Formal Specification and Design
of a Message Router

CHRISTIAN CREVEUIL and GRUIA-CATALIN ROMAN
Washington University in Saint Louis

Formal derivation refers to a family of design techniques that entail the development of
programs which are guaranteed to be correct by construction. Only limited industrial use of such
techniques (e.g., UNITY-style specification refinement) has been reported in the literature, and
there is a great need for methodological developments aimed at facilitating their application to
complex problems. This article examines the formal specification and design of a message router
in an attempt to identify those methodological elements that are likely to contribute to successful
industrial uses of program derivation. Although the message router cannot be characterized as
being industrial grade, it is a sophisticated problem that poses significant specification and
design challenges—its apparent simplicity is rather deceiving. The main body of the article
consists of a complete formal specification of the router and a series of successive refinements
that eventually lead to an immediate construction of a correct UNITY program. Each refinement
is accompanied by its design rationale and is explained in a manner accessible to a broad
audience. We use this example to make the case that program derivation provides a good basis
for introducing rigor in the design strategy, regardless of the degrees of formality one is willing
to consider.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming; parallel programming; D.2.1 [Software Engineering]: Re-
quirements /Specification—methodologies; D.2.4 [Software Engineering]: Program Verifica-
tion——correctness proofs; D.2.10 [Software Engineering]: Design—methodologies
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1. INTRODUCTION

Increasing demands for reliable performance provide a strong impetus for the
software engineering community to evaluate and adopt formal methods.
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Formal notations led to the development of specification languages; formal
verification contributed to the application of mechanical theorem provers to
program checking; and formal derivation—a class of techniques that ensure
correctness by construction—has the potential to reshape the way software
will be developed in the future. Program derivation is less costly than post
factum verification, is incremental in nature, and can be applied with varying
degrees of rigor in conjunction with or completely apart from program
verification. More significantly, while verification is tied to analysis and
support tools, program derivation deals with the very essence of the design
process, the way one thinks about problems and constructs solutions.

In sequential programming, formal derivation enjoys a long-standing and
prestigious tradition [Dijkstra 1976; Dijkstra and Fiejen 1988; Gries 1981;
Gries and Prins 1985; Morgan 1988; Morris 1989]. By contrast, derivation is a
relatively new concern in concurrent programming. Although a clean and
comprehensive characterization of the field is difficult to make and is beyond
the scope of this article, three general directions seem to have emerged in the
concurrency arena. Constructivist approaches start with simple components
having known properties and combine them into larger ones whose properties
may be computed. CSP-related efforts [Ebergen and Hoogerwoord 1990;
Hoogerwoord 1990; Lengauer 1982; Lengauer and Hehner 1982] appear to
favor this approach in part due to the algebraic mindset that characterizes
the work on abstract CSP. Specification refinement has been advocated
strongly in the work on UNITY [Chandy and Misra 1988; Knapp 1990;
Staskauskas 1988]. An initial highly abstract specification is gradually re-
fined up to the point when it contains so much detail that writing a correct
program becomes trivial. Program refinement uses a correct program as
starting point and alters it until a new program satisfying some additional
desired properties is produced. In some of the work on action systems [Back
and Sere 1990], for instance, sequential programs are transformed into
concurrent or distributed ones. Mixed specification and program refinement
[Roman and Wilcox 1994; Roman et al. 1993] has been used in conjunction
with the Swarm model [Roman and Cunningham 1990] and its proof logic
[Cunningham and Roman 1990; Roman and Cunningham 1992].

Encouraged by these recent developments, we say that it is reasonable to
pose the question whether program derivation is a viable substitute for
current, mostly ad hoc, methods employed by concurrent system designers.
With this aim in mind, our research group has embarked on a number of case
studies whose immediate objective is to develop an understanding of how
program derivation may be applied to industrial-grade problems. The empha-
sis is not on tool development but on identifying a design style and associated
skills that can be taught effectively and applied productively. We want to
show that, given the right model and heuristics, program derivation can be
made simple to the point that it can be explained even to the nonspecialist.

The model we chose for our investigation is UNITY and its proof logic. The
versatility of the UNITY-style formal derivation strategy has been dem-
onstrated through its application to numerous examples including one
industrial-grade problem: the 1/0 subsystem of the GCOS operating system
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[Staskauskas 1993]. These exercises led to the development of a large reper-
toire of heuristics which we hope to incorporate in a practical design method-
ology. It is the focus on developing a design methodology which can scale up
to large problems and can be applied using various degrees of formality that
distinguishes our efforts from previous published work on UNITY. This
article reports on some of the lessons learned from one of the program
derivation exercises we carried out recently: the design of a message router.

We were introduced to the message router problem through Josephs et al.
[1992] where a CSP solution is proposed and proved to be correct by calculat-
ing the behavior of the router from that of its components. Our problem
formulation is somewhat more abstract—we treat messages as consisting of
packets rather than bits—and our design strategy relies on specification
refinement. Furthermore, our goal is to study the refinement process rather
than to produce a design having the least number of circuit components.

The body of this article consists of a formal specification of the router
problem introduced in Section 2 and a UNITY-style specification refinement
process developed in Section 3. The UNITY program is derived from the final
specification in Section 4, and Section 5 summarizes the lessons we have
learned from this exercise. An Appendix provides technical details regarding
the proof logic.

