A Comprehensive Study of Decision Trees to Classify DNA Sequences

MOHAMMAD ASHRAF SIDDIQUEE, University of New Mexico

HUMAYRA TASNIM, University of New Mexico

In this paper, we describe and analyze our implementation of a well- known
machine learning decision tree algorithm: ID3. Here we classify DNA se-
quences using ID3 algorithm. The implementation of the decision tree is
done by training with a given data set and using multiple evaluation criteria.
Chi-square testing is used to implement the split stopping method of the
tree. The accuracy of the method is tested by validating on a test data set.
Variation on the evaluation criteria and confidence level in determining split
stopping, has allowed us to compare the accuracies and obtain a well per-
formed decision tree with highest accuracy. The project is a part of CS-529
Machine learning course.

ACM Reference format:
Mohammad Ashraf Siddiquee and Humayra Tasnim. 2018. A Comprehen-
sive Study of Decision Trees to Classify DNA Sequences. 1, 1, Article 1
(September 2018), 4 pages.
https://doi.org/unassigned

AUTHOR CONTRIBUTIONS

Mohammad Ashraf Siddiquee and Humayra Tasnim both partici-
pated and worked equally for the project.

1 INTRODUCTION

Machine learning is a branch of computer science where large
amount of data is analyzed using computer models. These mod-
els can identify data patterns using statistical techniques to train or
learn and implement the training to make predictions about data
classification. Decision tree learning is a well known machine learn-
ing method that classify instances by sorting them down the tree
from the root to some leaf node that provides the classification of
the instance [4]. In this method data is classified based on attributes
where the learning function is represented by a decision tree. The
training tree is formed by applying the ID3 algorithm [5] and is
used to classify the test dataset.

The given dataset for training consists of instances of DNA se-
quences of length 60. Given any position in that sequence we need
to identify boundaries such as ‘donors’ [IE] or ‘acceptors’ [EI]. If
the sequence does not fall in either of the boundaries then it is
classified as ‘neither’ [N]. There is a training data set and a testing
data set. We have to create a decision tree using the training dataset
that can be used for the classification of the testing dataset. The
goal for the project is to implement ID3 decision tree learner using
two types of evaluation criteria: information gain by gini index and
information gain by entropy of the attributes. We also determined
tree split stopping criteria using the chi-square test. Based on the
variation of the evaluation criteria and different confidence levels,

Thanks goes to Professor Trilce Estrada for teaching the Machine Learning course and
Janie for assisting.

© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in , https://doi.org/
unassigned.

we have calculated the accuracies of the test data, compared the
result and chose best accuracy as per our implementation.

There are notable advantages of decision tree. Decision trees
indicate important attributes of classification clearly and is robust
to noisy data. Also, it does not require much data pre-processing
and learning of the disjunctive attribute values of instances are
well understood. Therefore, the data set we are given is perfect for
applying decision trees as classification method.

2 DESIGN AND IMPLEMENTATION OF CODE
2.1 Theory and Algorithm

The main concept of ID3 algorithm is selecting which attribute to
test in each node of the tree [4]. The mathematical measure that
is used to select the attribute and proceed with building the tree
is information gain. To calculate information gain in every node
two different statistical measures are used: Entropy and Gini Index.
Based on the maximization of the information gain at each node we
decide to split the tree further. Next in the section, we will describe
how entropy and gini index are used to calculate information gain,
how tree split stopping criteria is applied by chi-square testing and
how the noise in the data is handled.

2.1.1  Information Gain using Entropy. Entropy is a well known
measure in information theory. The definition of entropy calculation
of a node S with c target classes is [4]:

(4
Entropy(S) = - Zpl- log, pi (1)
i=1
Here p; is the proportion of S belonging to class i. Computation
of the information gain on attribute A is defined as:

Gain(S, A) = Entropy(S) — Z MEntropy(Sv) (2)

veValues(A) |S|

Here Values(A) is the set of all possible values for attribute A, and
Su, is the subset of S for which attribute A has value v.

