [36]. A distributed hash table(DHT) is
a distributed, scalable, indexing scheme for peer-to-peer networks. Plaxton, Rajaram and Richa [30]
give a scheme to implement a distributed hash table (prior to its definition) in a web cache environment.
Subsequent distributed hash tables have been suggested in [36, 31, 30, 40, 22, 24]. In the next two
subsections, we give details of our two results: a DHT which is robust to adversarial node deletion and
a DHT which is spam resistant.

1.1 Resistance to Adversarial Node Deletion

We present a distributed hash table with n nodes used to store n distinct data items. The scheme is robust
to adversarial deletion of up to half of the nodes in the network and has the following properties:

1. With high probability, all but an arbitrarily small fraction of the nodes can find all but an arbitrarily
small fraction of the data items.

2. Search takes (parallel) time O(logn).

3. Search requires O(log2 n) messages in total.

4. Every node requires O(logn) storage.

Some Remarks: For simplicity, we’ve assumed that the number of items and the number of nodes
is equal. However, for any n nodes and m ≥ n data items, our scheme will work, where the search
time remains O(logn), the number of messages remains O(log2 n), and the storage requirements are
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O(logn×m/n) per node. Also for simplicity, we give our results and proofs for the case where the
adversary deletes up to a 1/2 fraction of the nodes. However we can easily modify our scheme to work
for any constant less than 1. This would change the constants involved in storage, search time, and
messages sent, by a constant factor.

As stated above, in the context of state or corporate attempts at censorship, it seems reasonable to
consider adversarial attacks rather than random deletion. Our scheme is a distributed hash table that is
robust against adversarial deletion of a 1/2 fraction of the nodes. We remark that such a network is
clearly resilient to having up to 1/2 of the nodes removed at random, (in actuality, its random removal
resiliency is much better). We further remark that if nodes come up and down over time, our network
will continue to operate as required so long as, at any point in time, at least n/2 of the nodes are alive.

Finally, we note that in our model, it is unavoidable that after an attack some nodes may not be
able to reach any data items and that some data items may not be able to be reachable by any nodes.
In particular, if all nodes store only O(logn) pointers, then for any algorithm, the adversary can easily
target a set, T , of O(n/ logn) nodes and then delete all the nodes that are neighbors of any node in the
set T . The nodes in T will then be completely isolated and unable to reach any data items. Similarly, the
adversary can target some set of O(n/ logn) of the data items, and then delete all nodes on which those
data items are stored, ensuring that no node will be able to reach any data item in this targeted set. Thus,
the robustness of our algorithm is optimal up to a logn factor among all algorithms that are scalable, in
the sense that the each node requires O(logn) storage.

1.2 Spam Resistance

Spamming has been a problem with peer-to-peer networks [7, 8]. Because the data items reside in the
nodes of the network, and pass through nodes while in transit, it is possible for nodes to invent alternative
data and pass it on as though it was the sought after data item.

We now describe a spam resistant variant of our distributed hash table. To the best of our knowledge
this is the first such scheme of its kind. As before, assume n nodes used to store n distinct data items.
The adversary may choose up to some constant c < 1/2 fraction of the nodes in the network. These
nodes under adversary control may be deleted, or they may collude and transmit arbitrary false versions
of the data item, nonetheless:

1. With high probability, all but an arbitrarily small fraction of the nodes will be able to obtain all but
an arbitrarily small fraction of the true data items. To clarify this point, the search will not result
in multiple items, one of which is the correct item. The search will result in one unequivocal true
item.

2. Search takes (parallel) time O(logn).

3. Search requires O(log3 n) messages in total.

4. Every node requires O(log2 n) storage.

The rest of our paper is structured as follows. We review related work in Section 2. We give the
algorithm for creation of our robust distributed hash table, the search mechanism, and properties of the
distributed hash table in Section 3. The proof of our main theorem, Theorem 3.1, is given in Section 4. In
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Section 5 we sketch the modifications required in the algorithms and the proofs to obtain spam resistance,
the main theorem with regard to spam resistant distributed hash tables is Theorem 5.1. We conclude and
give directions for future work in Section 6. Acknowledgements are in section 7.

2 Related Work

2.1 Distributed Hash Tables – Adversarial Deletions and Byzantine Faults

The work described in this paper was first published in [10]. Work subsequent to this publication has
improved on the deletion-resistant network in various ways. Mayur Datar [9] gives a distributed hash
table based on the multibutterfly network which improves in two ways on our deletion-resistant net-
work. First, he improves on our resource costs by requiring only O(logn) messages per query and O(1)
pointers to be stored at each node in the network. Second, he shows how his network can be maintained
dynamically when large numbers of nodes are added or deleted from the network. Unfortunately, his
techniques do not carry over to the creation and maintenance of a spam-resistant network.

There is also subsequent work related to designing DHTs which are robust to Byzantine faults. Naor
and Wieder describe a simple DHT which is robust to each node suffering a Byzantine fault indepen-
dently with some fixed probability [26]. Hildrum and Kubiatowicz [15] describe how to modify two
popular DHTs, Pastry [32] and Tapestry [40], in order to make them robust to this same type of attack.
More recent work addresses the problem of designing DHTs which are robust to many Byzantine peers
joining and leaving the network over a long period of time [4, 5, 34, 11].

