
Implementation of a Genetic Algorithm to Simulate the Evolution of
CoreWar Warriors Based on Fitness Values

MOHAMMAD ASHRAF SIDDIQUEE, University of New Mexico
VANESSA SURJADIDJAJA, University of New Mexico

Genetic algorithms (GAs) simulate the evolution of a population within
a reasonable amount of time. GAs o�ering us the ability to predict the
long-term e�ects on a population based on the various circumstances we
initialize at the start of the GA. �is paper looks at the fundamentals of
constructing a GA and how altering various conditions, such as selection
operators, crossover, and mutation rates, a�ect a population over multiple
generations. A�er varying the previously mentioned variables within our
GA, we found that, given a signi�cant amount of time, a population will
eventual converge to genomes that perform in a similar manner. �us,
the population stops exhibiting major alterations to its genomes despite the
presence of selection, crossover, and mutation operators a�ecting individuals
of the population at each generation. �e convergence we observed over
the population’s evolution and the incomparable genes of the top individual
over three trial-runs suggest that the elitism applied to our GA converges
our warriors towards a genome that is proven to be successful in previous
generations but can also adapt through mutation.

Additional Key Words and Phrases: Genetic algorithms, evolution, biological
simulation, selection, crossover, mutation

ACM Reference format:
Mohammad Ashraf Siddiquee and VANESSA SURJADIDJAJA. 2016. Imple-
mentation of a Genetic Algorithm to Simulate the Evolution of CoreWar
Warriors Based on Fitness Values. 1, 1, Article 1 (January 2016), 7 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

AUTHORS CONTRIBUTION
Author1 wrote the �nal skeleton script of the genetic algorithm used
in this experiment, wrote the �nal code for the genetic algorithm,
analyzed the output of warriors when initial conditions were altered,
and ran the genetic algorithm to obtain two best warriors.

Author2 wrote the initial skeleton script of the genetic algorithm,
wrote the code for the genetic algorithm’s mutation method, wrote
the code for implementing an Island GA, debugged for the program,
tested the various conditions discussed in the paper, collected and
analyzed results from trial-runs of the GA, created the �gures using
Matlab, maintained the GitHub repository, and wrote/maintained
the Overleaf document.

1 INTRODUCTION
�e adaptability of an individual within a system can be associated
with its genome, despite how rudimentary an individual’s genome
may seem. As Dario Floreano and Laurent Keller explains, genes
do not directly a�ect an individual’s behavior, rather they “encode

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2016 ACM. XXXX-XX/2016/1-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

molecular products that lead to the development of brains and bodies
through which behavior is expressed”[3]. �e study of genomic
evolution allows us to further understand the long-term impacts
of an individual’s surroundings. However, to observe the long-
term e�ects of genomic evolution, the implementation of genetic
algorithms (GAs) provides researchers with the �exibility to test
various conditions within a reasonable amount of time.

In this paper, we explore the e�ects of applying a GA to a popu-
lation of individuals. By experimenting with various selection, mu-
tation and crossover operators, we �nd that selection and crossover
operators with a low crossover rate can be used to preserve war-
riors with successful gene combinations. �is form of preservation
allows the population to explore and expand their �tness landscape
without the risk of losing integral parts of its genome.

2 RELATED WORKS
GAs have been frequently used to evolve programs in response to
the di�culties these programs encounter while executed. Floreano
and Keller focus on the adaptive behavior of robots and how these
robots utilize Darwinian selection in their GAs. Floreano and Keller
duly note that the complexity of these evolving robots are not ex-
pressed with complex, fundamental components but rather utilize
simple components, concatenated in various manners, to create
complexity [3]. While GAs are complex and hierarchical as a whole,
the individual parts of a GA are relatively simple in their functions.

What we program and observe in GAs are not necessarily unique.
Many of the guiding principles towards constructing GAs draw
from research on gene networking observed in the biological sci-
ences. As Ben-Jacob highlights, bacteria create complex colonies
despite their inability to store all the required information in their
genes pertaining to the creation of such infrastructure [2]. Ben-
Jacob continues by suggesting that the information gained from the
environment can be condensed within the organism and used as a
guiding description for the organism’s function.
In their analysis of GAs, Suzuki and Iwasa observed the �babel-

like,� or plateau, �tness function in GAs, where a single individual
is favored and preserved among the rest of the population. However,
by suggesting that crossover results in a plateau �tness function,
Suzuki and Iwasa’s GA experienced an exponential increase in their
population’s �tness only to have the population reach a maximum
threshold for their �tness before having the �tness decrease expo-
nentially [7].

