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I High Level View

dynamical systems -> cell differentiation?

* We chose ensembles of random Boolean
networks to be the model.

* Ensembles of networks allowed us to find the
typical behavior of the model.

* Results indicate phenomena which might
occur In cell differentiation.

* These results are testable using gene arrays.

I e Can cells be modeled as non-linear



Introduction

* |f cells can be modeled using non-linear
dynamical systems, then cell types are
attractors.

* |f a cell type Is an attractor, then the steps
from one attractor to another is a pathway of
cell differentiation.

* Hypothesis: Boolean networks share some
key behaviors of cells in the process of
differentiation.



I Introduction cont.

* Findings suggest Boolean networks are able
I to support some predictions about pathways

of differentiation.

* Predictions should be testable using gene
array techniques.

e Challenge: How to map the continuous
nature of cell dynamics to the discrete steps
of a synchronous Boolean network?



I Background

e Early 1960's, Jacob and Monod proposed a
I “genetic circuit” to explain mechanics of cell
differentiation.
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I Background cont.

on or off, then a cell can be modeled with a
Boolean network.

e Such a network having N genes has 2*N
possible states.

* The human genome has an estimated
25,000 genes.

* A model network would then have 225,000
possible states!

I * |f we restrict a gene's activity to being either



I Biology

* Interaction between genes induce them to
express proteins which in turn can modify
their own or another gene's behavior.

* These interactions form the connections of a
genetic regulatory network.

* Genes In cells are in a continuous level of
activation.

* Gene expression levels determines the cell's

type.

I  Each gene is a segment of DNA.



I Cell Differentiation

* Process where a cell of one type becomes a
I cell of another type.

* Cells differentiate as part of a normal
process: embryonic stem cells can
differentiate into one of 265 different cell
types.

* Cells may also be induced to differentiate
through exposure to certain chemicals.

* Gene arrays are used to take measurements
of cell differentiation.



Random Boolean Networks

(RBNS)

RBNs are directed graphs of N nodes with K
Inputs to each node.

Wiring of network Is chosen at random.
Boolean functions: Rules which allow for
state transitions in the network.

State of network Is a snapshot of all node
values.

Each node evaluates to 1 or O, on or off.
Subseqguent states generated synchronously
by feeding the network state through a set of
Boolean functions.



Model cont.

A simple K=2, N=3 Boolean network
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I Model cont.

called a state-cycle or attractor.

* All Boolean Networks have state cycles.

* |f cell types are attractors, then we can model
them with RBNSs.

* As previously stated, getting from one
attractor to another becomes a model for a
pathway of differentiation.

* In RBNSs, a pathway of differentiation, or
transient, is initiated by perturbing a state.

I * A sequence of states which repeats itself is



Testing Network Dynamics

* Needed to confirm the network dynamics for
ordered, critical, and chaotic networks.

* The standard way to measure the complexity
of a Boolean network was discovered by
Derrida and Pommeau in 1986.

* |dea: compare the Hamming distance between
pairs of states (dt) and their successor states
(dt+1) in a random Boolean network.



Dynamics cont.

If the Hamming distances are greater, then
nearby states are diverging.

If the Hamming distances are less, nearby
states are converging.

If the Hamming distances are about equal,
then nearby states are neither converging
nor diverging.

Repeat for different pairs of states and plot
the results.
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I Experimental Methods

* Networks generated for various N,K values.
I * For each state-cycle found, all single node
perturbations generated to create transients.

e Statistics were gathered for:

- Homeostatic versus non-homeostatic behavior.

- Transient fusion, where pairs of transients join
and flow together.

- Hamming distances between states along the
transient.

- Number of times a node (gene) changes state
over the length of a transient.



I Homeostatic versus non-
I homeostatic behavior

* Homeostasis Is a sign of stability.

I * Networks with a single attractor excluded.

* For N=10-40, percentages of homeostatic
transients decrease monotonically as K
Increases for K=1,2,3,4.

* This is consistent with the idea that cell types
are stable attractors.



Transient Length vs.
Percentage of Transients

* Transient length is the number of state
transitions required to reach an attractor.

* As K increases, the average transient length
becomes longer.

e Homeostatic, but not non-homeostatic
transients show a pronounced peak in

transients of a single state transition.
- We can predict the same for living cells.
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Mapping the discrete to the

continuous

* Goal: Achieve a credible mapping between
Boolean networks and genetic regulatory
networks.

* |dea: Track the incidence of gene change or
“flips” over a transient.

* For K=2,3,4 the number of gene flips was
found to increase monotonically.
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I Transient fusion

* Fusion: Where transient paths merge and
I flow together.

* |s the process of convergence a smooth or
sudden process?

* |t was found that between pairs of transients
which fuse, the Hamming distances
converged smoothly with proximity to the
point of fusion.

* Note: this cannot happen for K=N.
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I Fusion Statistics

number of fused homeostatic transients

grows smaller.

- This indicates a higher convergence In state
space for networks in the ordered and critical
regime than for networks in the chaotic regime.

* |t Is hypothesized that the ratio of fused
homeostatic to unfused homeostatic
transients is a marker of the critical regime.

I * |t was found that as K grows larger, the
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I Hamming distances along the
I trajectory

* |t was hypothesized that the hamming
I distance between successive states along

the trajectory would monotonically decrease.

* This behavior was indeed found to exist for
all K-values explored.

* Findings support a study done at Harvard
Children's Hospital.

* Unfortunately the standard deviation is large,
so the reduction in Hamming distance Is
difficult to notice.
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I Distribution of gene flips as a
I function of transient length

* The fraction of times along a transient that a
I gene changes state.
e K=1, 2 shows a wide distribution of the
fraction of times genes change along

transient.
 K=3, 4 shows that a large fraction of genes

never change state.
* These features should be experimentally
testable using a gene array.
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I Discussion

discovered in RBNs suggests that fusing
pathways of differentiation can be found.

* A large percentage of genes in transients of
chaotic networks never change state where
the reverse is true in the ordered and critical
regimes.

- If cells are stable attractors, we would expect to

find a wide distribution in the percentage of time
that genes change state.

I * The number of fusing pairs of transients



I Discussion
I Discrete vs. Continuous

* The mapping of gene flips as a function of
I transient length suggests a linear relation
between transient lengths in RBNs and the
number of times a gene alters activity.
* |f the mapping is valid, it should be possible
using gene arrays to measure the number of

gene variations over a series of closely timed
Intervals.



I Summary

* This is the first examination of pathways of
I differentiation under the hypothesis that cell
types correspond to attractors.
* |t was not expected that RBNs would yield a
comprehensive model of living cells.
* However, some behaviors in RBNs were
found which should be measurable in living

cells.



I Summary cont.

- The amount of gene activity over time.

- The ratio of fused homeostatic to unfused non-
homeostatic transients.

- The Hamming distance between successive
states on a transient as it approaches a cell type.

- The Hamming distance between pairs of
transients as they approach a common cell type.

I e Expected measurable features:




I Future Directions

- Small group of regulator genes, “head”.
- Large group of regulated genes, “tail”.
- Follows some behavior seen in living cells.

* Asynchronous RBNSs
- Updates genes one at a time, randomly.
- Adds non-determinism to the model.
- ARBNs may more closely approximate gene

expression in genetic regulatory networks.
* But nobody really knows

I e Medusa networks
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