
How to Build a Reliable System
from Unreliable Components

Jared Saia
Computer Science Department,

 University of New Mexico

Networks of Noisy
Gates

Networks of Noisy
Gates

• We are given a function, f, that can be
computed with n gates

Networks of Noisy
Gates

• We are given a function, f, that can be
computed with n gates

• Must build a network to compute f with
unreliable gates

Networks of Noisy
Gates

• We are given a function, f, that can be
computed with n gates

• Must build a network to compute f with
unreliable gates

• Gates are unreliable: with probability ɛ they
fault; when they fault, output is incorrect

Networks of Noisy
Gates

• We are given a function, f, that can be
computed with n gates

• Must build a network to compute f with
unreliable gates

• Gates are unreliable: with probability ɛ they
fault; when they fault, output is incorrect

• Q: How many unreliable gates do we need
to compute f with probability 1-o(1)

Networks of Noisy
Gates

Q: How many unreliable gates do we need to
compute f with probability approaching 1?

• O(n log n) gates suffice [Von Neumann ’56]

Boosting a Noisy Gate

Boosting a Noisy Gate

• Naive

• Copy each gate log n times

• Copy each wire log n times

• Take majority of all outputs at end

Boosting a Noisy Gate

• Naive

• Copy each gate log n times

• Copy each wire log n times

• Take majority of all outputs at end

• Problem: Error accumulates at each level

Boosting a Noisy Gate

• Naive

• Copy each gate log n times

• Copy each wire log n times

• Take majority of all outputs at end

• Problem: Error accumulates at each level

• Solution: “Restoring Organ”

Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

output is majority of all
inputs

Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

x bad outputs on top →
x/4 bad majorities on
bottom

output is majority of all
inputs

Boosting a Noisy Gate

G

G G G G
Executive Organ

...

Maj Maj Maj Maj...
Restoring Organ

Sampler

x bad outputs on top →
x/4 bad majorities on
bottom
(for sufficiently small x)

output is majority of all
inputs

G G G G...

Maj Maj Maj Maj
...

✏

 ✓ fraction ✓ fraction

✏ ✏ ✏

✏ ✏ ✏ ✏

G G G G...

Maj Maj Maj Maj
...

✏

 ✓ fraction ✓ fraction

✏ ✏ ✏

✏ ✏ ✏ ✏

 2✓ + 2✏ fraction

G G G G...

Maj Maj Maj Maj
...

✏

 ✓ fraction ✓ fraction

✏ ✏ ✏

✏ ✏ ✏ ✏

 2✓ + 2✏ fraction

whp by Chernoff
bounds

G G G G...

Maj Maj Maj Maj
...

✏

 ✓ fraction ✓ fraction

✏ ✏ ✏

✏ ✏ ✏ ✏

 2✓ + 2✏ fraction

whp by Chernoff
bounds

 1/2(✓ + ✏) fraction

if Maj not faulty

G G G G...

Maj Maj Maj Maj
...

✏

 ✓ fraction ✓ fraction

✏ ✏ ✏

✏ ✏ ✏ ✏

 2✓ + 2✏ fraction

whp by Chernoff
bounds

 1/2(✓ + ✏) fraction

if Maj not faulty

 1/2(✓ + ✏) + 2✏ fraction

if Maj faulty w/ prob ✏

This last term is

 ✓ for large ✓

Networks of Noisy
Gates

Q: How many unreliable gates do we need to
compute f with probability approaching 1?

• O(n log n) gates suffice [Von Neumann ’56]

• gates necessary [PST ’91]
⌦(n log n)

Noisy Gates Issues

• Problems

• O(log n) resource blowup

• Gates more constrained than processors

• Faults are uncorrelated

• Faults are fail-stop

Secure Multiparty
Computation (MPC)

• Another problem where we want to boost
reliability

• Goal: reliable computation of any function f

• Even when a hidden subset of the
processors are bad (i.e. Byzantine or
controlled by an adversary)

Secure MPC
[Yao ’82]

Secure MPC

• n processors want to compute a function f
over n inputs. f can be computed with m
gates.

[Yao ’82]

Secure MPC

• n processors want to compute a function f
over n inputs. f can be computed with m
gates.

• Each processor has one input

[Yao ’82]

Secure MPC

• n processors want to compute a function f
over n inputs. f can be computed with m
gates.

