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• We are given a function, f, that can be 
computed with n gates

• Must build a network to compute f with 
unreliable gates 

• Gates are unreliable: with probability ɛ they 
fault; when they fault, output is incorrect

• Q: How many unreliable gates do we need 
to compute f with probability 1-o(1)



Networks of Noisy 
Gates

Q: How many unreliable gates do we need to 
compute f with probability approaching 1?

• O(n log n) gates suffice [Von Neumann ’56]
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Boosting a Noisy Gate

• Naive

• Copy each gate log n times

• Copy each wire log n times

• Take majority of all outputs at end

• Problem: Error accumulates at each level

• Solution: “Restoring Organ”



Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler



Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

output is majority of all 
inputs



Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

x bad outputs on top → 
x/4 bad majorities on 
bottom

output is majority of all 
inputs



Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

x bad outputs on top → 
x/4 bad majorities on 
bottom
(for sufficiently small x)

output is majority of all 
inputs
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...

✏

 ✓ fraction  ✓ fraction

✏ ✏ ✏

✏ ✏ ✏ ✏

 2✓ + 2✏ fraction

whp by Chernoff 
bounds

 1/2(✓ + ✏) fraction

if Maj not faulty

 1/2(✓ + ✏) + 2✏ fraction

if Maj faulty w/ prob ✏

This last term is

 ✓ for large ✓



Networks of Noisy 
Gates

Q: How many unreliable gates do we need to 
compute f with probability approaching 1?

• O(n log n) gates suffice [Von Neumann ’56]

•                  gates necessary [PST ’91]
⌦(n log n)



Noisy Gates Issues 

• Problems

• O(log n) resource blowup

• Gates more constrained than processors

• Faults are uncorrelated

• Faults are fail-stop



Secure Multiparty 
Computation (MPC)

• Another problem where we want to boost 
reliability

• Goal: reliable computation of any function f

• Even when a hidden subset of the 
processors are bad (i.e. Byzantine or 
controlled by an adversary)
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Secure MPC

• n processors want to compute a function f 
over n inputs.  f can be computed with m 
gates.

• Each processor has one input

• Up to t<n/3 processors are bad

Note: The traditional MPC definition has additional privacy 
requirements that are ignored here

[Yao ’82]
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• Auctions

• Threshold cryptography

• Information aggregation

 1) M, p, q  are parameters of the function;
 2) s is the y intercept of a
     degree (d - 1) function 
     with points given by the       values.



MPC Results

• Recent renaissance in MPC

• Since 2008, MPC is used annually in 
Denmark to hold an auction between 
5,000 beet farmers and sugar producers

• Significant recent theoretical 
improvements due to homomorphic 
encryption



MPC for large 
networks

• We have worked on the problem of 
designing MPC protocols for large n

• We use quorums

• A quorum is O(log n) processors, most 
of which are good

• Can get all processors to agree on n 
quorums [KS ’11]

• Each gate computed by a quorum



Our Result

• Resource costs

• Bits sent per processor and computation 
per processor is 

• Latency is polylog 

• We solve MPC with high probability 
meaning probability of error that goes to 1 
as n grows large 

Õ(
m+ n

n
+
p
n)



Problem

• Resource overhead is still polylogarithmic

• Requires polylog times more computation, 
communication, etc compared to non-
robust algorithms



Can we do better?

• Is logarithmic redundancy necessary for 
MPC?

• We don’t know

• It’s necessary for a quorum approach, but 
there may be a smarter way



Noisy Gates and MPC

• Good:

• Simple, well-defined problems

• Significant theoretical and empirical 
progress 

• Bad

• Both problems seem to require a 
redundant approach



Dream Result

• Given parallel algorithm A over n nodes, 
create parallel algorithm A’

• A’ works even if t<n/2 nodes fail

• Resource costs of A’ are O(t) more than 
resource costs of A



Redundancy vs Self-
healing

Our algorithms: require many redundant 
components to tolerate 1 failure 

Brain: rewires to have other components 
help out when a component fails



Towards a Research 
Agenda

“Make no little plans”

• Succinct problems are retained 

• Important problems span disciplines

• Hard problems pull in smart people



Self-healing

• A self-healing system, starting from a 
correct state, under attack from an 
adversary, goes only temporarily out of a 
correct state.