2.2 Distributed Hash Tables – Random Deletions

Recent years have witnessed the advent of large scale real-world peer-to-peer applications such as eDon-
key, BitTorrent, Morpheus, Kazaa, Gnutella, and many others. These networks can have on the order of
hundreds of thousands or even millions of nodes in them. Several distributed hash tables (DHTs) have
been introduced which are shown empirically and analytically to be robust to random peer deletions (i.e.
fail-stop faults) [31, 36, 40, 32, 17, 22, 24].

Experimental measurements of a connected component of the real Gnutella network have been stud-
ied ([33]), and it has been found to still contain a large connected component even with a 1/3 fraction of
random node deletions.

2.3 Faults on Networks

2.3.1 Random Faults

There is a large body of work on node and edge faults that occur independently at random in a general
network. Håstad, Leighton and Newman ([14]) address the problem of routing when there are node and
edge faults on the hypercube which occur independently at random with some probability p < 1. They
give a O(logn) step routing algorithm that ensures the delivery of messages with high probability even
when a constant fraction of the nodes and edges have failed. They also show that a faulty hypercube can
emulate a fault-free hypercube with only constant slowdown.
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Karlin, Nelson and Tamaki ([16]) explore the fault tolerance of the butterfly network against edge
faults that occur independently at random with probability p. They show that there is a critical probabil-
ity p∗ such that if p is less than p∗, the faulted butterfly almost surely contains a linear-sized component
and that if p is greater than p∗, the faulted butterfly does not contain a linear sized component.

Leighton, Maggs and Sitamaran ([18]) show that a butterfly network whose nodes fail with some
constant probability p can emulate a fault-free network of the same size with a slowdown of 2O(log∗ n).

2.3.2 Adversarial Faults

It is well known that many common network topologies are not resistant to a linear number of adversarial
faults. With a linear number of faults, the hypercube can be fragmented into components all of which
have size no more than O(n/

√
logn) ([14]). The best known lower bound on the number of adversarial

faults a hypercube can tolerate and still be able to emulate a fault free hypercube of the same size is
O(logn) ([14]).

Leighton, Maggs and Sitamaran ([18]) analyze the fault tolerance of several bounded degree net-
works. One of their results is that any n node butterfly network containing n1−ε (for any constant ε > 0)
faults can emulate a fault free butterfly network of the same size with only constant slowdown. The
same result is given for the shuffle-exchange network.

2.4 Other Related Work

One attempt at censorship resistant web publishing is the Publius system ([23]), while this system has
many desirable properties, it is not a peer-to-peer network. Publius makes use of many cryptographic
elements and uses Shamir’s threshold secret sharing scheme ([35]) to split the shares amongst many
servers. When viewed as a peer-to-peer network, with n nodes and n data items, to be resistant to n/2
adversarial node removals, Publius requires Ω(n) storage per node and Ω(n) search time per query.

Alon et al. ([1]) give a method which safely stores a document in a decentralized storage setting
where up to half the storage devices may be faulty. The application context of their work is a storage
system consisting of a set of servers and a set of clients where each client can communicate with all the
servers. Their scheme involves distributing specially encoded pieces of the document to all the servers
in the network.

Aumann and Bender ([3]) consider tolerance of pointer-based data structures to worse case memory
failures. They present fault tolerant variants of stacks, lists and trees. They give a fault tolerant tree with
the property that if r adversarial faults occur, no more than O(r) of the data in the tree is lost. This fault
tolerant tree is based on the use of expander graphs.

Quorum systems ([13, 20, 21]) are an efficient, robust way to read and write to a variable which is
shared among n servers. Many of these systems are resistant up to some number b < n/4 of Byzantine
faults. The key idea in such systems is to create subsets of the servers called quorums in such a way that
any two quorums contain at least 2b + 1 servers in common. A client that wants to write to the shared
variable will broadcast the new value to all servers in some quorum. A client that wants to read the
variable will get values from all members in some quorum and will keep only that value which has the
most recent time stamp and is returned by at least b+1 servers. For quorum systems that are resistant to
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Figure 1: The butterfly network of supernodes.

Θ(n) faults the load on the servers can be high. In particular, Θ(n) servers will be involved in a constant
fraction of the queries.

Recently Malkhi et. al. [21] have introduced a probabilistic quorum system. This new system relaxes
the constraint that there must be 2b+1 servers shared between any two quoroms and remains resistant to
Byzantine faults only with high probability. The load on servers in the probabilistic system is less than
the load in the deterministic system. Nonetheless, for a probabilistic quorum system which is resistant
to Θ(n) faults, there still will be at least one server involved in a constant fraction of the queries.

3 Our Distributed Hash Table

We now state our mechanism for providing indexing of n data items by n nodes in a network that is
robust to removal of any n/2 of the nodes. We make use of a butterfly network of depth logn− log logn,
we call the nodes of the butterfly network supernodes (see Figure 1). Every supernode is associated
with a set of nodes. We call a supernode at the topmost level of the butterfly a top supernode, one at the
bottommost level of the network a bottom supernode and one at neither the topmost or bottommost level
a middle supernode.

3.1 The Network

To construct the network we do the following:

• We choose an error parameter ε > 0, and as a function of ε we determine constants C, B, T , D, α

and β . (See Theorem 3.1).
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Figure 2: The expander graphs between supernodes.

• Every node chooses uniformly and independently at random C top supernodes, C bottom supern-
odes and C logn middle supernodes to which it will belong.

• Between two sets of nodes associated with two supernodes connected in the butterfly network, we
choose a random constant degree expander graph of degree D (see Figure 2). (We do this only if
both sets of nodes are of size at least αC lnn and no more than βC lnn.)

