
An Introduction to Mobile UNITY

Gruia-Catalin Roman1 and Peter J. McCann2

1 Washington University, Department of Computer Science
One Brookings Drive, St. Louis, MO 63130 U.S.A.

roman@cs.wustl.edu http://www.cs.wustl.edu/˜roman
2 Bell Laboratories, Lucent Technologies

1000 E. Warrenville Road, Naperville, IL60566 U.S.A.
mccap@research.bell-labs.com

Abstract. We define a mobile system as a collection of independently executing
components which may migrate through some (logical or physical) space during
the course of the computation, with the pattern of connectivity among compo-
nents changing as they move in and out of proximity. This paper presents Mobile
UNITY, a modular notation for expressing mobile computations and a logic for
reasoning about their temporal properties.

1 Introduction

The emergence of mobile communications technology is bringing a new perspective to
the study of distributed systems. Systems designed to work in this environment must
be decoupled and opportunistic. By “decoupled,” we mean that applications must be
able to run while disconnected from or weakly connected to servers. “Opportunistic”
means that interactions can be accomplished only when connectivity is available. These
aspects are already apparent in working systems such as Coda [1], a filesystem sup-
porting disconnected operation, and Bayou [2], a replicated database where updates are
propagated by pairwise interaction among servers, without involving any global syn-
chronization. In addition to being weakly connected, mobile computers change location
frequently, which leads to demand forcontext dependent services, e.g., the location de-
pendent World Wide Web browser of Voelker et al [3]. Even if the goal is transparent
mobility, e.g., Mobile IP [4], explicit reasoning about location and location changes is
required to argue that a given protocol properly implements location transparency.

This paper proposes a new notation and underlying formal model supporting spec-
ification of and reasoning about decoupled, location-aware systems. Our approach is
based on the UNITY [5] model of concurrency. This work extends the UNITY nota-
tion with constructs for expressing both component location and transient interactions
among components. Section 2 is a succinct introduction to our new notation, called Mo-
bile UNITY. A formal axiomatic definition ofeach construct is included. This section
treats Mobile UNITY as a mere technical modification to UNITY independent of any
notions of mobility. In Section 3, we discuss the mobility and modularity aspects of
the Mobile UNITY notation and show how the composition of mobile units reduces to
a form of program union. The new notation is illustrated via a simple example, a se-
rial communication protocol which assumes unidirectional transmission from stationary
senders to mobile receivers. Conclusions appear in Section 4.



2 Mobile UNITY without Mobility

In this section we introduce Mobile UNITY in the context of the UNITY notation and
proof logic.1 Because the notation described at this point in the presentation concerns
single programs, its applicability to mobile computing will not be immediately obvious.
However, in the next section we will discuss how constructs introduced here facilitate
the composition of mobile programs in the style of a declarative coordination language.

In standard UNITY, the basic unit of system construction is the program. The struc-
ture of a UNITY program consists of adeclare section, aninitially section, and an
assignsection. In our notation we preserve the UNITY syntax for thedeclareandini-
tially sections and augment that of theassignsection. Our investigation into program-
ming abstractions suitable for mobile computing led us to the addition of four constructs
to the standard UNITY notation:

– Transactionsprovide a form of sequential execution. They consist of sequences
of assignment statements which must be scheduled in the specified order with no
other statements interleaved in between. The assignment statements of standard
UNITY may be viewed as singleton transactions. We will use the termnormal
statementor simplystatementto denote both transactions and standard statements
in a given program. As before, normal statements are selected for execution in a
weakly fair manner and executed either as a single atomic action or as part of a
series of successive atomic actions.

– Labelsprovide a mechanism by which statements can be referenced in other con-
structs. This provides us with the ability to modify the definitions of existing state-
ments without actually requiring any textual changes to the original formulation.

– Inhibitorsprovide a mechanism for strengthening the guard of an existing statement
without modifying the original. This construct permits us to simulate the effect of
redefining the scheduling mechanism so as to avoid executing certain statements
when their execution may be deemed undesirable.

– Reactive statementsprovide a mechanism for extending the effect of individual
assignment statements with an arbitrary terminating computation. All assignment
statements of a given program are extended in an identical manner. The reactive
statements form a program that is scheduled to execute tofixed-pointafter each in-
dividual assignment statement including those that appear inside a transaction. This
construct allows us to simulate the effects of the interrupt processing mechanisms.