• Each processor has one input

• Up to t<n/3 processors are bad

[Yao ’82]

Secure MPC

• n processors want to compute a function f
over n inputs. f can be computed with m
gates.

• Each processor has one input

• Up to t<n/3 processors are bad

Note: The traditional MPC definition has additional privacy
requirements that are ignored here

[Yao ’82]

Applications as Functions

• Auctions

• Threshold cryptography

• Information aggregation

Applications as Functions

• Auctions

• Threshold cryptography

• Information aggregation

 1) M, p, q are parameters of the function;
 2) s is the y intercept of a
 degree (d - 1) function
 with points given by the values.

MPC Results

• Recent renaissance in MPC

• Since 2008, MPC is used annually in
Denmark to hold an auction between
5,000 beet farmers and sugar producers

• Significant recent theoretical
improvements due to homomorphic
encryption

MPC for large
networks

• We have worked on the problem of
designing MPC protocols for large n

• We use quorums

• A quorum is O(log n) processors, most
of which are good

• Can get all processors to agree on n
quorums [KS ’11]

• Each gate computed by a quorum

Our Result

• Resource costs

• Bits sent per processor and computation
per processor is

• Latency is polylog

• We solve MPC with high probability
meaning probability of error that goes to 1
as n grows large

Õ(
m+ n

n
+
p
n)

Problem

• Resource overhead is still polylogarithmic

• Requires polylog times more computation,
communication, etc compared to non-
robust algorithms

Can we do better?

• Is logarithmic redundancy necessary for
MPC?

• We don’t know

• It’s necessary for a quorum approach, but
there may be a smarter way

Noisy Gates and MPC

• Good:

• Simple, well-defined problems

• Significant theoretical and empirical
progress

• Bad

• Both problems seem to require a
redundant approach

Dream Result

• Given parallel algorithm A over n nodes,
create parallel algorithm A’

• A’ works even if t<n/2 nodes fail

• Resource costs of A’ are O(t) more than
resource costs of A

Redundancy vs Self-
healing

Our algorithms: require many redundant
components to tolerate 1 failure

Brain: rewires to have other components
help out when a component fails

Towards a Research
Agenda

“Make no little plans”

• Succinct problems are retained

• Important problems span disciplines

• Hard problems pull in smart people

Self-healing

• A self-healing system, starting from a
correct state, under attack from an
adversary, goes only temporarily out of a
correct state.

• Our initial work: Under attack from
powerful adversary, maintain certain
topological properties within acceptable
bounds.

Ensuring Robustness

• Want to ensure that our network is
robust to node failures

• Idea: Build some redundancy into the
network?

• Example: Connectivity

• Use k-connected graph.

• Price: degree must be at least k.

Ensuring Robustness

• Want to ensure that our network is
robust to node failures.

• Idea: build some redundancy into the
network?

• Example: Connectivity

• Use k-connected graph.

• Price: degree must be at least k.

Expensive!

Model

• Start: a network G.

• An adversary inserts or deletes nodes .

• After each node addition/deletion, we can
add and/or drop some edges between pairs
of nearby nodes, to “heal” the network.

 Self-healing illustration

v

Naive?

And so on...

v

Problem
v

G0 G3

Degree(v,G0) = 2 Degree(v,G3) = 5

v

Possible healing topologies:
Line	 graph

v v

G0 G3

Low degree increase but diameter/ distances blow up

Possible healing topologies:
	 Star	 graph

v v

G0 G3

Low distances but degree blows up

Challenge 1: properties
conflict

Low degree increase => high diameter/
stretch/ poorer expansion?

Challenge 2: local fixing
of global properties

Low diameter => high degree increase?
✴ Limited global Information with nodes
✴ Limited resources and time constraints

Self-healing Goals

• Healing should be very fast.

• Certain topological properties should be
maintained within bounds:

- Connectivity

- Degree

- Diameter/ Stretch

Our SH algorithms

• DASH [IEEE International Parallel & Distributed
Processing Symposium 2008]

• Forgiving Tree [ACM Principles of Distributed
Computing, 2008]

• Forgiving Graph [ACM Principles of Distributed
Computing, 2009, Journal of Distributed Computing, 2012]

Distributed Computing:
Message Passing model

• Communication is by sending
messages along edges

• Only local knowledge to begin
with

Goals

• Ensure connectivity

• Healing should be very fast (constant time)

• If vertex v starts with degree d, then its
degree should never be much more than d

• Diameter shouldn’t increase by too much

The Forgiving Tree:
Model

• Start: a network G.

