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High Level View

● Can cells be modeled as non-linear 
dynamical systems -> cell differentiation?

● We chose ensembles of random Boolean 
networks to be the model.

● Ensembles of networks allowed us to find the 
typical behavior of the model.

● Results indicate phenomena which might 
occur in cell differentiation.

● These results are testable using gene arrays.



Introduction

● If cells can be modeled using non-linear 
dynamical systems, then cell types are 
attractors.

● If a cell type is an attractor, then the steps 
from one attractor to another is a pathway of 
cell differentiation.

● Hypothesis: Boolean networks share some 
key behaviors of cells in the process of 
differentiation. 



Introduction cont.

● Findings suggest Boolean networks are able 
to support some predictions about pathways 
of differentiation.

● Predictions should be testable using gene 
array techniques.

● Challenge:  How to map the continuous 
nature of cell dynamics to the discrete steps 
of a synchronous Boolean network?



Background

● Early 1960's, Jacob and Monod proposed a 
“genetic circuit” to explain mechanics of cell 
differentiation.



Background cont.

● If we restrict a gene's activity to being either 
on or off,  then a cell can be modeled with a 
Boolean network.

● Such a network having N genes has 2^N 
possible states.

● The human genome has an estimated 
25,000 genes.

● A model network would then have 2^25,000 
possible states!



Biology

● Each gene is a segment of DNA.
● Interaction between genes induce them to 

express proteins which in turn can modify 
their own or another gene's behavior.

● These interactions form the connections of a 
genetic regulatory network.

● Genes in cells are in a continuous level of 
activation.

● Gene expression levels determines the cell's 
type.



Cell Differentiation

● Process where a cell of one type becomes a 
cell of another type.

● Cells differentiate as part of a normal 
process: embryonic stem cells can 
differentiate into one of 265 different cell 
types.

● Cells may also be induced to differentiate 
through exposure to certain chemicals.

● Gene arrays are used to take measurements 
of cell differentiation.



Random Boolean Networks 
(RBNs)

● RBNs are directed graphs of N nodes with K 
inputs to each node.

● Wiring of network is chosen at random.
● Boolean functions: Rules which allow for 

state transitions in the network.
● State of network is a snapshot of all node 

values. 
● Each node evaluates to 1 or 0, on or off.
● Subsequent states generated synchronously 

by feeding the network state through a set of 
Boolean functions.



Model cont.

A simple K=2, N=3 Boolean network



Model cont.

● A sequence of states which repeats itself is 
called a state-cycle or attractor.

● All Boolean Networks have state cycles.
● If cell types are attractors, then we can model 

them with RBNs.
● As previously stated, getting from one 

attractor to another becomes a model for a 
pathway of differentiation.

● In RBNs, a pathway of differentiation, or 
transient, is initiated by perturbing a state. 



Testing Network Dynamics

● Needed to confirm the network dynamics for 
ordered, critical, and chaotic networks.

● The standard way to measure the complexity 
of a Boolean network was discovered by 
Derrida and Pommeau in 1986.

● Idea: compare the Hamming distance between 
pairs of states (dt) and their successor states 
(dt+1) in a random Boolean network.



Dynamics cont.

● If the Hamming distances are greater, then 
nearby states are diverging.

● If the Hamming distances are less, nearby 
states are converging. 

● If the Hamming distances are about equal, 
then nearby states are neither converging 
nor diverging.

● Repeat for different pairs of states and plot 
the results.



Derrida plot



Experimental Methods

● Networks generated for various N,K values.
● For each state-cycle found, all single node 

perturbations generated to create transients.
● Statistics were gathered for:

– Homeostatic versus non-homeostatic behavior.
– Transient fusion, where pairs of transients join 

and flow together.
– Hamming distances between states along the 

transient.
– Number of times a node (gene) changes state 

over the length of a transient.



Homeostatic versus non-
homeostatic behavior

● Homeostasis is a sign of stability.
● Networks with a single attractor excluded.
● For N=10-40, percentages of homeostatic 

transients decrease monotonically as K 
increases for K=1,2,3,4.

● This is consistent with the idea that cell types 
are stable attractors. 