In the remainder of this section we examine each of these new constructs in turn and
develop a proof logic that accommodates these notational extensions.

The notation fortransactionsassumes the form

hs1; s2; : : : ; sni

wheresi must be an assignment statement. Once the scheduler selects this statement
for execution, it must first executes1, and then executes2, etc. In the absence of any
reactive statements, the effect is that of an atomic transformation of the program state.

1 For the sake of brevity we assume the reader to be familiar with UNITY [5], its notation and
related concepts.



A labelmay precede any statement and must be followed by the symbol ’::’ as in

n :: hs1; s2; : : : ; sni

All labels must be unique in the context of the entire program and there is no need to
label every statement. The primary motivation for the introduction of labels is their use
in constructing inhibitors.

The inhibitor syntax follows the pattern

inhibit n whenp

wheren is the label of some statement in the program andp is a predicate. The net
effect is a strengthening of the guard on statementn by conjoining it with:p and thus
inhibiting execution of the statement whenp is true.

A reactive statementis an assignment statement (not a sequence of statements) ex-
tended by a reaction clause that strengthens its guard as in

s reacts-top

The set of all reactive statements, call it<, must be a terminating program. We can think
of this program as executing immediately after each assignment statement. To account
for the propagation of complex effects, we allow the set of all reactive statements to
execute in an interleaved fashion until fixed-point. As< is merely a standard terminat-
ing UNITY program, a predicateFP (<) can be computed which is the largest set of
states for which no reactive statement will modify the state when executed. This is the
fixed-point of<.

This two-phased mode of computation where every assignment statement is punctu-
ated by a flurry of reactions may seem unreasonable at first, and indeed, it is possible to
write completely unrealistic system specifications with many complicated actions rele-
gated to the reactive statements. However, it is also possible to write unrealistic UNITY
programs. Assignment statements can be arbitrarily complex and may have no efficient
implementation. We favor, however, expressive power over predefined constraints and
pursue strategies in which it is the responsibility of the designer to exercise control over
the notation in order to achieve an efficient realization on a particular architecture. As
shown later, proper use of these constructs will help us to write modular and efficiently
implementable specifications of mobile computations.

A program making use of the above constructs is shown below. It consists of two
non-reactive statements (one of which is a transaction), one inhibiting clause, and one
reactive statement.



program toy-example
declare

x,debug: integer
initially

x =0
[] debug= 0
assign
s :: x := x+ 1

[] t :: hx := x+ 1;x := x� 1i
[] inhibit s whenx � 15
[] debug:= x reacts-tox > 15

end
The statements incrementsx by one. The statementt is a transaction consisting

of two substatements. The first incrementsx by one. The second decrementsx by one.
The programmer might add the inhibiting clause to preventx from being incremented
past15. This prevents statements from performing this action, but the statementt may
still execute and temporarily increasex to 16. This intermediate state would not be
visible to the programmer and indeed the proof logic given below would allow one to
proveinv. x � 15 from the text oftoy-example. Such states can be detected, however,
by adding reactive statements such as the last one, which assigns the value ofx to
debugwheneverx > 15, including during intermediate states of transactions. This is
a modular way to add side-effects to a large set of statements without re-writingeach
statement. We will see later how these aspects of our notation help to model mobile
systems.

Now we give a logic for proving properties of programs that use the above con-
structs. Our execution model has assumed that eachnon-reactive statement is fairly
selected for execution, is executed if not inhibited, and then the reactive program< is
allowed to execute until it reaches a fixed point state, after which the nextnon-reactive
statement is scheduled. In addition,< is allowed to execute to fixed point between the
sub-statements of a transaction. These reactively augmented statements thus make up
the basic atomic state transitions of our model and we denote them bys�, for each
non-reactive statements. We denote the set of non-reactive statements by@. Thus, the
definitions for basiccoandensuresproperties become2

p co q � h8s 2 @ :: fpgs�fqgi

and
p ensuresq � (p ^:q co p _ q) ^ h9s 2 @ :: fp ^ :qgs�fqgi

Even thoughs� is really a statement augmented by reactions, we can still use the
Hoare triple notationfpgs�fqg to denote that ifs� is executed in a state satisfyingp,
it will terminate in a state satisfyingq. The Hoare triple notation is appropriate forany
terminating computation.

2 For two state predicatesp andq the expressionp co q means that for any state satisfyingp,
the next state in the execution sequence must satisfyq. The relationp ensuresq means that
for any state satisfyingp and notq, the next state must satisfyp or q. In addition, there is some
statements that guarantees the establishment ofq if executed in a state satisfyingp and notq.