2.1.2  Information Gain using Gini Index. For a node S in the
dataset with c target classes, gini index is defined as [1]:

Gini(S) =1- " (p)? 3)
i=1

HHere p; is the proportion of S belonging to class i. Calculation
of gini index of a split with attribute A is defined as:

4
Gini(Aspii) = -, piGini(Fi) @
i=1
Here where p; is the proportion of class i after split. F stand for the
features. Computation of the information gain on attribute A after
split is defined as:

, Vol. 1, No. 1, Article 1. Publication date: September 2018.


https://doi.org/unassigned
https://doi.org/unassigned
https://doi.org/unassigned

1:2 « Mohammad Ashraf Siddiquee and Humayra Tasnim

Gain(S, A) = Gini(S) — Gini(Agpit) (5)

In our dataset, we have 60 attributes, 4 Features (i.e. ‘A’, ‘C’, ‘G,

‘T’) and 3 classes. For evaluation criteria, in case of both measures,

we have chosen the maximum information gain to split the tree fur-

ther. Moreover, there are some other features which are considered
as noise. Handling of noise is described later in this section.

Algorithm 1 CreateDecisionTree (EntryList, BreakingFeature)

Require: EntryList < a set of training data entry
Require: BreakingFeature < the feature based on which the this
tree node is created
Ensure: Creates the decision tree using the EntryList and statisti-
cal analysis
1: if All entry in EntryList have same class ¢ then
2. Create a leaf-node [f with class ¢
3. breakingFeature(lf) « breakingFeature
4 returnlf
5: else
6:  maxIG < maximum InformationGain based on remaining
attributes
7. maxIGpos « attribute position for maxIG
8 y? « chi square value based on MaxIGpos
9. if y% < criticalValue then

10: ¢ «— max occured class in EntryList

11 Create a leaf-node I f with class ¢

12: breakingFeature(lf) « breakingFeature

13: return [ f

14:  else

15: node < new TreeNode

16: Split EntryList into four subsets S based on the feature in
maxIGpos

17: for every subset s in S do

18: breakingFeature « feature value in maxIGpos

19: child < CreateDecisionTree(s, breakingFeature)

20: breakingPos(node) «— maxIGpos

21: return node

2.1.3 Overfitting and Split Stopping. A tendency for decision
tree models is to overfit the training examples [4]. When a decision
tree model performs well with training data but, performs poorly
with testing data as it contains new examples, then it is termed as
overfitting. If we determine if a split in the tree is advantageous or
not, we can stop further splitting and overcome the overfitting of
the model. This is also known as pruning and we have used chi-
square test for this. Chi-square test figures out if there is association
between categorical variables. In our case it is telling us the statistical
significance of information gain between sub nodes and parent node.
We calculate sum of squares of differences between observed and
expected frequencies, normalized by expected frequencies of target
variables to determine chi-square value. Here is the formula:

Observed, ¢ — ted, ¢)?
5 Z( served. ¢ expecec,f) 6)

X =
o7 expected, ¢

, Vol. 1, No. 1, Article 1. Publication date: September 2018.

Here c and f are classes and features that are used in the dataset.

We compare the y? value with the critical value from the y?
distribution table. Critical value depends on degrees of freedom and
the confidence interval. In our case the degrees of freedom (DF) is 6
as we have 3 classes and 4 features [DF = (¢ — 1)(f — 1)]. We have
used confidence interval 0%, 95% and 99%.

If the y? value > critical value we continue to split the tree, other
wise, the node is classified as a leaf node. Detailed discussion is
presented in the results section.

Algorithm 2 GetTestReults (EntryList, TreeNode)

Require: EntryList < a set of test data entry
Require: Root < root node of the decision tree
Ensure: Classifies each Entry in EntryList based in decision tree
TreeNode
1: returnList « new List of Entry
2: for every entry E in EntryList do
3: e « GetEntryCategory(e, TreeNode)
4 push e to returnList
5. return returnList

2.1.4 Noise Handling. In the DNA sequence, 4 characters (i.e.
‘A%, ‘C’, ‘G’, “T) are considered as the 4 features for creating the
decision tree. In our dataset there is very low frequency of some
other characters (i.e. ‘D’, ‘N, ‘S’, ‘R’) and we regard these charac-
ters as noise in the data. We filtered out these ambiguous noise by
ignoring them while training the tree. While testing the dataset, if
we encounter an ambiguous character, we classified it as neither
class (N) as they could not be classified as donors or acceptors.

Our methods are summarized as algorithms. In Algorithm 1, we
describe the steps how we trained the decision tree. Algorithm 2
receives the test data and based on the trained decision tree from
Algorithm 1, returns the classified dataset. Algorithm 3 is used in
Algorithm 2 to compute the classification procedure for each data
entry in the testing dataset.