• Our initial work: Under attack from 
powerful adversary, maintain certain 
topological properties within acceptable 
bounds.
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robust to node failures

• Idea: Build some redundancy into the 
network?

• Example: Connectivity

• Use k-connected graph.

• Price: degree must be at least k.



Ensuring Robustness

• Want to ensure that our network is 
robust to node failures.

• Idea: build some redundancy into the 
network?

• Example: Connectivity

• Use k-connected graph.

• Price: degree must be at least k.

Expensive!



Model

• Start: a network G.  

• An adversary inserts or deletes nodes .

• After each node addition/deletion, we can 
add and/or drop some edges between pairs 
of nearby nodes, to “heal” the network.



 Self-healing illustration
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Naive?













And so on...

v



Problem
v

G0 G3

Degree(v,G0) = 2 Degree(v,G3) = 5

v
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Possible healing topologies:
	 Star	 graph

v v

G0 G3

Low distances but degree blows up



Challenge 1: properties 
conflict

Low degree increase => high diameter/
stretch/ poorer expansion?



Challenge 2: local fixing 
of global properties

Low diameter => high degree increase?
✴ Limited global Information with nodes
✴ Limited resources and time constraints



Self-healing Goals

• Healing should be very fast.

• Certain topological properties should be 
maintained within bounds:

- Connectivity

- Degree

- Diameter/ Stretch



Our SH algorithms

• DASH [IEEE International Parallel & Distributed 
Processing Symposium 2008]

• Forgiving Tree [ACM Principles of Distributed 
Computing, 2008]

• Forgiving Graph [ACM Principles of Distributed 
Computing, 2009, Journal of Distributed Computing, 2012]



Distributed Computing:
Message Passing model

• Communication is by sending 
messages along edges

• Only local knowledge to begin 
with 



Goals

• Ensure connectivity

• Healing should be very fast (constant time)

• If vertex v starts with degree d, then its 
degree should never be much more than d

• Diameter shouldn’t increase by too much



The Forgiving Tree:
Model

• Start: a network G.  

• Nodes fail in unknown order v1, v2, ..., vn

• After each node deletion, we can add    
and/or drop some edges between pairs     
of nearby nodes, to “heal” the network



The Forgiving Tree:
Main Result

• A distributed algorithm, Forgiving Tree such 
that, for any network G with max degree 
D, for an arbitrary sequence of deletions,

• Graph stays connected

• Diameter increases by ≤ log(D) factor

• Degrees increase by ≤ 3 (additive)

• Each repair takes constant time and 
involves O(D) nodes.



The Forgiving Tree:
Main Result

• A distributed algorithm, Forgiving Tree such 
that, for any network G with max degree 
D, for an arbitrary sequence of deletions,

• Graph stays connected

• Diameter increases by ≤ log(D) factor

• Degrees increase by ≤ 3 (additive)

• Each repair takes constant time and 
involves O(D) nodes.

Matching    
lower bound
}



The Forgiving Tree: 
motivations

• Trees are the “worst case” for maintaining 
connectivity.  Suppose we are given one.

• Maintain a virtual tree: Tracks vertex degrees 
and also avoid blowing up distances.



FT: first approximation

• Find a spanning tree of G.

• Choose some vertex to be the root, and 
orient all edges toward the root.

• When a node is deleted, replace it by a 
balanced binary tree of “virtual nodes”

• Short-circuit any redundant virtual nodes 

• Somehow the surviving real nodes simulate 
the virtual nodes
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Replacing v by a balanced binary tree of 
virtual nodes

Short-circuiting a redundant virtual node



Virtual Nodes

• A virtual node starts with degree 3, since 
internal node of a complete binary tree.

• If a neighbor is a leaf, and is deleted, the 
virtual node becomes redundant.  Then we 
“short-circuit” it.

• This ensures that there are always more 
real nodes than virtual nodes.  Each real 
node needs to simulate at most one virtual.



Algorithm in action

Node v deleted:
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Turn 1: Adversary deletes v.  Vertices a through h take over helper  
nodes in RT(v).h is v’s heir and connects
the real graph now contains a 

Turn 2: Adversary 

  

             deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p) 

Turn 3: Adversary             deletes d. The original helper node of c is made 

nodes formerly held by d. 

