How to Build a Reliable System
from Unreliable Components

Jared Saia
Computer Science Department,
University of New Mexico

o HE A

XY
& S5 W
3 L N A on / PR w
\\)C:n(j[d H BN E B
. | A WL A £ ,“

~d — \ QN WL
National R ="hy A

shoratories \Nms:
2 ? L(if.)deJ)? 1ES 2l

R T

l"

PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE
ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumsann

e e -) U

1. INTRODUCTION

The paper that follows 1s based on notes taken by Dr. R. 5. Plerce
on five lectures given by the author at the California Institute of
Technology in January 1952. They have been revised by the author but they
reflect, apert from minor changes, the lectures as they were delivered.

The subject-matter, as the tlitle suggests, 1s the role of error
in logics, or in the physical implementation of logics — in automata-
synthesls. Error is viewed, therefore, not as an extraneous and misdirected
or misdirecting accident, but as an essential part of the process under con-
sideration — its importance in the synthesis of automata being fully com-
parable to that of the factor which is normally considered, the intended and
correct logical structure. | , -

Our present treatment of error 18 unsatisfactory and ad hoc. It
is the author's conviction, volced over many years, that error should be
treated by thermodynamlcal methods, and be the subject of a thermodynamical
theory, as information has been, by the work of L. Szilard and C. E. Shannon
(Cf. 5.2]. The present treatment falls far short of achieving this, but it
assembles, it l1s hoped, some of the bullding materials, which will have to
enter into the final structure. | |

—_— _ A o -

R T

l"

PROBABILISTIC LOGICS AND THE SYNTHESIS OF RELIABLE
ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumsann

e e -) U

1. INTRODUCTION

The paper that follows 1s based on notes taken by Dr. R. 5. Plerce
on five lectures given by the author at the California Institute of
Technology in January 1952. They have been revised by the author but they
reflect, apert from minor changes, the lectures as they were delivered.

The subject-matter, as the tlitle suggests, 1s the role of error
in logics, or in the physical implementation of logics — in automata-
synthesls. Error is viewed, therefore, not as an extraneous and misdirected
or misdirecting accident, but as an essential part of the process under con-
sideration — its importance in the synthesis of automata being fully com-
parable to that of the factor which is normally considered, the intended and

correczz%%ﬁ%gal_stnuctuxe.
ir present treatment of error 1is unsatisfactory and ad:§§23> It

13 the author's conviction, volced over many years, that error should be
treated by thermodynamlcal methods, and be the subject of a thermodynamical
theory, as information has been, by the work of L. Szilard and C. E. Shannon
(Cf. 5.2]. The present treatment falls far short of achieving this, but it
assembles, it l1s hoped, some of the bullding materials, which will have to
enter into the final structure. | |

—_— _ A o -

Networks of Noisy %
Gates '

Networks of Noisy ‘
Gates U

® We are given a function, f, that can be
computed with n gates

Networks of Noisy ‘
Gates

® We are given a function, f, that can be
computed with n gates

® Must build a network to compute f with
unreliable gates

Networks of Noisy x
Gates u? \‘*\\\

® We are given a function, f, that can be
computed with n gates

® Must build a network to compute f with
unreliable gates

® (ates are unreliable: with probability € they
fault; when they fault, output is incorrect

Networks of Noisy
Gates

® We are given a function, f, that can be
computed with n gates

® Must build a network to compute f with
unreliable gates

® (ates are unreliable: with probability € they
fault; when they fault, output is incorrect

® Q:How many unreliable gates do we need
to compute f with probability |-o(l)

Networks of Noisy
Gates

Q: How many unreliable gates do we need to
compute f with probability approaching |?

® O(n log n) gates suffice [Von Neumann ’56]

Boosting a Noisy Gate

Boosting a Noisy Gate

® Naive
® Copy each gate log n times
® Copy each wire log n times

® Take majority of all outputs at end

Boosting a Noisy Gate

® Naive
® Copy each gate log n times
® Copy each wire log n times
® Take majority of all outputs at end

® Problem: Error accumulates at each level

Boosting a Noisy Gate

® Naive
® Copy each gate log n times
® Copy each wire log n times
® Take majority of all outputs at end
® Problem: Error accumulates at each level

® Solution: Restoring Organ”

Boosting a Noisy Gate
L e

rGu G G

NSO
@, Sampler

PEON S b

Maj Maj

9
2

B,

Boosting a Noisy Gate

i

KX

: G e
N4
AN

Maj

Boosting a Noisy Gate
L e
F * } Executive Organ

' / — bottom
" ‘ > Sampler
/ , \'\) > Restoring Organ
Maj Maj Maj
ajority of a

KX

Boosting a Noisy Gate

|

|

L

G

N
%

Maj

KX

G

9,
%%

Maj

G

7

Maj

\

Executive Organ

}

\ x bad outputs on top —
__—x/4 bad majorities on

— bottom

> Sampler (for sufficiently small x)