• We also map the n data items to the n/ logn bottom supernodes in the butterfly. Every one of the
n data items is hashed to B random bottom supernodes. (Typically, we would not hash the entire
data item but only it’s title, e.g., “Singing in the Rain”). 1

• The data item is stored in all the component nodes of all the (bottom) supernodes to which it has
been hashed (if any bottom supernode has more than βB lnn data items hashed to it, it drops out
of the network.)

• In addition, every one of the nodes chooses uniformly and independently at random T top supern-
odes of the butterfly and points to all component nodes of these supernodes.

3.2 Search

To perform a search for a data item, starting from node v, we do the following:

1We use the random oracle model ([6]) for this hash function, it would have sufficed to have a weaker assumption such as
that the hash function is expansive.
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1. Take the hash of the data item and interpret it as a sequence of indices i1, i2, . . . , iB, 0≤ i`≤ n/ logn.

2. Let t1, t2, . . . , tT be the top supernodes to which v points.

3. Repeat in parallel for all values of k between 1 and T :

(a) Let ` = 1.

(b) Repeat until successful or until ` > B:

i. Follow the path from tk to the supernode at the bottom level whose index is i`:
• Transmit the query to all of the nodes in tk. Let W be the set of all such nodes.
• Repeat until a bottom supernode is reached:

– The nodes in W transmit the query to all of their neighbors along the (unique)
butterfly path to i`. This transmission is done along the expander edges connect-
ing the nodes in W to their neighbors in the supernode below. Let W be the new
set of nodes in the supernode below the old W .

• When the bottom supernode is reached, fetch the content from whatever node has
been reached.

• The content, if found, is transmitted back along the same path as the query was
transmitted downwards.

ii. Increment `.

3.3 Properties of our Distributed Hash Table

Following is the main theorem which we will prove in Section 4.

Theorem 3.1. For all ε > 0, there exist constants k1(ε), k2(ε), k3(ε) which depend only on ε such that

• Every node requires k1(ε) logn memory.

• Search for a data item takes no more than k2(ε) logn time.

• Search for a data item requires no more than k3(ε) log2 n messages.

• All but εn nodes can reach all but εn data items.

3.4 Some Comments

1. Distributed creation of our Distributed Hash Table

We note that our Distributed Hash Table can be created in a fully distributed fashion with n broad-
casts or transmission of n2 messages in total and assuming O(logn) memory per node. We briefly
sketch the protocol that a particular node will follow to do this. The node first randomly chooses
the supernodes to which it belongs. Let S be the set of supernodes which neighbors supernodes to
which the node belongs. For each s ∈ S, the node chooses a set Ns of D random numbers between
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1 and βC lnn. The node then broadcasts a message to all other nodes which contains the identifiers
of the supernodes to which the node belongs.

Next, the node will receive messages from all other nodes giving the supernodes to which they
belong. For every s ∈ S, the node will link to the i-th node that belongs to s from which it receives
a message if and only if i ∈ Ns.

If for some supernode to which the node belongs, the node receives less than αC lnn or greater than
βC lnn messages from other nodes in that supernode, the node removes all out-going connections
associated with that supernode. Similarly, if for some supernode in S, the node receives less than
αC lnn or greater than βC lnn messages from other nodes in that supernode, the node removes
all out-going connections to that neighboring supernode. Connections to the top supernodes and
storage of data items can be handled in a similar manner.

2. Insertion of a New Data Item

One can insert a new data item simply by performing a search, and sending the data item along
with the search. The data item will be stored at the nodes of the bottommost supernodes in the
search. We remark that such an insertion may fail with some small constant probability.

3. Insertion of a New Node

Our network does not have an explicit mechanism for node insertion. It does seem that one could
insert the node by having the node choose at random appropriate supernodes and then forging
the required random connections with the nodes that belong to neighboring supernodes. The
technical difficulty with proving results about this insertion process is that not all live nodes in
these neighboring supernodes may be reachable and thus the probability distributions become
skewed.

We note though that a new node can simply copy the links to top supernodes of some other node
already in the network and will thus very likely be able to access almost all of the data items.
This insertion takes O(logn) time. Of course the new node will not increase the resiliency of
the network if it inserts itself in this way. We assume that a full reorganization of the network is
scheduled whenever sufficiently many new nodes have been added in this way.

4. Load Balancing Properties

Because the data items are searched for along a path from a random top supernode to the bottom
supernodes containing the item, and because these bottom supernodes are chosen at random, the
load will be well balanced as long as the number of requests for different data items is itself
balanced. This follows because a uniform distribution on the search for data items translates to a
uniform distribution on top to bottom paths through the butterfly.

5. Reducing Storage Costs

The scheme described stores each data item in Θ(logn) nodes, resulting an Θ(logn) blowup of
space for storing the data items. We note that, in practice, it is possible to reduce the space required
for the data items by using erasure codes. In particular, instead of storing a copy of the data item
at each of the Θ(logn) nodes, we would just store an encoded piece of the data item with rate
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Figure 3: Traversal of a path through the butterfly.

determined by our desired degree of fault tolerance. This would result in only a constant-factor
blowup in storage without any loss in other performance measures. Any standard erasure code,
such as tornado codes [19], can be used to achieve this reduction. We note that even with this
change, each node will still require Θ(logn) memory to store pointers to other nodes.

4 Proofs

4.1 Proof Overview

Technically, the proof makes extensive use of random constructions and the Probabilistic Method
[2].