• Nodes fail in unknown order v1, v2, ..., vn

• After each node deletion, we can add
and/or drop some edges between pairs
of nearby nodes, to “heal” the network

The Forgiving Tree:
Main Result

• A distributed algorithm, Forgiving Tree such
that, for any network G with max degree
D, for an arbitrary sequence of deletions,

• Graph stays connected

• Diameter increases by ≤ log(D) factor

• Degrees increase by ≤ 3 (additive)

• Each repair takes constant time and
involves O(D) nodes.

The Forgiving Tree:
Main Result

• A distributed algorithm, Forgiving Tree such
that, for any network G with max degree
D, for an arbitrary sequence of deletions,

• Graph stays connected

• Diameter increases by ≤ log(D) factor

• Degrees increase by ≤ 3 (additive)

• Each repair takes constant time and
involves O(D) nodes.

Matching
lower bound
}

The Forgiving Tree:
motivations

• Trees are the “worst case” for maintaining
connectivity. Suppose we are given one.

• Maintain a virtual tree: Tracks vertex degrees
and also avoid blowing up distances.

FT: first approximation

• Find a spanning tree of G.

• Choose some vertex to be the root, and
orient all edges toward the root.

• When a node is deleted, replace it by a
balanced binary tree of “virtual nodes”

• Short-circuit any redundant virtual nodes

• Somehow the surviving real nodes simulate
the virtual nodes

da b c e f g h

P

d fa b c h

a

b

c

v

d

e

e

f

f

g

g

h

P

Replacing v by a balanced binary tree of
virtual nodes

Short-circuiting a redundant virtual node

Virtual Nodes

• A virtual node starts with degree 3, since
internal node of a complete binary tree.

• If a neighbor is a leaf, and is deleted, the
virtual node becomes redundant. Then we
“short-circuit” it.

• This ensures that there are always more
real nodes than virtual nodes. Each real
node needs to simulate at most one virtual.

Algorithm in action

Node v deleted:

m n o

m n o

r

j

p

i k

g

h

f
ca

b d

e

a gfedcb

h

r

v

c

j

p

a
b

d e

i k

g
f

h

gc e

m n o

h

p

ga

ji k

fedcb

r

i

i j

k

r

k

h
j

h

f
a

b d

a gfedcb

m n o

m n o

ga hfedcb

r

i j k

g

h

f
ea

b

a

c

gfeb

k

r

i

i
h

j

j k

c

m n o

hb c ga fe

r

i j k

m n o

i
o

j

e

j k

gfe

f ga
b

a b

c

i

c

k

r

n o

m

m

n

self healing.
 The network after all the deletions and

om n

r

fe gc

j

a b

ki

.

.

Turn 1: Adversary deletes v. Vertices a through h take over helper
nodes in RT(v).h is v’s heir and connects
the real graph now contains a

Turn 2: Adversary

 deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p)

Turn 3: Adversary deletes d. The original helper node of c is made

nodes formerly held by d.

Turn 4: Adversary deletes h. Vertices m, n and o take over helper nodes

Note that since the number of children of h was not a power of 2, not all the
leaves of RT(h) are at the same depth.

cycle, (b, c, d)

redundant by the deletion of d and so is

of RT(h). o is heir of h and takes over h’s

bypassed. c takes over the helper

to both p and q. Note that

role of v in RT(p). d attaches to

and takes over h’s helper role.

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:

m n o

m n o

r

j

p

i k

g

h

f
ca

b d

e

a gfedcb

h

r

v

c

j

p

a
b

d e

i k

g
f

h

gc e

m n o

h

p

ga

ji k

fedcb

r

i

i j

k

r

k

h
j

h

f
a

b d

a gfedcb

m n o

m n o

ga hfedcb

r

i j k

g

h

f
ea

b

a

c

gfeb

k

r

i

i
h

j

j k

c

m n o

hb c ga fe

r

i j k

m n o

i
o

j

e

j k

gfe

f ga
b

a b

c

i

c

k

r

n o

m

m

n

self healing.
 The network after all the deletions and

om n

r

fe gc

j

a b

ki

.

.