Algorithm 3 GetEntryCategory (Entry, TreeNode)

Require: EntryList < a set of training data entry
Require: BreakingFeature « the feature based on which the this
tree node is created
Ensure: Creates the decision tree using the EntryList and statisti-
cal analysis
if TreeNode is a leaf node then
category(Entry) < category of TreeNode
return Entry
else
nBase « feature value of Entry in TreeNode(maxIGpos)
for every child ch in TreeNode do
if nBase equals to BreakingFeature(ch) then
return GetEntryCategory(Entry, ch)

[~ S B~ N B N S R




A Comprehensive Study of Decision Trees to Classify DNA Sequences « 1:3

2.2 Programming Language

To implement this ID3 decision tree, we used Java as our platform.

Java is one of the most popular programming languages used to
create both Web and desktop. It was designed for flexibility, allowing
developers to write code that would run on any machine, regardless
of architecture or platform. Moreover, Java has all the object oriented
programming features we need to develop our projects. Also, we
both are comfortable in Java as we have done many previous projects
in Java before.

2.3 Overview of the code

In this project, we used Java 8 as our development platform and we
used Netbeans 8.2 as our IDE. The entire code base consists of two
major modules: training module and testing module. A wrapper
class was developed to integrate both of the modules. There are
three packages:

e Modules: The modules package includes the classes training
and testing

e Data Structures: The Data Structure package includes the
classes for different data structures we need to create the
decision tree and to store our training and testing data.

e Utilities: This module includes all utility classes. We have
utility classes for file IO, statistical analysis and mathematical
analysis

In this section, we describe our code-base using two subsections.

First, we describe all the dependencies we used to implement the
project. Second, we describe each class, and their tasks.

2.3.1 Dependencies. To build this project, we used JDK 1.8. We
also used the following libraries in the project:
e Apache-log4j-1.2.17
e Commons-lang3-3.8
e Opencsv-4.2

First two dependencies were used to create different logs (i.e.

INFO, ERROR, DEBUG) in the project. The third dependency library
was used to read, parse and write from csv files. All the dependency
jar files are included with the project source code.

2.3.2 Classes. In this subsection, we describe each of nine classes
we implemented for the project:

e ID3DecisionTree: This class is the entry point of the project.

The purpose this this class is to initialize the project and
integrate training and testing modules.

o Defs: This is a definition class. This class contains different
running mode of the project, constants, parameters and other
hard-coded values.

e CsvUtils: This is a utility class and is used to read from and
write to the csv files. This class filters our any invalid inputs
found in the csv files. The functions in this class also parse the
csv files and data structures and acts as in interface between
modules and the files.

o StatsUtil: StatsUtil is also a utility class used for statistical
analysis. Different statistical calculations such a Information
Gain, Gini index, Entropy are performed using functions in
this class. The algorithm to calculate information gain, gini

index and entropy is described in equations 2, 4, 3, and 1
respectively.

MathUtils: This class was used to calculate mathematical
function (like log base 2 calculation).

TreeNode: TreeNode class was used to create the decision
tree. Each TreeNode type object represents a node in the
decision tree. TreeNode can keep track of the decision tree
structure, decision, feature value, and class in the decision
tree.

Entry: Entry is another data structure class which is used
to store both training and testing data entries in the project.
Entry class stores ID, DNA sequence and class of each data
entry.

Id3Training: Id3Training class represents the training module.
The task of this class is to create the decision tree based on
the training data. To build the decision tree, this class uses
a recursive function named createNode. Statistical analysis
needed to build the decision tree are in the StatsUtil class. This
class also uses Defs utility class to determine which of the
statistical analysis and also which constant values should be
used to make the decision tree. After creation of the decision
tree, the root node is returned.

Id3Testing: Id3Testing class represents the testing module.
The task of this class is to test and classify testing data based
on previously created decision tree. This class reads testing
data from csv given file using the utility class CsvUtils and
run test for each data entry on the decision tree. Each of the
entry in test data gets a class assigned among EI, IE and N.

In the project, we have a file named log4.properties which con-
tains patterns and format for the project logs. A log file named
ID3DecisionTree.log will be generated after the first run. For the
successive runs, project logs will be appended to the log file.

Standard JavaDoc commenting format was used throughout the
code. Also, Java standard naming convention was followed. All
of our experiments are reproducible, the source code and sample
training and test data can be found in the GitHub repository [3].