We first consider the supernodes created in section 3.1. In sections 4.4 and 4.5, we show that with
high probability, all but an arbitrarily small constant times n/ logn of the supernodes are good, where
good means that (a) they have O(logn) nodes associated with them, and, (b) they have Ω(logn) live
nodes after adversarial deletion. This implies that all but a small constant fraction of the paths through
the butterfly contain only good supernodes.

We now consider the search protocol described in section 3.2. Search is preformed by broadcasting
the search to all the nodes in (a constant number of) top supernodes, followed by a sequence of broadcasts
between every successive pair of supernodes along the paths between one of these top supernodes and
a constant number of bottom supernodes. Fix one such path. The broadcast between two successive
supernodes along the path makes use of the expander graph connecting these two supernodes. When we
broadcast from the live nodes in a supernode to the following supernode, the nodes that we reach may
be both live and dead (see Figure 3).

We now sketch the proof, given in sections 4.6 and 4.7, that the search algorithm works correctly.
Assume that we broadcast along a path, all of whose supernodes are good. One problem is that we are
not guaranteed to reach all the live nodes in the next supernode along the path. Instead, we reduce our
requirements to ensure that at every stage, we reach at least δ logn live nodes, for some constant δ . The
crucial observation is that if we broadcast from δ logn live nodes in one supernode, we are guaranteed
to reach at least δ logn live nodes in the subsequent supernode, with high probability. This follows by
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using the expansion properties of the bipartite expander connection between two successive supernodes.
Recall that the nodes are connected to a constant number of random top supernodes, and that the

data items are stored in a constant number of random bottom supernodes. The fact that we can broadcast
along all but an arbitrarily small fraction of the paths in the butterfly implies that most of the nodes can
reach most of the content.

In several statements of the lemmata and theorems in this section, we require that n, the number of
nodes in the network, be sufficiently large to get our result. We note that, technically, this requirement
is not necessary since if it fails then n is a constant and our claims trivially hold.

4.2 Definitions

Definition 4.1. A top or middle supernode is said to be (α,β )-good if it has at most β logn nodes
mapped to it and at least α logn nodes which are not under control of the adversary.

Definition 4.2. A bottom supernode is said to be (α,β )-good if it has at most β logn nodes mapped to
it and at least α logn nodes which are not under control of the adversary and if there are no more than
βB lnn data items that map to the node.

Definition 4.3. An (α,β )-good path is a path through the butterfly network from a top supernode to a
bottom supernode all of whose supernodes are (α,β )-good supernodes.

Definition 4.4. A top supernode is called (γ,α,β )-expansive if there exist γn/ logn (α,β )-good paths
that start at this supernode.

4.3 Technical Lemmata

Following are three technical lemmata about bipartite expanders that we will use in our proofs. The
proof of the first lemma is well known [29] (see also [25]) and the proof of the next two lemmata are
slight variants on the proof of the first. The proofs of all three lemmata are included in Appendix A for
completeness.

Lemma 4.5. Let l,r, l′,r′,d and n be any positive values where l′ ≤ l and r′ ≤ r and

d ≥ r
r′l′

(
l′ ln

(
le
l′

)
+ r′ ln

(re
r′

)
+2lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability at least 1−1/n2, any subset
of L of size l′ shares an edge with any subset of R of size r′ .

Lemma 4.6. Let l,r, l′,r′,d,λ and n be any positive values where l′ ≤ l, r′ ≤ r, 0 < λ < 1 and

d ≥ 2r
r′l′(1−λ )2

(
l′ ln

(
le
l′

)
+ r′ ln

(re
r′

)
+2lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability at least 1−1/n2, for any
set L′ ⊂ L where |L′|= l′, there is no set R′ ⊂ R, where |R′|= r′ such that all nodes in R′ share less than
λ l′d/r edges with L′.
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Lemma 4.7. Let l,r,r′,d,β ′ and n be any positive values where l′ ≤ l, β ′ > 1 and

d ≥ 4r
r′l(β ′−1)2

(
r′ ln

(re
r′

)
+2lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability at least 1−1/n2, there is
no set R′ ⊂ R, where |R′|= r′ such that all nodes in R′ have degree greater than β ′ld/r.

4.4 (α,β )-good Supernodes

Lemma 4.8. Let α,δ ′,n be values where α < 1/2 and δ ′ > 0 and let k(δ ′,α) be a value that depends
only on α,δ ′ and assume n is sufficiently large. Let each node participate in k(δ ′,α) lnn random middle
supernodes. Then removing any set of n/2 nodes still leaves all but δ ′n/ lnn middle supernodes with at
least αk(δ ′,α) lnn live nodes.

Proof. For simplicity, we will assume there are n middle supernodes (we can throw out any excess
supernodes).

Let l = n, l′ = n/2, r = n, r′ = δ ′n/ lnn, λ = 2α and d = k(δ ′,α) lnn in Lemma 4.6. We want
probability less than 1/n2 of being able to remove n/2 nodes and having a set of δ ′n/ lnn supernodes
all with less than αk(δ ′,α) lnn live nodes. This happens provided that the number of connections from
each supernode is bounded as in Lemma 4.6:

k(δ ′,α) lnn ≥ 4lnn
δ ′n(1−2α)2

(
n ln(2e)

2
+

δ ′n
lnn

· ln
(

lnn
δ ′

)
+2lnn

)
=

2ln(2e) · lnn
δ ′(1−2α)2 +o(1);

⇐⇒ k(δ ′,α) ≥ 2ln(2e)
δ ′(1−2α)2 +o(1).