Turn 1: Adversary deletes v. Vertices a through h take over helper
nodes in RT(v).h is v’s heir and connects
the real graph now contains a

Turn 2: Adversary

 deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p)

Turn 3: Adversary deletes d. The original helper node of c is made

nodes formerly held by d.

Turn 4: Adversary deletes h. Vertices m, n and o take over helper nodes

Note that since the number of children of h was not a power of 2, not all the
leaves of RT(h) are at the same depth.

cycle, (b, c, d)

redundant by the deletion of d and so is

of RT(h). o is heir of h and takes over h’s

bypassed. c takes over the helper

to both p and q. Note that

role of v in RT(p). d attaches to

and takes over h’s helper role.

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:

Node p deleted:

m n o

m n o

r

j

p

i k

g

h

f
ca

b d

e

a gfedcb

h

r

v

c

j

p

a
b

d e

i k

g
f

h

gc e

m n o

h

p

ga

ji k

fedcb

r

i

i j

k

r

k

h
j

h

f
a

b d

a gfedcb

m n o

m n o

ga hfedcb

r

i j k

g

h

f
ea

b

a

c

gfeb

k

r

i

i
h

j

j k

c

m n o

hb c ga fe

r

i j k

m n o

i
o

j

e

j k

gfe

f ga
b

a b

c

i

c

k

r

n o

m

m

n

self healing.
 The network after all the deletions and

om n

r

fe gc

j

a b

ki

.

.

Turn 1: Adversary deletes v. Vertices a through h take over helper
nodes in RT(v).h is v’s heir and connects
the real graph now contains a

Turn 2: Adversary

 deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p)

Turn 3: Adversary deletes d. The original helper node of c is made

nodes formerly held by d.

Turn 4: Adversary deletes h. Vertices m, n and o take over helper nodes

Note that since the number of children of h was not a power of 2, not all the
leaves of RT(h) are at the same depth.

cycle, (b, c, d)

redundant by the deletion of d and so is

of RT(h). o is heir of h and takes over h’s

bypassed. c takes over the helper

to both p and q. Note that

role of v in RT(p). d attaches to

and takes over h’s helper role.

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:

m n o

m n o

r

j

p

i k

g

h

f
ca

b d

e

a gfedcb

h

r

v

c

j

p

a
b

d e

i k

g
f

h

gc e

m n o

h

p

ga

ji k

fedcb

r

i

i j

k

r

k

h
j

h

f
a

b d

a gfedcb

m n o

m n o

ga hfedcb

r

i j k

g

h

f
ea

b

a

c

gfeb

k

r

i

i
h

j

j k

c

m n o

hb c ga fe

r

i j k

m n o

i
o

j

e

j k

gfe

f ga
b

a b

c

i

c

k

r

n o

m

m

n

self healing.
 The network after all the deletions and

om n

r

fe gc

j

a b

ki

.

.

Turn 1: Adversary deletes v. Vertices a through h take over helper
nodes in RT(v).h is v’s heir and connects
the real graph now contains a

Turn 2: Adversary

 deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p)

Turn 3: Adversary deletes d. The original helper node of c is made

nodes formerly held by d.

Turn 4: Adversary deletes h. Vertices m, n and o take over helper nodes

Note that since the number of children of h was not a power of 2, not all the
leaves of RT(h) are at the same depth.

cycle, (b, c, d)

redundant by the deletion of d and so is

of RT(h). o is heir of h and takes over h’s

bypassed. c takes over the helper

to both p and q. Note that

role of v in RT(p). d attaches to

and takes over h’s helper role.

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:

Node d deleted:

m n o

m n o

r

j

p

i k

g

h

f
ca

b d

e

a gfedcb

h

r

v

c

j

p

a
b

d e

i k

g
f

h

gc e

m n o

h

p

ga

ji k

fedcb

r

i

i j

k

r

k

h
j

h

f
a

b d

a gfedcb

m n o

m n o

ga hfedcb

r

i j k

g

h

f
ea

b

a

c

gfeb

k

r

i

i
h

j

j k

c

m n o

hb c ga fe

r

i j k

m n o

i
o

j

e

j k

gfe

f ga
b

a b

c

i

c

k

r

n o

m

m

n

self healing.
 The network after all the deletions and

om n

r

fe gc

j

a b

ki

.

.