Turn 4: Adversary              deletes h. Vertices m, n and  o take over helper nodes   

Note that since the number of children of h was not a power of 2, not all the 
leaves of RT(h) are at the same depth.  

cycle, (b, c, d)

redundant by the deletion of d and so is  

of RT(h). o is heir of h and takes over h’s  

bypassed. c takes over the helper   

to both p and q. Note that 

role of v in RT(p). d attaches to    

and takes over h’s helper role.  

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:
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in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:
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in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:
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Turn 1: Adversary deletes v.  Vertices a through h take over helper  
nodes in RT(v).h is v’s heir and connects
the real graph now contains a 

Turn 2: Adversary 

  

             deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p) 

Turn 3: Adversary             deletes d. The original helper node of c is made 

nodes formerly held by d. 

Turn 4: Adversary              deletes h. Vertices m, n and  o take over helper nodes   

Note that since the number of children of h was not a power of 2, not all the 
leaves of RT(h) are at the same depth.  

cycle, (b, c, d)

redundant by the deletion of d and so is  

of RT(h). o is heir of h and takes over h’s  

bypassed. c takes over the helper   

to both p and q. Note that 

role of v in RT(p). d attaches to    

and takes over h’s helper role.  

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:
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to both p and q. Note that 
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Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:
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             deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p) 

Turn 3: Adversary             deletes d. The original helper node of c is made 

nodes formerly held by d. 

Turn 4: Adversary              deletes h. Vertices m, n and  o take over helper nodes   

Note that since the number of children of h was not a power of 2, not all the 
leaves of RT(h) are at the same depth.  

cycle, (b, c, d)

redundant by the deletion of d and so is  

of RT(h). o is heir of h and takes over h’s  

bypassed. c takes over the helper   

to both p and q. Note that 

role of v in RT(p). d attaches to    

and takes over h’s helper role.  

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:



Caveats

• Each virtual node somehow gets assigned 
to a surviving real node.  (next few slides)

• The actual healed network is just the 
homomorphic image of the restored tree 
under this map. (later).

• We won’t go into full detail about how to 
implement this in a distributed way.



Assigning virtual duties

• At the start of the algorithm, each non-leaf 
node v writes a “will” specifying one child 
to simulate each virtual node which will be 
created when v is deleted.

• The relevant piece of this will is entrusted 
to each child

• v may revise the will from time to time

• When v is deleted, the will is implemented



Where there’s a will...

x assigns virtual 
nodes in his will
h is the “heir”

The will gets split 
into 5 parts--one for 

each neighbor.
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Heirs

• What happens when the node simulating a 
virtual node is deleted?

• (a) if the virtual node has become 
redundant, it is short-circuited as usual.

• (b) if the simulating node w has children, 
then w’s will designates a child to take over 
the virtual node.  This is w’s “heir”



a   b   c    d     

a    c
b

a   b   c    d     

A virtual tree (left) and its homomorphic image (right)

Homomorphism: Given

The Forgiving Graph: A distributed data structure for low stretch
under adverserial attack

Tom Hayes� Jared Saia † Amitabh Trehan †

Abstract
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack

by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a
node with arbitrary connections or deletes an arbitrary node from the network. The network responds
to each such change by quick ”repairs,” which consist of adding or deleting a small number of edges.

These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing
node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose
distance would have been ⌃ in the graph formed by considering only the adversarial insertions (not
the adversarial deletions or the algorithm’s repairs), will be at distance O(⌃ log n) in the actual graph,
where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degree
would have been d in the graph with adversarial insertions only, will have degree O(d) in the actual
graph. Our algorithm is completely distributed and has low latency and bandwidth requirements.

1 Introduction

G1 = (V1, E1), G2 = V2, E2

{v, w} ⇥ E1 � {f(v), f(w)} ⇥ E2

Our Model: We now describe our model of attack and network response. We assume that the network
is initially a connected graph over n nodes. An adversary repeatedly attacks the network. This adversary
knows the network topology and our algorithms, and it has the ability to delete arbitrary nodes from the
network or insert a new node in the system which will connect to at least one of the existing nodes in the
network. However, we assume the adversary is constrained in that in any time step it can only delete or
insert a single node.