Lemma 4.9. Let β ,δ ′,n,k be values such that β > 1, δ ′ > 0 and assume n is sufficiently large. Let each
node participate in k lnn of the middle supernodes, chosen uniformly at random. Then all but δ ′n/ lnn
middle supernodes have less than βk lnn participating nodes with probability at least 1−1/n2.

Proof. For simplicity, we will assume there are n middle supernodes (we can throw out any excess
supernodes and the lemma will still hold). Let l = n, r = n, r′ = δ ′n/ lnn, d = k lnn and β ′ = β in
Lemma 4.7. Then the statement in this lemma holds provided that:

k lnn ≥ 4lnn
δ ′n(β −1)2

(
δ ′n
lnn

· ln
(

lnn
δ ′

)
+2lnn

)
;

⇐⇒ k ≥ 4
(β −1)2 lnn

· ln
(

lnn
δ ′

+
2

δ ′n

)
.

THEORY OF COMPUTING, Volume 0 (2007), pp. 78–101 89



A. FIAT AND J. SAIA

The right hand side of this equation goes to 0 as n goes to infinity.

Lemma 4.10. Let α,δ ′,n be values such that α < 1/2, δ ′ > 0 and let k(δ ′,α) be a value that depends
only on δ ′ and α and assume n is sufficiently large. Let each node participate in k(δ ′,α) top (bottom)
supernodes. Then removing any set of n/2 nodes still leaves all but δ ′n/ lnn top (bottom) supernodes
with at least αk(δ ′,α) lnn live nodes.

Proof. Let l = n, l′ = n/2, r = n/ lnn, r′ = δ ′n/ lnn, λ = 2α and d = k(δ ′,α) in Lemma 4.6. We want
probability less than 1/n2 of being able to remove n/2 nodes and having a set of δ ′n/ lnn supernodes all
with less than αk(δ ′,α) lnn live nodes. We get this provided that the number of connections from each
supernode is bounded as in Lemma 4.6:

k(δ ′,α) ≥ 4
δ ′n(1−2α)2

(
n ln(2e)

2
+

δ ′n
lnn

· ln(1/δ
′)+2lnn

)
=

2ln(2e)
δ ′(1−2α)2 +o(1).

Lemma 4.11. Let β ,δ ′,n,k be values such that β > 1, δ ′ > 0 and n is sufficiently large. Let each node
participate in k of the top (bottom) supernodes (chosen uniformly at random). Then all but δ ′n/ lnn top
(bottom) supernodes consist of less than βk lnn nodes with probability at least 1−1/n2.

Proof. Let l = n, r = n/ lnn, r′ = δ ′n/ lnn, d = k and β ′ = β in Lemma 4.7. Then the statement in this
lemma holds provided that:

k ≥ 4
δ ′n(β −1)2

(
δ ′n
lnn

· ln
( e

δ ′

)
+2lnn

)
=

4
lnn(β −1)2 ·

(
ln

( e
δ ′

)
+

2lnn
δ ′n

)
.

The right hand side of this equation goes to 0 as n goes to infinity.

Corllary 4.12. Let β ,δ ′,n,k be values such that β > 1, δ ′ > 0 and n is sufficiently large. Let each data
item be stored in k of the bottom supernodes (chosen uniformly at random). Then all but δ ′n/ lnn bottom
supernodes have less than βk lnn data items stored on them with probability at least 1−1/n2.

Proof. Let the data items be the left side of a bipartite graph and the bottom supernodes be the right
side. The proof is then the same as Lemma 4.11.
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Corllary 4.13. Let δ ′ > 0, α < 1/2, β > 1. Let k(δ ′,α), be a value depending only on δ ′ and assume
n is sufficiently large. Let each node appear in k(δ ′,α) top supernodes, k(δ ′,α) bottom supernodes
and k(δ ′,α) lnn middle supernodes. Then all but δ ′n of the supernodes are (αk(δ ′,α),βk(δ ′,α))-good
with probability 1−O(1/n2).

Proof. Use

k(δ ′,α) =
10
3
· 2ln(2e)

δ ′(1−2α)2

in Lemma 4.10. Then we know that no more than 3δ ′n/(10lnn) top supernodes and no more than
3δ ′n/(10lnn) bottom supernodes have less than αk(δ ′,α) lnn live nodes. Next plugging k(δ ′,α) into
Lemma 4.8 gives that no more than 3δ ′n/(10lnn) middle supernodes have less than αk(δ ′,α) lnn live
nodes.

Next using k(δ ′,α) in Lemma 4.11 and Lemma 4.9 gives that no more than δ ′n/(20lnn) of the
supernodes can have more than βk(δ ′,α) lnn nodes in them. Finally, using k(δ ′,α) in Lemma 4.12
gives that no more than δ ′n/(20lnn) of the bottom supernodes can have more than βk(δ ′,α) lnn data
items stored at them. If we put these results together, we get that no more than δn/ lnn supernodes are
not (αk(δ ′,α),βk(δ ′,α))-good with probability 1−O(1/n2)

4.5 (γ,α,β )-expansive Supernodes

Theorem 4.14. Let δ > 0, α < 1/2, 0 < γ < 1, β > 1. Let k(δ ,α,γ) be a value depending only
on δ ,α,γ and assume n is sufficiently large. Let each node participate in k(δ ,α,γ) top supernodes,
k(δ ,α,γ) bottom supernodes and k(δ ,α,γ) lnn middle supernodes. Then all but δn/ lnn top supernodes
are (γ,αk(δ ,α),βk(δ ,α))-expansive with probability 1−O(1/n2).