For Smith et al., GAs that experience some form of elitism through
intense competition result in a ��at �tness landscape,� which il-
lustrates the allele’s versatility in the genome. Smith observed the
versatility of the gene segment Env C2-V4 in HIV-1. Smith found
that the C2-V4 alleles in HIV-1 exhibits a ��at �tness landscape,�
which Smith de�nes as the allele’s bias toward their �tness. Further-
more, Smith suggests that such a �tness landscape illustrates “the

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 • Author1 and Author2

capacity for subtle polymorphisms in Env to nevertheless signi�-
cantly impact viral �tness” [6]. It is the polymorphism of the allele
segment that allows HIV-1 to easily adapt to its surroundings.

3 METHODS
To obtain a testable output for our GA, we used Redcode, an assem-
bly language, as the genes in an individual’s genome within the
population. �e Redcode that was generated were then manipulated
through crossover and mutation in our GA. We created a GA that
contained the following classes: Gene, Warrior, Population, Utilities,
and De�nitions. Gene contained the command, parameters, and
address modi�ers that make-up a single Redcode instruction.

�e object Warrior contains an ArrayList of genes, making up an
individual warrior’s genome. When these warriors are entered into
the Redcode program pmars, their assembly language compete with
one another and a benchmark warrior to remove one another out of
the CPU’s memory. Once the program is completed, each warrior
is given a �tness score that is calculated from the number of wins
and ties each warrior had during the run of the program.
�e object Population is an ArrayList of warriors where each

time a selection operator is called within the main program, the
list of warriors within the population are sorted with respects to
their �tness score. �e Utilities and De�nitions classes contain
package-shared �nal variables and functions, such as a probability
function, and the constants used to signify which type of selection
and crossover operators are being implemented. �e Utilities class
also holds the crossover and mutations rates called for throughout
the program.
Once the GA was completed, we varied the selection method

from Roule�e 1, Tournament 2, and Random 3 while maintaining
crossover as Uniform with a rate of 0.5 and the mutation rate at
0.5. We then maintained the previously mentioned speci�cations as
our selection method while varying our crossover methods from no
crossover 4, One-point5, and Uniform6. Mutation rate was kept at
0.5. Once we obtained the results for varying selection and crossover
operators, we then varied the crossover rates from 0.2, 0.5 and 0.8
and then varied the mutation rate in a similar manner by using the
rates 0.2, 0.5, and 0.8.
Since our GA utilized elitism throughout the program, it was

necessary to implement an island GA to evolve our population out
of the local maxima the population was biased towards. �e island
GAwe implemented took the top three warriors from the population
and had them reproduce and evolve separately (i.e. populate and
evolve on separate �islands�). At the end of 20 generations, we
then re-introduced the best warriors from the three populations

1Roule�e calculates the proportion of warriors with a certain �tness score and inserts
that proportion of warriors into the next generation.
2Tournament takes the warrior with the highest �tness score and adds the warrior into
the next generation.
3Random will take a random warrior from the top half of the population, a�er the
population has been sorted based on the individual warrior’s �tness score, and replace
the lower half with one of these warriors.
4In order to simulate this condition, crossover rate was reduced to 0
5One-point �nds a random segment of varying length in the warrior’s genome and
swaps it with the segment of varying length of another warrior’s genome.
6Uniform crossover will swap each gene if, and only if, the probability of the crossover
exceeds the indicated value in the De�nitions class.

into the initial population and generate another 20 generations with
the addition of the newly evolved warriors.

We also tested the e�ects of elitism on our GA by implementing
code that would eliminate the elitism biases programmed into the
GA. Elitism biases were eliminated by adding a random warrior
to the current generation from the previous generation. Our GA
terminates based on the number of generations indicated from the
De�nitions class in the program. For the purposes of this experiment
we terminated the GA a�er 20 generations.