Our Results:
In this paper, we describe a new, light-weight distributed data structure that ensures that: 1) the

distance between any two nodes of the network never increases by more than log n times their original
distance, where n are the number of nodes in the graph consisting solely of the original nodes and
insertions without regard to deletions and healings (we call this graph G⇥); and 2) the degree of any node
never increases by more than 3 times over over its degree in G⇥.

The formal statement and proof of these results is in Section 4.1.

2 Delete/Insert and Repair Model

We now describe the details of our delete/insert and repair model. Let G = G0 be an arbitrary graph
on n nodes, which represent processors in a distributed network. The adversary either deletes nodes
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The formal statement and proof of these results is in Section 4.1.

2 Delete/Insert and Repair Model

We now describe the details of our delete/insert and repair model. Let G = G0 be an arbitrary graph
on n nodes, which represent processors in a distributed network. The adversary either deletes nodes
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A different labeling of the virtual nodes, and the image
Note that in this case the image is not a tree.
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A series of unfortunate events



Forgiving Tree Summary

• Forgiving tree ensures degree increase is 
additive constant.  Diameter increase is log 
of max degree.

• These parameters are essentially optimal. 

• Forgiving tree is fully distributed, has O(1) 
latency and O(1) messages exchanged per 
round.
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Other Self-Healing 
Results

• Forgiving Graph

• Handles insertions and deletions

• Shortest path lengths increase by log n 
factor; degrees increase by factor of 3

• BASH (Byzantine self-healing)

• Goal: Reliable message delivery

• Each bad node causes “small” number of 
message corruptions



BASH Theoretical 
Result

• If there are n nodes and t<n/8 are bad then 
we can enable sending of any message with

• Asymptotically optimal latency and 
bandwidth cost 

• An expected number of corruptions that 
is 3t (log* n)2 



BASH Empirical Results
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r. We simulate an adversary who chooses at the beginning of each simulation a fixed
number of nodes to control uniformly at random without replacement. Our adversary
attempts to corrupt messages between nodes whenever possible. Aside from attempting
to corrupt messages, the adversary performs no other attacks.

4.2 Results

The results of our experiments are shown in Figures 2 and 3. Our results highlight two
strengths of our self-healing algorithms (self-healing) when compared to algorithms
without self-healing (no-self-healing). First, the message cost per SEND decreases as
the total number of calls to SEND increases, as illustrated in Figure 2. Second, for
a fixed number of calls to SEND, the message cost per SEND decreases as the total
number of bad nodes decreases, as shown in Figure 2 as well. In particular, when there
are no bad nodes, self-healing has dramatically less message cost than no-self-healing.

Figure 2 shows that for n = 14,116, the number of messages per SEND for no-self-
healing is 30,516; and for self-healing, it is 525. Hence, the message cost is reduced
by a factor of 58. Also for n = 30,509, the number of messages per SEND for no-self-
healing is 39,170; and for self-healing, it is 562; which implies that the message cost is
reduced by a factor of 70.

In Figure 3, no-self-healing has 0 corruptions; however, for self-healing, the frac-
tion of messages corrupted per SEND decreases as the total number of calls to SEND
increases. Also for a fixed number of calls to SEND, the fraction of messages corrupted
per SEND decreases as the total number of bad nodes decreases.

Furthermore, in Figure 3, for each network, given the size and the fraction of bad
nodes, if we integrate the corresponding curve, we get the total number of times that a
message can be corrupted in calls to SEND in this network. These experiments show
that the total number of message corruptions is at most 3t(log log n)2.

Fig. 2. # Messages per SEND versus # calls to SEND, for n = 14,116 and n = 30,509.



Conclusion

• Decades of work on “reliability boosting”

• Unfortunately, redundancy-based solutions 
are inherently inefficient

• Claim: we haven’t been asking the right 
questions



Conclusion

• We should demand that resource costs of 
reliability boosting algorithms increase only 
when there are faults

• A self-healing approach allows us to achieve 
these kinds of results

• Q: What is the next step?



Towards a Research 
Agenda

“Make no little plans”

• Succinct problems are retained 

• Important problems span disciplines

• Hard problems pull in smart people
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An Agenda

• Step 1:  Focus on specific tools and libraries

• Step 4: Build on algorithmic techniques to 
full-fledged reliable applications and 
ultimately a general approach

• Step 2: Solve problems based on these tools

• Step 3: Proven reliability of these tools 
attracts research attention
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