Proof. Assume that for some particular k(δ ,α,γ) that more than δn/ lnn top supernodes are not (γ,αk(δ ,α,γ),βk(δ ,α,γ)-
-expansive. Then each of these bad top supernodes has (1−γn)/ lnn paths that are not (αk(δ ,α,γ),βk(δ ,α,γ))-
good. So the total number of paths that are not (αk(δ ,α,γ),βk(δ ,α,γ))-good is more than

δ (1− γ)n2

ln2 n
.

We will show there is a k(δ ,α,γ) such that this event will not occur with high probability. Let
δ ′ = δ (1− γ) and let

k(δ ,α,γ) =
10
3
· 2ln(2e)

δ (1− γ)(1−2α)2 .

Then we know by Lemma 4.13 that with high probability, there are no more than δ (1− γ)n/ lnn
supernodes that are not (αk(δ ,α,γ),βk(δ ,α,γ))good. We also know that each of these supernodes
which are not good cause at most n/ lnn paths in the butterfly to be not (αk(δ ,α,γ),βk(δ ,α,γ))-
good. Hence the number of paths that are not (αk(δ ,α,γ),βk(δ ,α,γ))-good is no more than δ (1−
γ)n2/(ln2 n) which is what we wanted to show.

THEORY OF COMPUTING, Volume 0 (2007), pp. 78–101 91



A. FIAT AND J. SAIA

4.6 (α,β )-good Paths to Data Items

We will use the following lemma to show that almost all the nodes are connected to some appropriately
expansive top supernode.

Lemma 4.15. Let δ > 0, ε > 0 and n be sufficiently large. Then exists a constant k(δ ,ε) depending only
on ε and δ such that if each node connects to k(δ ,ε) random top supernodes then with high probability,
any subset of the top supernodes of size (1−δ )n/ lnn can be reached by at least (1− ε)n nodes.

Proof. We imagine the n nodes as the left side of a bipartite graph and the n/ lnn top supernodes as the
right side and an edge between a node and a top supernode in this graph if and only if the node and
supernode are connected.

For the statement in the lemma to be false, there must be some set of εn nodes on the left side of the
graph and some set of (1− δ )n/ lnn top supernodes on the right side of the graph that share no edge.
We can find k(δ ,ε) large enough that this event occurs with probability no more than 1/n2 by plugging
in l = n, l′ = εn, r = n/ lnn and r′ = (1−δ )(n/ lnn) into Lemma 4.5. The bound found is:

k(δ ,ε) ≥ 1
(1−δ )εn

(
εn · ln

( e
ε

)
+

(1−δ )n
lnn

· ln
(

e
(1−δ )

)
+2lnn

)
,

=
ln

( e
ε

)
1−δ

+o(1).

We will use the following lemma to show that if we can reach γ bottom supernodes that have some
live nodes in them that we can reach most of the data items.

Lemma 4.16. Let γ,n,ε be any positive values such that ε > 0, γ > 0. There exists a k(ε,γ) which
depends only on ε,γ such that if each bottom supernode holds k(ε,γ) lnn random data items, then any
subset of bottom supernodes of size γn/ lnn holds (1− ε)n unique data items.

Proof. We imagine the n data items as the left side of a bipartite graph and the n/ lnn bottom supernodes
as the right side and an edge between a data item and a bottom supernode in this graph if and only if the
supernode contains the data item. The bad event is that there is some set of γn/ lnn supernodes on the
right that share no edge with some set of εn data items on the right. We can find k(ε,γ) large enough
that this event occurs with probability no more than 1/n2 by plugging in l = n, l′ = εn into r = n/ lnn,
r′ = γn/ lnn into Lemma 4.5. We get:

k(ε,γ) lnn ≥ lnn
εγn

(
γn
lnn

· ln e
γ

+ εn · ln e
ε

+2lnn
)

;

⇐⇒ k(ε,γ) ≥ 1
γ
· ln e

ε
+o(1).
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4.7 Connections between (α,β )-good supernodes

Lemma 4.17. Let α,β ,α ′,n be any positive values where α ′ < α , α > 0 and let C be the number of
supernodes to which each node connects. Let X and Y be two supernodes that are both (αC,βC)-good.
Let each node in X have edges to k(α,β ,α ′) random nodes in Y where k(α,β ,α ′) is a value depending
only on α,β and α ′. Then with probability at least 1−1/n2, any set of α ′C lnn nodes in X has at least
α ′C lnn live neighbors in Y

Proof. Consider the event where there is some set of α ′C lnn nodes in X which do not have α ′C lnn
live neighbors in Y . There are αC lnn live nodes in Y so for this event to happen, there must be some
set of (α − α ′)C lnn live nodes in Y that share no edge with some set of α ′d lnn nodes in X . We
note that the probability that there are two such sets which share no edge is largest when X and Y
have the most possible nodes. Hence we will find a k(α,β ,α ′) large enough to make this bad event
occur with probability less than 1/n2 if in Lemma 4.5 we set l = βC lnn, r = βC lnn, l′ = α ′C lnn and
r′ = (α−α ′)C lnn. When we do this, we get that k(α,β ,α ′) must be greater than or equal to:(

β

α ′(α−α ′)

)
·
(

α
′ ln

(
βe
α ′

)
+(α−α

′) ln
(

βe
α−α ′

)
+

2
C

)
.