4 RESULTS
�e following results correspond to the varying of the selection
operators:

Fig. 1a. The convergence of the top warriors from each generation when
varying the selection Operators in the GA.

Fig. 1b. The distribution of warriors throughout the final population with
respects to the selection operator used in the GA.

As seen in Fig. 1a, a�er varying the selection operators in our GA,
we found that over 20 generations, the population begins to converge
around generation 6. While the �tness score of the top warrior

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Implementation of a Genetic Algorithm to Simulate the Evolution of CoreWar Warriors Based on Fitness Values • 1:3

of each generation slightly �uctuates, their �tness scores remain
within the same range. With respects to our GA, a Tournament
style selection operator yielded warriors with higher �tness scores
over the course of 20 generations. �e distribution of the warriors,
illustrated in Fig 1b, were more dispersed in Random style selection,
while Tournament style consistently hadwarriors with �tness scores
in the range of 1500 to 1600. However, Roule�e style exhibited a
more consistent, stable population with regards to their �tness
score. �e p-values are as follows: *p-value = 0.0200, **p-value =
2.0571e-06, and ***p-value =0.0200.

Fig. 2a. The graph plots the convergence of the top warriors in each gener-
ation when varying the crossover operators.

Fig. 2b. The plot illustrates the distribution of the warriors when varying
the crossover operators.

As illustrated in Fig. 2a, there is an initial di�erence in the pop-
ulations when varying the crossover operators. However, this dif-
ference existed until generation 10. From Generation 11 to 20, the
populations began to converge to one �xed range of �tness scores.
However, given 20 generations, all three crossover operators con-
verged on a similar range of �tness scores, 1500 to 1600. Fig. 2b
demonstrates the distribution of the warriors in the last generation

of each crossover operator tested. �e p-values were *p-value =
0.0200, **p-value = 0.5979, ***p-value = 0.0200. Uniform crossover
exhibited a more concise distribution of warriors that had a �t-
ness score range between 1500 and 1600. One-point crossover pre-
sented a larger distribution of �tness scores, while implementing no
crossover led to a distribution in-between Uniform and One-point
crossover.

Fig. 3a. The convergence of the top warriors from each generation when
varying the selection Operators in the GA.

Fig. 3b. The distribution of warriors throughout the final population with
respects to the selection operator used in the GA.

When varying the rate of crossover in our GA, the three di�erent
rates chosen, 0.2, 0.5, and 0.8, presented us with warriors with
�tness scores proportional to the rate indicated at the start of the
GA. As Fig. 3a illustrates, a crossover rate of 0.8 yields warriors
with �tness scores that �uctuated between 1600 and 1800 from
around generation 10 to generation 20. However, all crossover rates
began to converge in earlier generations, around generation 7. Fig.
3b demonstrates the distribution of the warriors in generation 20,
where a crossover rate of 0.2 resulted in a distribution that spanned

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:4 • Author1 and Author2

�tness scores of 800 to 1300. However, an increase of the crossover
rate to 0.8 resulted in a distribution of warriors with a smaller range
of �tness rates. �e p-values were *p-value = 3.7051e-05, **p-value
= 3.2047e-04, ***p-value = 3.7051e-05.

Fig. 4a. The convergence of the top warriors from each generation when
varying the selection Operators in the GA.

Fig. 4b. The distribution of warriors throughout the final population with
respects to the selection operator used in the GA.

Fig. 4a illustrates that, over time, a mutation rate of 0.2, 0.5, and
0.8 will result in a convergence of the population in later generations.
We begin to see signs of convergence towards generation 10 for
mutations rates of 0.5 and 0.8. A mutation rate of 0.2, on the other
hand, experienced a gradual increase in the top warrior’s �tness
score. However, signs of convergence appeared around generation
18. �e distribution of warriors, as seen in Fig. 4b, when varying
the mutation rate of our GA is much greater for a mutation rate of
0.2 compared to a mutation rate of 0.8.�e p-values were *p-value =
0.4735, **p-value = 0.4734, ***p-value = 0.4735.

If we take into consideration the distribution of warriors in each
varied initial condition, we see that the �tness landscape explored
by our warriors in each run of the GA usually exists between �tness

scores of 1300 and 1600. However, a mutation rate of 0.2 was the only
varied initial condition that led to warriors exploring genomes that
yielded �tness scores lower than the previously mentioned range.
Due to elitism within our GA, the �tness landscape is simple since
all warriors are encouraged to evolve towards the higher �tness
score preserved from previous generations.