Turn 1: Adversary deletes v. Vertices a through h take over helper
nodes in RT(v).h is v’s heir and connects
the real graph now contains a

Turn 2: Adversary

 deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p)

Turn 3: Adversary deletes d. The original helper node of c is made

nodes formerly held by d.

Turn 4: Adversary deletes h. Vertices m, n and o take over helper nodes

Note that since the number of children of h was not a power of 2, not all the
leaves of RT(h) are at the same depth.

cycle, (b, c, d)

redundant by the deletion of d and so is

of RT(h). o is heir of h and takes over h’s

bypassed. c takes over the helper

to both p and q. Note that

role of v in RT(p). d attaches to

and takes over h’s helper role.

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:

m n o

m n o

r

j

p

i k

g

h

f
ca

b d

e

a gfedcb

h

r

v

c

j

p

a
b

d e

i k

g
f

h

gc e

m n o

h

p

ga

ji k

fedcb

r

i

i j

k

r

k

h
j

h

f
a

b d

a gfedcb

m n o

m n o

ga hfedcb

r

i j k

g

h

f
ea

b

a

c

gfeb

k

r

i

i
h

j

j k

c

m n o

hb c ga fe

r

i j k

m n o

i
o

j

e

j k

gfe

f ga
b

a b

c

i

c

k

r

n o

m

m

n

self healing.
 The network after all the deletions and

om n

r

fe gc

j

a b

ki

.

.

Turn 1: Adversary deletes v. Vertices a through h take over helper
nodes in RT(v).h is v’s heir and connects
the real graph now contains a

Turn 2: Adversary

 deletes p. Vertices h, i, j, and k take over helper
nodes in RT(p). h takes over the helper
i. k is p’s heir and connects to both h and parent(p)

Turn 3: Adversary deletes d. The original helper node of c is made

nodes formerly held by d.

Turn 4: Adversary deletes h. Vertices m, n and o take over helper nodes

Note that since the number of children of h was not a power of 2, not all the
leaves of RT(h) are at the same depth.

cycle, (b, c, d)

redundant by the deletion of d and so is

of RT(h). o is heir of h and takes over h’s

bypassed. c takes over the helper

to both p and q. Note that

role of v in RT(p). d attaches to

and takes over h’s helper role.

Figure 3: An illustrative sequence of deletions and
healings.

in the system, the helper fields are set to EMPTY. The
current fields parent(v) and children(v) are assigned point-
ers to the parent and children of v. Of course, if v is a leaf
node children(v) is EMPTY and if v is the root of the tree
parent(v) is EMPTY.

As stated earlier, the heart of our algorithm is the system
of wills created by nodes and distributed among its neigh-
bors. The will of a node, v, has two parts: firstly, a Recon-
struction Tree (SubRT(v)), which will replace v when it is
deleted by the Adversary, and secondly, the delegation of v’s
helper responsibilities (if any) to a child node, heir(v). For
concreteness, we initially designate the child of v with the
highest ID as heir(v). In the event that heir(v) is deleted,
its role will be taken over by its heir, if any. If heir(v) is a
leaf when it is deleted, then v will designate its new heir to
be the surviving child whose helper node has just decreased
in degree from 3 to 2.

Algorithm 3.5: GenerateSubRT computes SubRT(v). If
the node v has no helper responsibilities, as is during this
phase, RT(v) is simply SubRT(v) with a helper node sim-
ulated by heir(v) appended on as the parent of the root of
SubRT(v). Figure 1 and Turn 1 in Fig 3 depict such Re-
construction Trees. If the node v has helper responsibilities
RT(v) is the same as SubRT(v). Node v uses Algorithm
3.5 to compute SubRT(v) as follows: All the children of v
are arranged as a single layer in sorted (say, ascending) or-
der of their IDs. Then a set of helper nodes - one node for
each of the children of v except the heir are arranged above
this layer so as to construct a balanced binary search tree
ordered on their IDs.