4.8 Putting it All Together

We are now ready to give the proof of Theorem 3.1.

Proof. Let δ ,α,γ,α ′,β be any values such that 0 < δ < 1, 0 < α < 1/2, 0 < α ′ < α , β > 1 and
0 < γ < 1. Let

C = 10
3 ·

2ln(2e)
δ (1−γ)(1−2α)2 ;

T =
ln( e

ε )
1−δ

;
B = 1

γ
ln

( e
ε

)
;

D =
(

β

α ′(α−α ′)

)(
α ′ ln

(
βe
α ′

)
+(α−α ′) ln

(
βe

α−α ′

)
+ 2

C

)
Let each node connect to C top, C bottom and C middle supernodes. Then by Theorem 4.14, at least

(1− δ )n/ lnn top supernodes are (γ,αC,βC)-expansive. Let each node connect to T top supernodes.
Then by Lemma 4.15, at least (1−ε)n nodes can connect to some (γ,αC,βC)-expansive top supernode.
Let each data item map to B bottom supernodes. Then by Lemma 4.16, at least (1− ε)n nodes have
(αC,βC)-good paths to at least (1− ε)n data items.

Finally, let each node in a middle supernode have D random connections to nodes in neighboring
supernodes in the butterfly network. Then by Lemma 4.17, at least (1− ε)n nodes can broadcast to
enough bottom supernodes so that they can reach at least (1− ε)n data items.

Each node requires T links to connect to the top supernodes; 2D links for each of the C top supern-
odes it plays a role in; 2D links for each of the C lnn middle supernodes it plays a role in and Bβ lnn
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storage for each of the C bottom supernodes it plays a role in. The total amount of memory required is
thus

T +2DC +C lnn(2D+Bβ ),

which is less than k1(ε) logn for some k1(ε) dependent only on ε .
Our search algorithm will find paths to at most B bottom supernodes for a given data item and each

of these paths has less than logn hops in it so the search time is no more than

k2(ε) logn = B logn.

Each supernode contains no more that β lnn nodes and in each search, exactly T top supernodes
send no more than B messages so the total number of messages transmitted during a search is no more
than

k3(ε) log2 n = (T BβC) log2 n.

5 Modifications for Spam Resistant Distributed Hash Table

We now describe the changes in the network necessary for the spam resistant distributed hash table. We
only sketch the required proofs since the arguments are based on slight modifications to the proofs of
section 4.

The first modification is that rather than have a constant degree expander between two supernodes
connected in the butterfly, we will have a full bipartite graph between the nodes of these two supernodes.
Since we’ve insisted that the total number of adversary controlled nodes be strictly less than n/2, we
can guarantee that a 1− ε fraction of the paths in the butterfly have all supernodes with a majority of
good (non-adversary controlled) nodes. In particular, by substituting appropriate values in Lemma 4.6
and Lemma 4.7 we can guarantee that all but εn/ logn of the supernodes have a majority of good nodes.
This then implies that no more than an ε fraction of the paths pass through such “adversary-majority”
supernodes. As before, this implies that most of the nodes can access most of the content through paths
that don’t contain any “adversary-majority” supernodes.

For a search in the new network, the paths in the butterfly network along which the search request
and data item will be sent are chosen exactly as in the original construction. However, we modify the
protocol so that in the downward flow, every node passes down a request only if the majority of requests
it received from nodes above it are the same. This means that if there are no “adversary-majority”
supernodes on the path, then all good nodes will take a majority value from a set in which good nodes
are a majority. Thus, along such a path, only the correct request will be passed downwards by good
nodes. After the bottommost supernodes are reached, the data content flows back along the same links
as the search went down. Along this return flow, every node passes up a data value only if a majority
of the values it received from the nodes below it are the same. This again ensures that along any path
where there are no “adversary-majority” supernodes, only the correct data value will be passed upwards
by good nodes. At the top, the node that issued the search takes the majority value amongst the (O(logn))
values it receives as the final search result.

To summarize, the main theorem for spam resistant distributed hash tables is as follows:
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Theorem 5.1. For any constant c < 1/2 such that the adversary controls no more than cn nodes, and
for all ε > 0, there exist constants k1(ε), k2(ε), k3(ε) which depend only on ε such that

• Every node requires k1(ε) log2 n memory.

• Search for a data item takes no more than k2(ε) logn time. (This is under the assumption that
network latency overwhelms processing time for one message, otherwise the time is O(log2 n).)

• Search for a data item requires no more than k3(ε) log3 n messages.

• All but εn nodes can search successfully for all but εn of the true data items.

6 Discussion and Open Problems

We conclude with some open issues:

1. Can one improve on the construction for the spam resistant distributed hash table described in this
paper?

2. Can one deal efficiently with more general Byzantine faults that occur all at once? For example,
the adversary could use nodes under his control to flood the network with irrelevant searches, this
is not dealt with by either of our solutions.

3. We conjecture that our network has the property that it is poly-log competitive with any fixed
degree network. I.e., we conjecture that given any fixed degree network topology, where n items
are distributed amongst n nodes, and any set of access requests that can be dealt with fixed sized
buffers, then our network will also deal with the same set of requests by introducing no more than
a polylog slowdown.
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A Technical Lemmata

Lemma 4.5: Let l,r, l′,r′,d and n be any positive values where l′ ≤ l and r′ ≤ r and

d ≥ r
r′l′

(
l′ ln

(
le
l′

)
+ r′ ln

(re
r′

)
+2lnn

)
.

Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability at least 1−1/n2, any subset
of L of size l′ shares an edge with any subset of R of size r′ .

Proof. We will use the probabilistic method to show this. We will first fix a set L′ ⊂ L of size l′ and a
set R′ ⊂ R of size r′ and compute the probability that there is no edge between L′ and R′ and will then
bound the probability of this bad event for any such set L′ and R′. The probability that a single edge does
not fall in R′ is 1− r′/r so the probability that no edge from L′ falls into R′ is no more than e−r′l′d/r.

The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l′ and the
number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r′ . So the probability
that no two subsets L of size l′ and R of size r′ have no edge between them is no more than:(

le
l′

)l′

·
(re

r′

)r′

· e−
r′l′d

r
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Below we solve for appropriate d such that this probability is less than 1/n2.

(
le
l′

)l′

·
(re

r′

)r′

· e−
r′l′d

r ≤ 1/n2 (A.1)

⇐⇒ l′ ln
(

le
l′

)
+ r′ ln

(re
r′

)
− r′l′d

r
≤ −2lnn (A.2)

⇐⇒ r
r′l′

(
l′ ln

(
le
l′

)
+ r′ ln

(re
r′

)
+2lnn

)
≤ d

We get step (A.2) from step (A.1) in the above by taking the logarithm of both sides.

Lemma 4.6: Let l,r, l′,r′,d,λ and n be any positive values where l′ ≤ l, r′ ≤ r, 0 < λ < 1 and

d ≥ 2r
r′l′(1−λ )2

(
l′ ln

(
le
l′

)
+ r′ ln

(re
r′

)
+2lnn

)
Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability at least 1− 1/n2, for any
set L′ ⊂ L where |L′|= l′, there is no set R′ ⊂ R, where |R′|= r′ such that all nodes in R′ share less than
λ l′d/r edges with L′.

Proof. We will use the probabilistic method to show this. We will first fix a set L′ ⊂ L of size l′ and a set
R′ ⊂ R of size r′ and compute the probability that all nodes in R′ share less than λ l′d/r edges with L′. If
this bad event occurs then the total number of edges shared between L′ and R′ must be less than λ r′l′d/r.
Let X be a random variable giving the number of edges shared between L′ and R′. The probability that
a single edge from L′ falls in R′ is r′/r so by linearity of expectation, E(X) = r′l′d/r.

We can then say that:

Pr
(

X ≤ λ r′l′d
r

)
= Pr(X ≤ (1−δ )E(X))≤ e−E(X)δ 2/2.

Where δ = 1−λ and the last equation follows by Chernoff bounds if 0 < λ < 1.
The number of ways to choose a set L′ of the appropriate size is no more than (le/l′)l′ and the

number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r′ . So the probability
that no two subsets L′ of size l′ and R′ of size r′ have this bad event occur is

(
le
l′

)l′

·
(re

r′

)r′

· e−
r′l′dδ2

2r .

Below we solve for appropriate d such that this probability is less than 1/n2.
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(
le
l′

)l′

·
(re

r′

)r′

· e−
r′l′dδ2

2r ≤ 1/n2 (A.3)

⇐⇒ l′ ln
(

le
l′

)
+ r′ ln

(re
r′

)
− r′l′dδ 2

2r
≤ −2lnn (A.4)

⇐⇒ 2r
r′l′(1−λ )2

(
l′ ln

(
le
l′

)
+ r′ ln

(re
r′

)
+2lnn

)
≤ d

We get step (A.4) from step (A.3) in the above by taking the logarithm of both sides.

Lemma 4.7: Let l,r,r′,d,β ′ and n be any positive values where l′ ≤ l, β ′ > 1 and

d ≥ 4r
r′l(β ′−1)2

(
r′ ln

(re
r′

)
+2lnn

)
Let G be a random bipartite multigraph with left side L and right side R where |L| = l and |R| = r and
each node in L has edges to d random neighbors in R. Then with probability at least 1−1/n2, there is
no set R′ ⊂ R, where |R′|= r′ such that all nodes in R′ have degree greater than β ′ld/r.

Proof. We will again use the probabilistic method to show this. We will first fix a set R′ ⊂ R of size r′

and compute the probability that all nodes in R′ have degree greater than β ′ld/r. If this bad event occurs
then the total number of edges shared between L and R′ must be at least β ′r′ld/r. Let X be a random
variable giving the number of edges shared between L and R′. The probability that a single edge from L
falls in R′ is r′/r so by linearity of expectation, E(X) = r′ld/r.

We can then say that:

Pr
(

X ≥ β ′r′ld
r

)
= Pr(X ≥ (1+δ )E(X))≤ e−E(X)δ 2/4.

Where δ = β ′−1 and the last equation follows by Chernoff bounds if 1 < β ′ < 2e−1.
The number of ways to choose a set R′ of the appropriate size is no more than (re/r′)r′ . So the

probability that no subset R′ of size r′ has this bad event occur is(re
r′

)r′

· e−
r′l′dδ2

4r .

Below we solve for appropriate d such that this probability is less than 1/n2.

(re
r′

)r′

· e−
r′ldδ2

4r ≤ 1/n2 (A.5)

⇐⇒ r′ ln
(re

r′

)
− r′ldδ 2

4r
≤ −2lnn (A.6)

⇐⇒ 4r
r′l(β ′−1)2

(
r′ ln

(re
r′

)
+2lnn

)
≤ d
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We get step (A.6) from step (A.5) in the above by taking the logarithm of both sides.
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