/

> Restoring Organ

——— output is majority of all
inputs

< 0 fraction

< 0 fraction

< 0 fraction

< 0 fraction

— < 20 + 2e fraction

< 0 fraction

< 0 fraction

| €

— < 20 + 2e fraction

whp by Chernoff
bounds

< @ fraction < @ fraction

G] €
N A\ |
S N\ / \ // \ < 20 + 2¢ fraction

whp by Chernoff
‘ bounds

< 1/2(6 + ¢) fraction
if Maj not faulty

< @ fraction < @ fraction

G] €
N A\ |
S N\ / \ // \ < 20 + 2¢ fraction

Q’ S e
JRAA

wi || e |l

< 1/2(0 + €) + 2¢ fraction
if Maj faulty w/ prob e

< 1/2(6 + ¢) fraction
if Maj not faulty

This last term is
< 6 for large 6

Networks of Noisy
Gates

Q: How many unreliable gates do we need to
compute f with probability approaching |?

® O(n log n) gates suffice [Von Neumann ’56]
® (O(nlogn) gates necessary [PST ’91]

Noisy Gates Issues

® Problems
® O(log n) resource blowup
® (Gates more constrained than processors
® Faults are uncorrelated

® Faults are fail-stop

Secure Multiparty
Computation (MPC)

® Another problem where we want to boost
reliability

® (Goal: reliable computation of any function f

® Even when a hidden subset of the
processors are bad (i.e. Byzantine or
controlled by an adversary)

Secure MPC

[Yao '82]

Secure MPC

[Yao '82]

® n processors want to compute a function f
over n inputs. f can be computed with m
gates.

om

Secure MPC el Ly

[Yao '82]

® n processors want to compute a function f
over n inputs. f can be computed with m
gates.

® Fach processor has one input

Secure MPC

[Yao '82]

® n processors want to compute a function f
over n inputs. f can be computed with m
gates.

® Fach processor has one input

® Up to t<n/3 processors are bad

Secure MPC

[Yao '82]

® n processors want to compute a function f
over n inputs. f can be computed with m
gates.

® Fach processor has one input

® Up to t<n/3 processors are bad

Note: The traditional MPC definition has additional privacy
requirements that are ignored here

Applications as Functions

« Auctions

f = max(x1,z2,...,%y)

» Threshold cryptography
f=M?° mod pg

» Information aggregation

f:\/z;%lwz (Zii®iy2

Applications as Functions

- Auctions
f = max(x1,z2,...,%y)

» Threshold cryptogra phy 1) M, p, q are parameters of the function;

2) s is the y intercept of a
f = M° mod pq degree (d-1) function

with points given by the x; values.

» Information aggregation

MPC Results

® Recent renaissance in MPC

® Since 2008, MPC is used annually in

Denmark to hold an auction between
5,000 beet farmers and sugar producers

® Significant recent theoretical
improvements due to homomorphic
encryption

MPC for large
networks

® Ve have worked on the problem of
designing MPC protocols for large n

® We use quorums

® A quorum is O(log n) processors, most
of which are good

® Can get all processors to agree on n
quorums [KS | 1]

® Fach gate computed by a quorum

Our Result

® Resource costs

® Bits sent per processor and computation
. ~ M+ N
per processor s O(—— - V)

® |[atency is polylog

® We solve MPC with high probability
meaning probability of error that goes to |
as n grows large

Problem

® Resource overhead is still polylogarithmic

® Requires polylog times more computation,
communication, etc compared to non-
robust algorithms

Can we do better?

® |s logarithmic redundancy necessary for
MPC?

® We don’t know

® |t's necessary for a quorum approach, but
there may be a smarter way

Noisy Gates and MPC

® Good:

® Simple, well-defined problems

® Significant theoretical and empirical
progress

® Bad

® Both problems seem to require a
redundant approach

Dream Result

® Given parallel algorithm A over n nodes,
create parallel algorithm A’

® A’ works even if t<n/2 nodes fail

® Resource costs of A’ are O(t) more than
resource costs of A

Redundancy vs Self-
healing

Our algorithms: require many redundant
components to tolerate | failure

ot Brain: rewires to have other components
AT .
w2 help out when a component fails

Towards a Research
Agenda

“Make no little plans™
® Succinct problems are retained
¢ Important problems span disciplines

® Hard problems pull in smart people

Self-healing

® A self-healing system, starting from a
correct state, under attack from an

adversary, goes only temporarily out of a
correct state.

® Our initial work: Under attack from
powerful adversary, maintain certain

topological properties within acceptable
bounds.