The last step of the initialization process is to finalize the
will and transmit it to the children. Each child is given only
the portion of the will relevant to it. Thus, only this portion
needs to be updated whenever a will changes. The division
of RT into these portions is shown in figure 2. There are
fundamentally two di�erent kinds of wills : one prepared by
leaf nodes who have helper responsibilities and the other by
non-leaf nodes. Obviously, during the initialisation phase,
only the second kind of will is needed. This is finalized and
distributed as shown in Algorithm 3.6: MakeWill. The
children of v initialize their reconstruction fields with the
values from SubRT(v). If later v gets deleted these values
will be copied to present and helper fields such that RT(v)
is instantiated. Notice that the role the heir will assume
is decided according to whether v is a helper node or not.
Since v cannot be a helper node in this phase, the heir node
simply sets its reconstruction fields so as to be between the
root of SubRT(v) and parent(v). In this case when RT(v)
will be instantiated, the helper node simulated by heir(v)
shall have only one child: we will say that heir(v) is in the
ready phase (explained later) and set the flag isreadyheir(v)
to true. In the initialization phase both the isreadyheir and
ishelper flags will be set to false.

This completes the setup and initialization of the data
structure. Now our network is ready to handle adversarial
attacks. In the context of our algorithm, there are two main
events that can happen repeatedly and need to be handled
di�erently:

3.1.2 Deletion of an internal node
The healing that happens on deletion of a non-leaf node

is specified in Algorithm 3.3: FixNodeDeletion. In our
model, we assume that the failure of a node is only detected
by its neighbors in the tree, and it is these nodes which will
carry out the healing process and update the changes wher-
ever required. If the node v was deleted, the first step in
the reconstruction process is to put RT into place accord-
ing to Algorithm 3.8: makeRT. Note that all children of
v have lost their parent. Let us discuss the reconstruction
performed by non-heir nodes first. They make an edge to
their new parent (pointer to which was available as next-
parent()) and set their current fields. Then they take the
role of the helper nodes as specified in RT(v) and Algorithm
3.9: MakeHelper and make the required edges and field
changes to instantiate RT(v).

To understand what the heir node does in this case, it will
be useful here to have a small discussion on the states of a
regular/heir node:

Caveats

• Each virtual node somehow gets assigned
to a surviving real node. (next few slides)

• The actual healed network is just the
homomorphic image of the restored tree
under this map. (later).

• We won’t go into full detail about how to
implement this in a distributed way.

Assigning virtual duties

• At the start of the algorithm, each non-leaf
node v writes a “will” specifying one child
to simulate each virtual node which will be
created when v is deleted.

• The relevant piece of this will is entrusted
to each child

• v may revise the will from time to time

• When v is deleted, the will is implemented

Where there’s a will...

x assigns virtual
nodes in his will
h is the “heir”

The will gets split
into 5 parts--one for

each neighbor.

h

h

a

a

b

a

c

c

 RT(x)

p

a b

a

b

c h

c

p

x

a b c h b

a

h

h

c

b

h

p

a

a

b

b

nextparent: c

nexthparent: p

nexthchildren: b

nexthparent: b

nexthchildren: a,b

nextparent: a

c

c

h

b

a

h

b

c

c

nexthparent: h

nexthchildren: a,c

nexthparent: b

nexthchildren: c,h

nextparent: b

nextparent: b
h.nexthparent=p

p
p

Heirs

• What happens when the node simulating a
virtual node is deleted?

• (a) if the virtual node has become
redundant, it is short-circuited as usual.

• (b) if the simulating node w has children,
then w’s will designates a child to take over
the virtual node. This is w’s “heir”

a b c d

a c
b

a b c d

A virtual tree (left) and its homomorphic image (right)

Homomorphism: Given

The Forgiving Graph: A distributed data structure for low stretch
under adverserial attack

Tom Hayes� Jared Saia † Amitabh Trehan †

Abstract
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack

by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a
node with arbitrary connections or deletes an arbitrary node from the network. The network responds
to each such change by quick ”repairs,” which consist of adding or deleting a small number of edges.

These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing
node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose
distance would have been ⌃ in the graph formed by considering only the adversarial insertions (not
the adversarial deletions or the algorithm’s repairs), will be at distance O(⌃ log n) in the actual graph,
where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degree
would have been d in the graph with adversarial insertions only, will have degree O(d) in the actual
graph. Our algorithm is completely distributed and has low latency and bandwidth requirements.

1 Introduction

G1 = (V1, E1), G2 = V2, E2

{v, w} ⇥ E1 � {f(v), f(w)} ⇥ E2

Our Model: We now describe our model of attack and network response. We assume that the network
is initially a connected graph over n nodes. An adversary repeatedly attacks the network. This adversary
knows the network topology and our algorithms, and it has the ability to delete arbitrary nodes from the
network or insert a new node in the system which will connect to at least one of the existing nodes in the
network. However, we assume the adversary is constrained in that in any time step it can only delete or
insert a single node.