In hypothesis-conclusion form, we can write an inference rule for deducingfpgs�fqg,
given someH, a predicate that holds after execution ofs in a state wheres is not inhib-
ited, andI, an invariant that holds throughout execution of the reactive statements<.
We require thatH is sufficient to establishI(H ) I), that eventually< reaches fixed
point (H 7! FP (<) in <), and that at fixed point,q is established(I ^ FP (<) ) q).
The following rule holds for non-reactive statementss that are singleton transactions:

p ^ �(s)) q; fp ^ :�(s)gsfHg;H 7! FP (<) in <;stable I in <;H ) I; I ^ FP (<)) q

fpgs�fqg

For eachnon-reactive statements, we define�(s) to be the disjunction of allwhen
predicates of inhibit clauses that name statements. Thus, the first part of the hypothesis
states that ifs is inhibited in a state satisfyingp, thenq must be true of that state also.
We takefp ^ :�(s)gsfHg from the hypothesis to be a standard Hoare triple for the
non-augmented statements.

For those statements that are of the formhs1; s2; : : :sni we can use the following
inference rule before application of the one above:

faghs1; s2; : : : sn�1i
�fcg; fcgsn�fbg

faghs1; s2; : : : sni�fbg

wherec may be guessed at or derived fromb as appropriate. This represents sequential
composition of a reactively-augmented prefix of the transaction with its last sub-action.
This rule can be used recursively until we have reduced the transaction to a single
sub-action. Then we can apply the more complex rule above to each statement. This
rule may seem complicated, but it represents standard axiomatic reasoning for ordi-
nary sequential programs, where each sub-statement is a predicate transformer that is
functionally composed with others.

The proof obligationsH 7! FP (<) in < and stable I in < can be proven with
standard techniques because< is treated as a standard UNITY program. We can sim-
plify the rule if we know that the non-reactive statements will not enable any reactive
statements, that is, will leave< at fixed point. This can be expressed as:

p ^ �(s) ) q; fp^ :�(s)gsfqg; q) FP (<)

fpgs�fqg

which allows us to substitute the obligationq ) FP (<) for the more complicated
invariant and fixed-point argument.

The notation and basic inference mechanism provide tools for reasoning about basic
programs. Apart from our redefinition ofcoandensureswe keep the rest of the UNITY
inference toolkit unchanged. This allows us to derive more complex properties in terms
of these primitives. In the following section, we will show how the notation can be used
to construct systems of mobile components.

3 Adding Mobility and Structured Composition

Our interest in mobility forced us to reexamine the UNITY model. The initial intent was
to provide the means for a strong degree of program decoupling, to model movement



SystemSenders-Receivers-Timers
program sender(i)at �

declare
bit : boolean

[] word : array[0::N � 1]of boolean
[] c,t,sendstamp: integer
initially
� = SenderLocation(i)

assign
transmit :: bit; c := word[c]; c+ 1 if c < N ^ t � sendstamp+� � c

[] new :: word; c; sendstamp:= NewWord(); 0; t
if c � N

[] timer :: t := t + 1 if t < sendstamp+� � c+�=4
end

program receiver(j)at �
declare

bit : boolean
[] buffer : array[0::N � 1] of boolean
[] c,t,recvstamp: integer
assign

receive :: buffer[c]; c := in; c+ 1 if c < N ^ t � recvstamp+� � c+�=2
[] zero :: c; recvstamp:= 0; t reacts-tobit = 1 ^ c � N
[] timer :: t := t + 1 if t < recvstamp+� � (c+ 1)��=4
[] move :: � := buffer reacts-toValidLocation(buffer)̂ c � N

end

Components
sender(1)[]sender(2)[]receiver(0)

Interactions
receiver(j):bit := sender(i):bit

reacts-tosender(i):� = receiver(j):�
inhibit sender(i):timer

whensender(i):t� sendstamp> receiver(j):t� recvstamp
^sender(i):� = receiver(j):�

inhibit receiver(j):timer
whenreceiver(j):t� recvstamp> sender(i):t� sendstamp

^sender(i):� = receiver(j):�

end

Fig. 1. Serial communication protocol involving one roving receiver.



and disconnection, and to offer high-level programming abstractions for expressing the
transient nature of interactions in a mobile setting. Mobility isaccommodated by at-
taching a distinguished location variable toeach program; this provides both location
awareness and location control (locomotion) to the individual programs. Decoupling,
defined as the program’s ability to continue to function independently of the commu-
nication context in which it finds itself, is achieved by making the process namespaces
disjoint and by separating the description of the component programs from that of the
interactions among components.