Ensuring Robustness

® \Want to ensure that our network is
robust to node failures

® |dea: Build some redundancy into the
network!?

® Example: Connectivity
® Use k-connected graph.

® Price: degree must be at least k.

Ensuring Robustness

® \Want to ensure that our network is
robust to node failures.

® |dea: build some redundancy into the

network?
® Example: Connectivity Expensive!

® Use k-connected graph. PN

® Price: degree must be at least k.

Model

® Start:a network G.
® An adversary inserts or deletes nodes .

® After each node addition/deletion, we can
add and/or drop some edges between pairs
of nearby nodes, to “heal” the network.

Self-healing illustration

Naive?

D

:

D

x
et
1V

b/’
s .

And so on...

Problem

o." ‘. O
o <
\
A ®
Gy

Degree(v,G0) = 2 Degree(v,G3) =5

Possible healing topologies:
Line graph

R.1P
V \su
R1E
=]
) AY=VS
R.1E
]
AY=VS
C‘) O

Low degree increase but diameter/ distances blow up

Possible healing topologies:

Star graph
O
7 C:D\CD
> é) .
Go G3

Low distances but degree blows up

Challenge |: properties
conflict

Low degree increase => high diameter/
stretch/ poorer expansion!?

Challenge 2:local fixing
of global properties

Low diameter => high degree increase?

* Limited global Information with nodes
* Limited resources and time constraints

Self-healing Goals

® Healing should be very fast.

® Certain topological properties should be
maintained within bounds:

- Connectivity
- Degree

= Diameter/ Stretch

Our SH algorithms

® DASH [IEEE International Parallel & Distributed
Processing Symposium 2008]

® FOI‘giVing Tree [ACM Principles of Distributed
Computing, 2008]

® FOI‘giVing Graph [ACM Principles of Distributed
Computing, 2009, Journal of Distributed Computing, 201 2]

Distributed Computing:
Message Passing model

® Communication is by sending
messages along edges

® Only local knowledge to begin
with

Goals

Ensure connectivity
Healing should be very fast (constant time)

If vertex v starts with degree d, then its
degree should never be much more than d

Diameter shouldn’t increase by too much

The Forgiving Iree:
Model

® Start:a network G.
® Nodes fail in unknown order vy, vy, ..., Vi

® After each node deletion, we can add
and/or drop some edges between pairs
of nearby nodes, to “heal” the network

The Forgiving Iree:
Main Result

A distributed algorithm, Forgiving Tree such
that, for any network G with max degree
D, for an arbitrary sequence of deletions,

Graph stays connected
Diameter increases by < log(D) factor
Degrees increase by < 3 (additive)

Each repair takes constant time and
involves O(D) nodes.

The Forgiving Iree:
Main Result

A distributed algorithm, Forgiving Tree such
that, for any network G with max degree
D, for an arbitrary sequence of deletions,

Graph stays connected

Matching
ower bound

Diameter increases by < log(D) factor}
Degrees increase by < 3 (additive) |

Each repair takes constant time and
involves O(D) nodes.

The Forgiving Iree:
motivations

® Trees are the “worst case” for maintaining
connectivity. Suppose we are given one.

® Maintain a virtual tree: Tracks vertex degrees
and also avoid blowing up distances.

FT:first approximation

® Find a spanning tree of G.

® Choose some vertex to be the root, and
orient all edges toward the root.

® When a node is deleted, replace it by a
balanced binary tree of “virtual nodes”

® Short-circuit any redundant virtual nodes

® Somehow the surviving real nodes simulate
the virtual nodes

Replacing v by a balanced binary tree of
virtual nodes

Short-circuiting a redundant virtual node

Virtual Nodes

® A virtual node starts with degree 3, since
internal node of a complete binary tree.

® |f a neighbor is a leaf, and is deleted, the
virtual node becomes redundant. Then we
“short-circuit’’ it.

® This ensures that there are always more
real nodes than virtual nodes. Each real
node needs to simulate at most one virtual.

Algorithm in action

Node v deleted:

e PN

p
ik —
Cdefﬁli\o a'bc/éle/fg'}\o
ol

Node p deleted:

Node d deleted:

Caveats

® Fach virtual node somehow gets assigned
to a surviving real node. (next few slides)

® The actual healed network is just the

homomorphic image of the restored tree
under this map. (later).

® We won't go into full detail about how to
implement this in a distributed way.

Assigning virtual duties

® At the start of the algorithm, each non-leaf
node v writes a “‘will” specifying one child
to simulate each virtual node which will be
created when v is deleted.

® The relevant piece of this will is entrusted
to each child

® v may revise the will from time to time

® When v is deleted, the will is implemented

Where there’s a will...