Fig. 5. The distribution of each warrior’s fitness score in the initial popula-
tion and the population a�er implementing Island GA.

With respects to our Island GA, the �tness scores were equally
distributed from �tness scores ranging from 1100 to 1600. �e
implementation of an Island GA allowed the population to continue
exploring a �tness landscape that di�ered from the �tness landscape
of the initial population. As seen in Fig. 5, a�er implementing the
Island GA to our original GA, the population was able to maximize
its overall �tness score by 200 points

Fig. 6. The distribution of each warrior’s fitness score in the population
a�er implementing non-elitism.

As Fig. 6 illustrates, the implementation of non-elitism into our
GA resulted in lower �tness scores for warriors of generation 20.
Most warriors exhibited �tness scores of zero while one warrior

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Implementation of a Genetic Algorithm to Simulate the Evolution of CoreWar Warriors Based on Fitness Values • 1:5

had a score in the range of 1400. Nevertheless, the warrior with the
highest �tness score still has a score that was below average when
compared to a warrior bred through elitism.

5 CONCLUSIONS
Our GA optimally runs with the initial conditions set to Tourna-
ment selection with Uniform crossover, a crossover rate of 0.8, and
a mutation rate of 0.2. In addition to elitism, the use of Tournament
selection and Uniform crossover further preserves the best warriors
from each population. Tournament selection preserved the best war-
rior by choosing the warrior with the highest �tness score. Uniform
crossover at a 0.2 crossover rate, preserves the best warriors even
further by decreasing the chances a warrior will lose vital segments
of their genome that contribute to a high �tness score.

A mutation rate of 0.8, on the other hand, allowed any randomly
generated population to eventually create a warrior with a genome
that yields a high �tness score over the course of at least 20 genera-
tions. In other words, a high mutation rate leads to the population’s
expansion of its �tness landscape while the preservation e�ects of
Tournament selection and Uniform crossover at a rate of 0.2 tethers
the population to a set of warriors whose genome comprise of genes
that have been tested to be successful. Furthermore, a crossover
rate of 0.2 contributed to the preservation of the best warriors due
to the epitasis of the warriors’ genes.

Arjan et al. de�nes epitasis as the interaction of various genotypes
and alleles to create a phenotype in an individual. Rather than
the notion of additive genetics, epitasis looks at interconnected
genotypes and how alleles suppress or enhance the performance of
other alleles[1]. If we look at the Redcode of our warriors, we see
that one instruction set can depend on the previous and subsequent
instruction sets. Sign epitasis, as Gerhard Schlosser de�nes the term,
is the dependence of two di�erent loci in order to push towards
the �tness peak of the population [5]. For the purposes of our
experiment, a lower crossover rate aided the process of epitasis in
our populations. Warriors who preserve gene segments that resulted
in high �tness scores from the previous generation will receive a
higher �tness score than those who either performed crossover that
separated the two genes or mutated either one, if not both, of the
genes.

Testing our GA with non-elitism resulted in an immense decrease
in �tness score for all individuals in the population even when the
number of generations was increased to 100. Our reasoning for
increasing the number of generations the population breeds in our
GA was to allow our GA with non-elitism to have some means of
exploring a �tness landscape that is relatively equivalent to our
original GA with elitism.
However, despite the a�empt to equalize the �tness landscape,

the loss of the best warrior at each generation means that the �tness
landscape the population explored during that generation resets
with the creation of subsequent generations. �erefore, at each
generation warriors are susceptible to exploring gene combinations
that previous warriors proved to be either �genetic baggage� or,
worse, fatal.

One way in which our GA can diversify its genome alongside
its use of elitism is to incorporate an Island GA. By taking the best

three warriors of the population7 and allowing them to generate
their own population consisting of warriors with the same genome.
An interesting result from the test was that the �nal population
consisting of the top warriors from each island population and the
initial population saw an overall increase in each warrior�s �tness
score by generation 20. However, the top warrior’s �tness score
maxed around 1600 which is considerably low compared to other
trials that did not use an Island GA.