In this section we will show how each of the new constructs presented in the pre-
vious section contributes to a decoupled style of program composition. The reactive
statement captures the semantics of interrupt-driven processing and enables us to ex-
press synchronous execution of local and non-local actions. The inhibit clause captures
the semantics of processing dependencies. In essence, both kinds of statements express
scheduling constraints that cut across the local boundaries of individual components.
Extra statements are sometimes added to a composition to capture the semantics of
conditional asynchronous data transfer among components. Together, these constructs
define a basic coordination language for expressing program interactions. Simple forms
of these statements have direct physical realization and can be used to construct a rich
set of abstract interactions including UNITY-style shared variables, location-dependent
forms of interaction, and clock-based synchronization. Figure 1 illustrates the use of the
Mobile UNITY notation for a mobile system consisting of two senders and one roving
receiver.

In UNITY, a system might consist of several programs which share identically
named variables. Each program has a name and a textual description. The operator
“[]” is used to specify the assembly of components into a system. In this paper we con-
struct a system in a similar manner but we introduce a syntactic structure that makes
clear the distinction between parameterized program types and processes which are the
components of the system. To construct a system consisting of multiplesenderandre-
ceiverprocesses we simply add a parameter to the program names and instantiate as
many processes as we desire, in this case two senders and one receiver. A more radical
departure from standard UNITY is the isolation of the namespaces of the individual
processes. We assume that variables associated with distinct processes are distinct even
if they bear the same name. Thus, in Figure 1 the variablebit in a program likesenderis
not shared with thebit in the receiver—they should be thought of as distinct variables.
To fully specify a process variable, its name should be prepended with the name of the
component in which it appears, for examplesender(i).bitor receiver(j).bit.

Because we consider the individual process to be the natural unit of mobility, each
process has a distinguished variable� that models its current location. This might corre-
spond to latitude and longitude for a physically mobile platform, or it may be a network
or memory address for a mobile agent. A process may have explicit control over its own
location which we model by assignment of a new value to�. In a physically moving
system, this statement would need to be compiled into a physical effect like actions on
motors, for instance. Even if the process does not exert control over its own location
we can still model movement by an internal assignment statement that is occasionally
selected for execution. Any restrictions on the movement of a component should be



reflected in this statement. In our example, eachsenderprocess exists at some fixed
location in space. The process is neither aware of nor in control of its own location.
We express this fact by the absence of any statements that make reference to or modify
�. In contrast to thesender, we assume a rovingreceiverthat may change location in
response to receiving a word containing a valid spatial location.

What processes do in the context of a particular system depends greatly upon the last
section of the system specification. TheInteractions section defines the way in which
processes communicate with each other. The statements in theInteractions section de-
fine these rules using the constructs presented in the previous section, naming variables
explicitly by their fully-qualified names. The entire system can be reasoned about using
the logic presented in the previous section, because it can easily be re-written into an
unstructured program with the name of each variable and statement expanded according
to the program in which it appears, and all statements merged into theassignsection.

TheInteractions section of Figure 1 contains three statements. The first one makes
sure that any change to thebit in a sender is communicated to the correspondingbit vari-
able of any receiver present at the same location. The other two statements are designed
to synchronize the local clocks of the collocated components. Under these assumptions
about the transient interactions occurring among the components, understanding the
individual behaviors in isolation becomes possible.

The sendermaintains a variableword which holds a sequence of bits to be trans-
mitted. The counterc is a pointer to the next bit that will be copied to the variablebit,
which represents the state of some lower-level communications medium. Upon trans-
mitting the current bit, the counterc is incremented. When it reachesN , no further bits
are transmitted until a new word is written towordandc is reset by the statementnew.
The process is capable of transmitting bits without any receiver present. The transmis-
sion is conditional on the value of the local clockt and a timestamp that is updated
when a new word is generated.

The receiver has a similar structure and buffers the arriving bits. Its counter is reset
via a reactive statement whenever a value of1 is received as an indication that the
transmission of a new word has started. Upon receipt of a full word which happens to
be a valid location the receiver moves to that location before the start of a new data
transmission. Another reactive statement accomplishes this.