Transient Length vs. 
Percentage of Transients

● Transient length is the number of state 
transitions required to reach an attractor.

● As K increases, the average transient length 
becomes longer.

● Homeostatic, but not non-homeostatic 
transients show a pronounced peak in 
transients of a single state transition.
– We can predict the same for living cells.



Transient length vs 
homeostasis, K=2



Mapping the discrete to the 
continuous

● Goal: Achieve a credible mapping between 
Boolean networks and genetic regulatory 
networks.

● Idea: Track the incidence of gene change or 
“flips” over a transient.

● For K=2,3,4 the number of gene flips was 
found to increase monotonically.



Gene flips as a function of 
transient length



Transient fusion

● Fusion: Where transient paths merge and 
flow together.

● Is the process of convergence a smooth or 
sudden process?

● It was found that between pairs of transients 
which fuse, the Hamming distances 
converged smoothly with proximity to the 
point of fusion.

● Note: this cannot happen for K=N.



Convergence with transient 
fusion



Fusion Statistics

● It was found that as K grows larger, the 
number of fused homeostatic transients 
grows smaller.
– This indicates a higher convergence in state 

space for networks in the ordered and critical 
regime than for networks in the chaotic regime.

● It is hypothesized that the ratio of fused 
homeostatic to unfused homeostatic 
transients is a marker of the critical regime. 



Fused and unfused transients



Hamming distances along the 
trajectory

● It was hypothesized that the hamming 
distance between successive states along 
the trajectory would monotonically decrease.

● This behavior was indeed found to exist for 
all K-values explored.

● Findings support a study done at Harvard 
Children's Hospital.

● Unfortunately the standard deviation is large, 
so the reduction in Hamming distance is 
difficult to notice.



Hamming distance along 
trajectory



Distribution of gene flips as a 
function of transient length

● The fraction of times along a transient that a 
gene changes state.

● K=1, 2 shows a wide distribution of the 
fraction of times genes change along 
transient.

● K=3, 4 shows that a large fraction of genes 
never change state. 

● These features should be experimentally 
testable using a gene array.  



Fraction of time genes flip along 
transient, K=1



Fraction of time genes flip along 
transient, K=2



Fraction of time genes flip along 
transient, K=3



Fraction of time genes flip along 
transient, K=4



Discussion

● The number of fusing pairs of transients 
discovered in RBNs suggests that fusing 
pathways of differentiation can be found.

● A large percentage of genes in transients of 
chaotic networks never change state where 
the reverse is true in the ordered and critical 
regimes.
– If cells are stable attractors, we would expect to 

find a wide distribution in the percentage of time 
that genes change state.



Discussion
Discrete vs. Continuous

● The mapping of gene flips as a function of 
transient length suggests a linear relation 
between transient lengths in RBNs and the 
number of times a gene alters activity.

● If the mapping is valid, it should be possible 
using gene arrays to measure the number of 
gene variations over a series of closely timed 
intervals.



Summary

● This is the first examination of pathways of 
differentiation under the hypothesis that cell 
types correspond to attractors.

● It was not expected that RBNs would yield a 
comprehensive model of living cells. 

● However, some behaviors in RBNs were 
found which should be measurable in living 
cells.



Summary cont.

● Expected measurable features:
– The amount of gene activity over time.
– The ratio of fused homeostatic to unfused non-

homeostatic transients.
– The Hamming distance between  successive 

states on a transient as it approaches a cell type.
– The Hamming distance between pairs of 

transients as they approach a common cell type.



Future Directions

● Medusa networks
– Small group of regulator genes, “head”.
– Large group of regulated genes, “tail”.
– Follows some behavior seen in living cells.

● Asynchronous RBNs
– Updates genes one at a time, randomly.
– Adds non-determinism to the model. 
– ARBNs may more closely approximate gene 

expression in genetic regulatory networks.
● But nobody really knows



Acknowledgements

● I would like to thank Dr. Christopher Moore, 
Dr. Robert Veroff, and Dr. Stuart Kauffman 
for consenting to serve on my committee and 
graciously allowing me the use of their time.

● This research has been partially supported 
by grants from the National Science 
Foundation (PHY-0417660) and the National 
Institutes of Health (GM070600-01).