Studying the e�ects of inbreeding and interbreeding among Dar-
win�s �nches, Grant et al. found that inbreeding of the species
lead to the decrease of the �tness score of the species. When these
species were interbred with one another, the �tness score of the
next generation was decreased further compared to the control of
�nches not inbred nor interbred and the �nches who were inbred
[4]. Grant et al.’s results mimicked our warriors when they inbred
in the island populations and interbred in the �nal population with
one another and the remaining individuals not chosen to migrate
to the island populations from the original population.
Inbreeding and interbreeding combined results in lower �tness

scores due to an isolation of the population to a limited �tness
landscape and a bias towards choosing warriors with rigid genomes
accommodating towards an island’s speci�c conditions. When they
are incorporated back into the population, there is a high chance
that the �tness landscape explored by the warriors from the island
populations are too speci�c and rigid to the islands and, therefore,
may not be bene�cial to the conditions of the initial populations
they evolved from.
Based on the results of this experiment, we found that the com-

plexity of GAs stem from the interaction of their simpler compo-
nents. While the various components in the code of our GA merely
stored, modi�ed, and updated information stored in memory, em-
bedding these instructions within one another and using these in-
structions to alter the genes, the warriors, and the population at
each generation leads to the complexity of any GA. �e next step
for our experiment on GAs is to observe its performance alongside
other GAs, further entwining our understanding of GAs and their
complexity.

REFERENCES
[1] J. Arjan, G.M. de Visser, Time F. Cooper, and Santiago F. Elena. �e causes of

epistasis. Proceedings: Biological Sciences, 278(1725):3617–3624, Dec 2011. doi:
10.1098/rspb.2011.1537.

[2] Eshel Ben-Jacob. Learning from bacteria about natural information processing.
Natural Genetic Engineering and Natural Genome Editing, 1178:78–90, 2009. doi:
10.1111/j.1749-6632.2009.05022.x.

[3] Dario Floreano and Laurent Keller. Evolution of adaptive behaviour in robots
by means of darwinian selection. PLoS Biology, 8(8):1–8, January 2010. doi:
10.1371/journal.pbio.1000292.

[4] Peter R. Grant, B. Rosemary Grant, Lukas F. Keller, Je�rey A. Markert, and Kenneth
Petern. Inbreeding and interbreeding in Darwin’s �nches. Evolution, 57(12):2911–
2916, Dec 2003.

[5] Gerhard Schlosser. Epistasis, constraints, and coevolution. Evolution and Develop-
ment, 11(5):459–461, 2009. doi: 10.1111/j.1525-142X.2009.00353.x.

[6] S. Abigail Smith, Charles Wood, and John T. West. HIV-1 Env C2-V4 diversi�cation
in a slow-progressor infant reveals a �at but rugged �tness landscape. PLoS One, 8
(4):1–18, Apr 2013. doi: 10.1371/journal.pone.0063094.

[7] Hideaki Suzuki and Yoh Iwasa. Crossover accelerates evolution in GAs with a
babel-like �tness landscape: Mathematical analyses. Evolutionary Computation, 7
(3):275–310, 1999.

7�e best three warriors were chosen here since convergence of the warriors’ �tness
scores occurredwith the topwarriors in the population over the course of 20 generations

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 • Author1 and Author2

APPENDIX
�e following are the two sample Redcode warriors generated from
our GA:

; redcode
; name Warrior_T9_001
; author GROUP_T9
; assert CORESIZE == 8000 && MAXLENGTH >= 100
JMZ $2, }4
SPL 4, }6
SUB $3, $5
DIV *0, 3
NOP *4, #7
JMN #0, <4
SNE }4, <6
LDP {4, *6
SEQ @1, #7
SPL 0, {2
SLT @2, $6
MOV *6, }7
NOP 6, }7
SEQ <3, }4
MOV {5, <7
SPL *4, @7
SPL {1, #6
SLT *3, }6
DAT {0, #5
MOD @5, 7
SPL #1, 4
JMP {2, }7
JMP {6, <7
JMN $3, {4
SEQ #3, *6
JMP @1, @7
MUL *4, 6
STP <5, #7
SNE *2, {7
DJN @1, $6
DIV {5, 6
DIV *2, $4
DAT 3, <6
DIV 2, $6
SEQ *2, <5
DIV <3, 6
SLT $1, *3
SEQ #1, #3
CMP }0, $5
DAT #6, $7
MUL @3, 6
JMN {2, }7
STP 0, $7
SEQ #2, #3
CMP }4, $7
SLT {5, *6
MUL }0, 3
JMZ 3, }7