3 RESULTS AND INTERPRETATIONS

In this section, we are going to discuss the results we have got
from our procedure. There are two evaluation criteria that we used
: information gain from entropy and information gain from
gini index. We have also used 3 different confidence intervals for
chi-square test. These variations enabled us to obtain different accu-
racies on the test data. The accuracy was calculated by testing these
variations and getting the results from uploading in Kaggle [2]. The
accuracies we obtained from different variations are summarized in
Table 1 and Figure 1.

Table 1. Accuracy of test data with evaluation criteria and confidence level
variation
Confidence Interval
Information Gain By 0% 95% 99%
87.379% 87.815% | 87.815%
87.815% 88.025% | 88.025%

Entropy

Gini-Index

, Vol. 1, No. 1, Article 1. Publication date: September 2018.



1:4 « Mohammad Ashraf Siddiquee and Humayra Tasnim

A cy Using various ion Criteria and Confi Interval
T T

90

-Conﬁdence 0%
nfidence 95%|
nfidence 99%)

88.5 B

Accuracy
o
© ~
N o

©
o
o

86

85.5

85
Entropy Gini-Index

Information Gain Measure
Fig. 1. The bar chart shows accuracy comparison of the test dataset using
2 evaluation criteria: information gain using entropy and gini-index. The
confidence intervals 0%, 95% and 99% are shown in blue, green and yellow
bars accordingly. X-axis is the evaluation criteria and y-axis represents
accuracy level.

The best accuracy that we got from our testing is 88.025%. The
evaluation criteria that is used here is gini-Index and we got the
same accuracy for 95% and 99% confidence interval. As we have
already mentioned that for calculating the critical value we have
taken the degrees of freedom (DF) value 6.

DF = (Class — 1) X (Feature — 1) (7)

Here number of class is 3 (i.e. ‘El, ‘IE’, ‘N) and number of feature

is 4 (i.e. ‘A%, ‘C’, ‘G’, “T). The critical value is obtained from the y?
distribution table.

The accuracy that we gained using Information gain from entropy

(= 87%) is not much lower than the one we obtained from gini-index.

As we have discussed in the class both gini index and entropy are
similar measures in regards of this kind of calculation. Both are
sensitive to changes in node probabilities. Our intuition is that

, Vol. 1, No. 1, Article 1. Publication date: September 2018.

the little difference that we have got is because of our method of
implementation.

Also, our intuition is, there is scope of improvement in handling
the noise in data. We anticipate that the accuracy would have been
different, somewhat better, if we used a new class for the noisy data
ans included the ambiguous characters are a feature. That would
change the degree of freedom and the calculation of the chi-square
test. Therefore, further development can be done in this project
from this perspective.

On average, our training module took 170ms to build the decision
tree from 2000 training data and our testing module took 5ms to
classify 1190 test data.

4 CONCLUSIONS

In conclusion, we implemented an ID3 Decision Tree algorithm [5]
in this project and experimented with different statistical modes
and parameters. In the end, we are delighted to get accuracy above
88% which is over that benchmark value (80%) for this project. Our
results do not vary excessively with the change in statistical analysis

method or confidence interval. Therefore, this results advocate what
we have learned in the class. Although there are some scopes for

further pruning the algorithm, our results indicate that, our imple-
mentation of ID3 decision tree algorithm is correct and accurate.
In future, we will keep working on pruning and enhancing this to
achieve better accuracy and run-time.

REFERENCES

[1] 2018. Gini Calculation Example. (2018).  http://dni-institute.in/blogs/
gini-index-work-out-example

[2] 2018. Kaggle Leader-board. (2018).
project-1-decision-trees-cs529-2018/leaderboard

[3] 2018. Public GitHub Repository to download code, spreadsheet, datasets. (2018).
https://github.com/mashrafsiddiq/decisionTree

[4] Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw-Hill, Inc., New
York, NY, USA.

[5] J.R. Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (March 1986),
81-106. DOI:http://dx.doi.org/10.1023/A:1022643204877

https://www.kaggle.com/c/


http://dni-institute.in/blogs/gini-index-work-out-example
http://dni-institute.in/blogs/gini-index-work-out-example
https://www.kaggle.com/c/project-1-decision-trees-cs529-2018/leaderboard
https://www.kaggle.com/c/project-1-decision-trees-cs529-2018/leaderboard
https://github.com/mashrafsiddiq/decisionTree
http://dx.doi.org/10.1023/A:1022643204877

	Abstract
	1 Introduction
	2 Design and Implementation of Code
	2.1 Theory and Algorithm
	2.2 Programming Language
	2.3 Overview of the code

	3 Results and Interpretations
	4 Conclusions
	References