The constant� is used in each of the programs to represent the nominal time in-
terval (in ticks of thesender(i):t or receiver(j):t clock) between transmissions or re-
ceptions of a bit. The statementsender(i):transmit is allowed to execute only if time
has advanced to at least thecth interval sincesender(i):newexecuted. This is a lower
bound on the time at which the statement may execute. The statementsender(i):timer
is not allowed to execute if it will advance time more than one-fourth of the duration of
the current interval before the current bit has been transmitted. This is an upper bound
on the time at whichsender(i):transmitmay execute. The receiver has a pair of similar
constraints, shifted to allow for reception only after the sender has transmitted a bit,
with proper choice of�. Reasoning about the correctness of the above protocol will
naturally require assumptions about the value of�. The expression of the real-time
constraints here is similar to theMinTimeandMaxTimeof [6], except that we choose
here to deal with discrete, local clocks rather than a continuous, global one.



4 Conclusion

The Mobile UNITY notation and logic is the result of a careful reevaluation of the im-
plications of mobility on UNITY, a model originally intended for statically structured
distributed systems. The example illustrates the basic flavor of the modeling strategy
we are pursuing. Movement was reduced to variable assignment thus allowing us to
reason about locomotion in the same way that we reason about computation. Transient
communication among mobile components was recast as a coordination problem thus
freeing the code of the individual components from the burden of having to consider the
multiple contexts to be encountered in their lifetime. The set of constructs that form the
basis for the coordination language component of Mobile UNITY is very small but has
been shown to be highly expressive. Several pairwise high-level transient interaction
constructs (e.g., shared variables and statement synchronization) were presented in [7].
Moreover, Mobile UNITY has been used in [8] in an exercise involving the specifica-
tion and verification of a network protocol (Mobile IP [4]) and to express various forms
of code mobility [9]. The notation promises to be a useful research tool for investigat-
ing new abstractions in mobile computing. These problems have only recently received
attention in the engineering and research community, and formal reasoning has an im-
portant role to play in communicating and understanding proposed solutions as well as
the assumptions made by each. We are currently investigating coordination constructs
that have effective implementations in the ad-hoc networks setting.

Acknowledgment.This paper is based upon work supported in part by the National
Science Foundation under Grants No. CCR-9217751 and CCR-9624815. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References

1. M. Satyanarayanan, James J. Kistler, Lily B. Mummert, Maria R. Ebling, Puneet Kumar,
and Qi Lu, “Experience with disconnected operation in a mobile computing environment,”
in Proceedings of the USENIX Symposium on Mobile and Location-Indepedent Computing,
Cambridge, MA, 1993, pp. 11–28.

2. D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser, “Managing
update conflicts in Bayou, a weakly connected replicated storage system,”Operating Systems
Review, vol. 29, no. 5, pp. 172–83, 1995.

3. Geoffrey M. Voelker and Brian N. Bershad, “Mobisaic: An information system for a mobile
wireless computing environment,” inProceedings of the Workshop on Mobile Computing
Systems and Applications, Santa Cruz, CA, 1994, pp. 185–90, IEEE.

4. Charles Perkins, “IP mobility support,” RFC 2002, IETF Network Working Group, 1996.
5. K. M. Chandy and J. Misra,Parallel Program Design: A Foundation, Addison-Wesley, New

York, NY, 1988.
6. M. Abadi and L. Lamport, “An old-fashioned recipe for real-time,” inLecture Notes in

Computer Science, J. W. de Bakker, C. Huizing, W. P. Roever, and G. Rosenberg, Eds., vol.
600, pp. 1–27. Springer-Verlag, 1991.

7. G.-C. Roman, P. J. McCann, and J. Y. Plun, “Mobile UNITY: Reasoning and specification
in mobile computing,”ACM Transactions on Software Engineering and Methodology, vol. 6,
no. 3, 1997, 250–282.



8. P.J. McCann and G.-C. Roman, “Mobile UNITY coordination constructs applied to packet
forwarding for mobile hosts,” inSecond International Conference on Coordination Languages
and Models, D. Garlan, D. Metayer, and D. Le, Eds., Berlin, September 1997, pp. 338–354,
Springer-Verlag.

9. G.P. Picco, G.-C. Roman, and P.J. McCann, “Expressing code mobility in Mobile UNITY,”
in Sixth European Software Engineering Conference (ESEC’97), Zurich, 1997, pp. 500–518.