ADD <0, $7
MOV {1, {2
STP {4, #5
DIV 1, }3
LDP #1, *7
SPL @1, 4
MUL *0, $5
JMP $6, {7
SPL $3, <7
JMP @3, <6
JMZ }4, 5
DJN @2, @4
JMP {3, 6
ADD #6, }7
DAT {5, 6
JMP <5, }6
SLT {4, @7
SLT {1, <3
SPL <1, }4
SUB 1, <4
SLT $0, @2
DIV *4, @7
ADD @1, <6
MUL @3, 6
SNE <6, @7
SLT @5, $7
SUB {0, #6
SNE *4, 6
DAT $3, *7
MOD $4, {6
MOV {4, @7
SPL {2, }7
SLT <6, *7
SUB $5, }6
MUL {4, @6
SPL <2, @3
JMP @0, 6
SUB {3, }7
MUL 0, *2
SLT <6, *7
SNE *2, 6
ADD <3, #6
SNE @3, <6
STP $5, <6
ADD <4, @7
JMZ }6, 7
SEQ {3, #7
MOV {1, @7
DAT {3, @6
DAT }0, {2
SLT #0, {2
JMZ *2, }5
end ; execution ends here

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

Implementation of a Genetic Algorithm to Simulate the Evolution of CoreWar Warriors Based on Fitness Values • 1:7

; redcode
; name Warrior_T9_002
; author GROUP_T9
; assert CORESIZE == 8000 && MAXLENGTH >= 100
JMN {5, *6
SUB {6, {7
DAT }4, <5
JMN <3, $7
ADD $0, *4
LDP *6, @7
MUL }6, *7
CMP *6, }7
LDP <1, *6
LDP #5, #6
SPL $1, <2
MOD }6, $7
LDP *5, #6
SUB <0, #5
SEQ #1, *2
SPL $6, }7
SEQ @0, #5
SPL #2, #3
LDP 1, 3
JMP #5, }6
JMN {4, *7
ADD #2, }4
SPL @0, 1
SPL $3, 5
SNE {3, @4
MUL $4, <5
MOD @4, }5
MOV *6, #7
SPL #0, $4
DJN }6, }7
DAT <1, #7
MUL <6, #7
STP @6, *7
MOD 2, #7
LDP #0, $1
JMN }3, 7
MUL *2, <5
DIV }6, #7
JMN {2, <5
DIV <2, }6
SNE #5, }6
MOV $6, #7
SUB $0, #6
STP #2, @5
CMP <5, $6
STP #2, <7
JMP <0, $1
CMP *4, #6
SEQ {2, {5
JMP {4, @6
DJN 6, #7
JMN @0, {4

SLT }2, @3
SPL #6, <7
DAT @3, <4
CMP 4, *5
JMZ }5, #6
DIV $5, #7
MOD {4, 6
JMP {0, }2
SLT }5, $7
SNE *2, $3
SEQ $4, *7
JMZ {6, 7
MOD <6, *7
ADD }0, $7
DIV }3, 5
SNE $1, #7
JMN *4, $6
JMP @4, }6
LDP $3, #4
MUL *2, }7
DJN @3, $5
CMP $5, {7
LDP @2, $7
SLT <5, }7
JMZ $0, }5
SLT }0, *4
LDP *2, }6
MOV <4, {6
SUB }2, 5
SPL <0, *3
CMP {3, <7
JMN }0, <3
DAT @4, }7
JMN }0, 2
ADD }1, *4
DAT {3, 7
NOP @0, *6
SNE <2, {6
MOD $2, $6
SEQ 4, <6
JMP @6, $7
JMZ *3, *6
LDP #3, @4
SUB }4, 6
SLT @4, <5
SEQ $2, #7
JMZ }3, 7
LDP 2, }6
end ; execution ends here

Received March 2017

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

	Abstract
	1 Introduction
	2 Related Works
	3 Methods
	4 Results
	5 Conclusions
	References