@ p nextparent: ¢

C
% \‘ nexthparent: p
b

nexthchildren: b

&J p hextparent: b
f fi nexthparent: b
a 4 nexthchildren: a,b
nextparent: a

b
K E nexthparent: h

a(/ \9 nexthchildren: a,c
&J bo nextparent: b
C
O

S nexthparent: b
h\ nexthchildren: c,h
X assigns virtual

nodes in his will The will gets split
h is the “heir” into 5 parts--one for

each neighbor.

Heirs

® What happens when the node simulating a
virtual node is deleted!?

® (a) if the virtual node has become
redundant, it is short-circuited as usual.

® (b) if the simulating node w has children,
then w’s will designates a child to take over
the virtual node. This is w’s “heir”

Homomorphism: Given Gi = (Vi, E1), G2 = Vs, E»
a map such that {v,w} € Er = {f(v), f(w)} € E>

a b ¢ d

A virtual tree (left) and its homomorphic image (right)

a C
d

A different labeling of the virtual nodes, and the image
Note that in this case the image is not a tree.

A series of unfortunate events

Forgiving Tree Summary

® Forgiving tree ensures degree increase is
additive constant. Diameter increase is log

of max degree.
® These parameters are essentially optimal.

® Forgiving tree is fully distributed, has O(l)
latency and O(1) messages exchanged per
round.

Other Self-Healing
Results

Other Self-Healing

Results
® Forgiving Graph

® Handles insertions and deletions

® Shortest path lengths increase by log n
factor; degrees increase by factor of 3

Other Self-Healing

Results
® Forgiving Graph

® Handles insertions and deletions

® Shortest path lengths increase by log n
factor; degrees increase by factor of 3

® BASH (Byzantine self-healing)
® (Goal: Reliable message delivery

® Each bad node causes “small” number of
message corruptions

BASH Theoretical
Result

® |f there are n nodes and t<n/8 are bad then
we can enable sending of any message with

® Asymptotically optimal latency and
bandwidth cost

® An expected number of corruptions that
is 3t (log* n)?

Messages per SEND

BASH Empirical Results

n=14116 ! n = 30509
5 x 10 | | | | | | j 9 x 10 | | | | | j
) — self-healing; f = 1/64) — self-healing; f = 1/64
\ —-—-self-healing; f = 1/32 8 —-—-self-healing; f =1/32 |
5 U B self-healing; t =146, @& self-healing; f=1/16
—=— gelf-healing; f = 1/8 7HL —=— gelf-healing; f = 1/8
—&— no-self-healing

—e&— no-self-healing

4]

Messages per SEND
.

w

Calls to SEND

<10 # Calls to SEND

Fig. 2. # Messages per SEND versus # calls to SEND, for n = 14,116 and n = 30,5009.

Conclusion

® Decades of work on “reliability boosting”

® Unfortunately, redundancy-based solutions
are inherently inefficient

® Claim: we haven’t been asking the right
questions

Conclusion

® VWe should demand that resource costs of
reliability boosting algorithms increase only
when there are faults

® A self-healing approach allows us to achieve
these kinds of results

® Q:What is the next step!?

Towards a Research
Agenda

“Make no little plans™
® Succinct problems are retained
¢ Important problems span disciplines

® Hard problems pull in smart people

An Agenda

® Step |: Focus on specific tools and libraries

An Agenda

® Step |: Focus on specific tools and libraries

® Step 2:Solve problems based on these tools

An Agenda

® Step |: Focus on specific tools and libraries

® Step 2:Solve problems based on these tools

® Step 3: Proven reliability of these tools
attracts research attention

An Agenda

Step |: Focus on specific tools and libraries

Step 2: Solve problems based on these tools

Step 3: Proven reliability of these tools
attracts research attention

Step 4: Build on algorithmic techniques to
full-fledged reliable applications and
ultimately a general approach

Relevant Papers

Varsha Dani, Valerie King, Mahnush Mohavedi and Jared Saia. Quorums Quicken
Queries: Efficient Asynchronous Secure Multiparty Computation. Submitted to
Conference on Distributed Computing and Networking (ICDCN), 2013

Jeff Knockel, George Saad and Jared Saia. Self-Healing of Byzantine Faults.
Symposium on Security, Safety and Stability (SSS), 2013.

Thomas P. Hayes, Jared Saia, and Amitabh Trehan. The forgiving graph: a
distributed data structure for low stretch under adversarial attack. In PODC °09:
Proceedings of the 28th ACM symposium on Principles of distributed computing, .

Tom Hayes, Navin Rustagi, Jared Saia, and Amitabh Trehan. The forgiving tree: a
self-healing distributed data structure. In PODC ’08: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing.

Jared Saia and Amitabh Trehan. Picking up the pieces: Self-healing in recon-
figurable networks. In IEEE International Parallel & Distributed Processing
Symposium. [IPDPS 2008,

Questions!