Our Results:
In this paper, we describe a new, light-weight distributed data structure that ensures that: 1) the

distance between any two nodes of the network never increases by more than log n times their original
distance, where n are the number of nodes in the graph consisting solely of the original nodes and
insertions without regard to deletions and healings (we call this graph G⇥); and 2) the degree of any node
never increases by more than 3 times over over its degree in G⇥.

The formal statement and proof of these results is in Section 4.1.

2 Delete/Insert and Repair Model

We now describe the details of our delete/insert and repair model. Let G = G0 be an arbitrary graph
on n nodes, which represent processors in a distributed network. The adversary either deletes nodes

�Toyota Technological Institute, Chicago, IL 60637; email: hayest@tti-c.org
†Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-1386; email: {saia,

amitabh}@cs.unm.edu. This research was partially supported by NSF CAREER Award 0644058, NSF CCR-0313160, and
an AFOSR MURI grant.

The Forgiving Graph: A distributed data structure for low stretch
under adverserial attack

Tom Hayes� Jared Saia † Amitabh Trehan †

Abstract
We consider the problem of self-healing in peer-to-peer networks that are under repeated attack

by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a
node with arbitrary connections or deletes an arbitrary node from the network. The network responds
to each such change by quick ”repairs,” which consist of adding or deleting a small number of edges.

These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing
node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose
distance would have been ⌃ in the graph formed by considering only the adversarial insertions (not
the adversarial deletions or the algorithm’s repairs), will be at distance O(⌃ log n) in the actual graph,
where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degree
would have been d in the graph with adversarial insertions only, will have degree O(d) in the actual
graph. Our algorithm is completely distributed and has low latency and bandwidth requirements.

1 Introduction

G1 = (V1, E1), G2 = V2, E2

{v, w} ⇥ E1 � {f(v), f(w)} ⇥ E2

Our Model: We now describe our model of attack and network response. We assume that the network
is initially a connected graph over n nodes. An adversary repeatedly attacks the network. This adversary
knows the network topology and our algorithms, and it has the ability to delete arbitrary nodes from the
network or insert a new node in the system which will connect to at least one of the existing nodes in the
network. However, we assume the adversary is constrained in that in any time step it can only delete or
insert a single node.

Our Results:
In this paper, we describe a new, light-weight distributed data structure that ensures that: 1) the

distance between any two nodes of the network never increases by more than log n times their original
distance, where n are the number of nodes in the graph consisting solely of the original nodes and
insertions without regard to deletions and healings (we call this graph G⇥); and 2) the degree of any node
never increases by more than 3 times over over its degree in G⇥.

The formal statement and proof of these results is in Section 4.1.

2 Delete/Insert and Repair Model

We now describe the details of our delete/insert and repair model. Let G = G0 be an arbitrary graph
on n nodes, which represent processors in a distributed network. The adversary either deletes nodes

�Toyota Technological Institute, Chicago, IL 60637; email: hayest@tti-c.org
†Department of Computer Science, University of New Mexico, Albuquerque, NM 87131-1386; email: {saia,

amitabh}@cs.unm.edu. This research was partially supported by NSF CAREER Award 0644058, NSF CCR-0313160, and
an AFOSR MURI grant.

a map such that

a b c d

d c
b

a b c

A different labeling of the virtual nodes, and the image
Note that in this case the image is not a tree.

d

A series of unfortunate events

Forgiving Tree Summary

• Forgiving tree ensures degree increase is
additive constant. Diameter increase is log
of max degree.

• These parameters are essentially optimal.

• Forgiving tree is fully distributed, has O(1)
latency and O(1) messages exchanged per
round.

Other Self-Healing
Results

Other Self-Healing
Results

• Forgiving Graph

• Handles insertions and deletions

• Shortest path lengths increase by log n
factor; degrees increase by factor of 3

Other Self-Healing
Results

• Forgiving Graph

• Handles insertions and deletions

• Shortest path lengths increase by log n
factor; degrees increase by factor of 3

• BASH (Byzantine self-healing)

• Goal: Reliable message delivery

• Each bad node causes “small” number of
message corruptions

BASH Theoretical
Result

• If there are n nodes and t<n/8 are bad then
we can enable sending of any message with

• Asymptotically optimal latency and
bandwidth cost

• An expected number of corruptions that
is 3t (log* n)2

BASH Empirical Results

Self-Healing of Byzantine Faults 13

r. We simulate an adversary who chooses at the beginning of each simulation a fixed
number of nodes to control uniformly at random without replacement. Our adversary
attempts to corrupt messages between nodes whenever possible. Aside from attempting
to corrupt messages, the adversary performs no other attacks.

4.2 Results

The results of our experiments are shown in Figures 2 and 3. Our results highlight two
strengths of our self-healing algorithms (self-healing) when compared to algorithms
without self-healing (no-self-healing). First, the message cost per SEND decreases as
the total number of calls to SEND increases, as illustrated in Figure 2. Second, for
a fixed number of calls to SEND, the message cost per SEND decreases as the total
number of bad nodes decreases, as shown in Figure 2 as well. In particular, when there
are no bad nodes, self-healing has dramatically less message cost than no-self-healing.

Figure 2 shows that for n = 14,116, the number of messages per SEND for no-self-
healing is 30,516; and for self-healing, it is 525. Hence, the message cost is reduced
by a factor of 58. Also for n = 30,509, the number of messages per SEND for no-self-
healing is 39,170; and for self-healing, it is 562; which implies that the message cost is
reduced by a factor of 70.

In Figure 3, no-self-healing has 0 corruptions; however, for self-healing, the frac-
tion of messages corrupted per SEND decreases as the total number of calls to SEND
increases. Also for a fixed number of calls to SEND, the fraction of messages corrupted
per SEND decreases as the total number of bad nodes decreases.

Furthermore, in Figure 3, for each network, given the size and the fraction of bad
nodes, if we integrate the corresponding curve, we get the total number of times that a
message can be corrupted in calls to SEND in this network. These experiments show
that the total number of message corruptions is at most 3t(log log n)2.

Fig. 2. # Messages per SEND versus # calls to SEND, for n = 14,116 and n = 30,509.

Conclusion

• Decades of work on “reliability boosting”

• Unfortunately, redundancy-based solutions
are inherently inefficient

• Claim: we haven’t been asking the right
questions

Conclusion

• We should demand that resource costs of
reliability boosting algorithms increase only
when there are faults

• A self-healing approach allows us to achieve
these kinds of results

• Q: What is the next step?

Towards a Research
Agenda

“Make no little plans”

• Succinct problems are retained

• Important problems span disciplines

• Hard problems pull in smart people

An Agenda

• Step 1: Focus on specific tools and libraries

An Agenda

• Step 1: Focus on specific tools and libraries

• Step 2: Solve problems based on these tools

An Agenda

• Step 1: Focus on specific tools and libraries

• Step 2: Solve problems based on these tools

• Step 3: Proven reliability of these tools
attracts research attention

An Agenda

• Step 1: Focus on specific tools and libraries

• Step 4: Build on algorithmic techniques to
full-fledged reliable applications and
ultimately a general approach

• Step 2: Solve problems based on these tools

• Step 3: Proven reliability of these tools
attracts research attention

Relevant Papers

• Varsha Dani, Valerie King, Mahnush Mohavedi and Jared Saia. Quorums Quicken
Queries: Efficient Asynchronous Secure Multiparty Computation. Submitted to
Conference on Distributed Computing and Networking (ICDCN), 2013

• Jeff Knockel, George Saad and Jared Saia. Self-Healing of Byzantine Faults.
Symposium on Security, Safety and Stability (SSS), 2013.

• Thomas P. Hayes, Jared Saia, and Amitabh Trehan. The forgiving graph: a
distributed data structure for low stretch under adversarial attack. In PODC ’09:
Proceedings of the 28th ACM symposium on Principles of distributed computing, .

• Tom Hayes, Navin Rustagi, Jared Saia, and Amitabh Trehan. The forgiving tree: a
self-healing distributed data structure. In PODC ’08: Proceedings of the twenty-
seventh ACM symposium on Principles of distributed computing.

• Jared Saia and Amitabh Trehan. Picking up the pieces: Self-healing in recon-
figurable networks. In IEEE International Parallel & Distributed Processing
Symposium. IPDPS 2008,

Questions?