2. SPECIFICATION OF THE ROUTER PROBLEM

In this section we give a brief overview of the UNITY logic, an informal
description of the router problem, a formal specification, and an analysis of
the methodological choices made in constructing the initial specification.

2.1 UNITY Logic

Before presenting the logic, we need to say a few words about UNITY
programs, and especially the way they are executed. A typical UNITY pro-
gram consists of three sections: a declare section, which contains Pascal-style
declarations of variables; an initially section, where all or some of the
variables are initialized; and an assign section, which is a set of multiple
assignment statements. The execution of a UNITY program consists simply
in repeating forever the following sequence: select at random a statement in
the assign section, and execute it. The only constraint on the selection process
is that each statement is chosen infinitely often. The semantics of a UNITY
program can then be defined as a set of execution sequences. Each sequence
begins with the initial state, as defined in the initially section, and each of
the following states is obtained from the previous one by executing a state-
ment.

The UNITY logic is used both as a specification language and as a proof
logic. The description we give here is intentionally informal and intuitive, in
order to allow nonspecialist readers to understand the router specification
and design. A more formal description may be found in the Appendix. In the
simplest terms, the UNITY logic is composed of several unary and binary
operators, which allow one to define global properties over the execution
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sequences. Let p and ¢ be two predicates. The list of properties, with their
intuitive definition, is given below. Let us note that the program we refer to
in the remaining of the paragraph is either the program we want to derive, if
the logic is used as a specification language, or the program we want to
verify, if the logic is used as a proof logic.

—p unless ¢: this property means that whenever predicate p holds for a
program state, p continues to hold in the execution sequence at least up to
the point when ¢ is established. In other words, the execution can either
stay in a state satisfying p A - g, or move to a state satisfying q.

‘@

Note that p unless ¢ does not require g to hold eventually; in such a case,
p must hold forever.

—stable p: predicate p is a stable predicate if it remains true forever once it
becomes true. This property is equivalent to p unless false.

—const p: predicate p is constant if both p and — p are stable predicates.
In other words, p remains true forever if it is initially true, and false
forever if it is initially false.

—inv p: predicate p is invariant if it holds in the initial state, and is stable
along any execution sequence.

The four properties described above are safety properties, in the sense that
they prevent the occurrence of certain state tramsitions. For instance p
unless g disallows the transition from p A =g to = p A = g. However, to

specify problems, we must also be able to state that some progress is made,
1e., that certain predicates hold at some point in the future. For this, the
UNITY logic offers the following properties:

—p > q: predicate p leads to predicate ¢ if, from a state in which p holds, a
state in which ¢ holds is eventually reached.

—p until g: this property is slightly stronger than p — q, since it guaran-
tees also that p holds at least until ¢ holds. Its definition is: ( p unless
@) A (p—q).

—p ensures g: this last property is strongly related to the text of the
program. It states that, whenever p holds, it must hold at least until g
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holds (p unless g), and that there must exist a statement in the program
that establishes the truth of ¢. The ensures property is thus stronger than
until, since the truth of ¢ in the until case can be established by the
execution of more than one statement.

2.2 Description of the Problem

We consider a communication network that connects N senders of messages
to M receivers via a message router. Each sender is connected to one of the
input ports of the router, and each receiver to one of the output ports (Figure
.

Each message is composed of a finite number of packets that can be of
three different types: header, body, and tail. The header, which is the first
packet of the message, contains the port address of the message destination.
Each header is followed by one or more body packets which contain the actual
data. Finally, the tail packet marks the end of the message.

The behavior of the router is defined by the following requirements:

(R1) The value of the body packets must not be modified, but, for control
purposes, the router may modify the value of the header and tail
packets.

(R2) Packet ordering within a message must be preserved.

(R3) Messages from the same source going to the same destination must not
be reordered (at the receiver).

(R4) Messages from different sources going to the same destination must not
be interleaved (at the receiver).

(R5) Each packet that is sent must eventually be delivered to the intended
receiver.

2.3 Formal Specification

The system we want to specify is composed of three interacting entities: an
input environment (the IV senders), an output environment (the M receivers),
and the router. The UNITY formalism offers the possibility to specify those
three parts separately, and then to compose the three specifications. How-
ever, this implies the use of conditional properties (for instance, assuming
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that property (P1) is true in the input environment; property (P2) is true in
the router), which make reasoning and understanding more difficult. We
believe it is easier to deal with a unique specification describing the behavior
of the system in its entirety, without any interaction with the outside world.

To do so, we abstract the senders and the receivers as infinite I /0 queues
(Figure 2). Initially the input queues contain all the packets that have to be
sent, and the output queues, as well as the router, are empty. Each packet in
the input and output environments resides at some distinet location, which is
a pair of coordinates (row, column). For instance, packets in the input queues
have a row coordinate that ranges from 1 to NNV, and a column coordinate that
ranges from 0 to —co,

Let us define some notation. Packets are designated by notation r[v],
where 7, the packet type, is equal to A, b, or t—header, body, or tail—and v,
the packet value, belongs to some set V. Each packet is augmented with four
auxiliary variables: n, m, i, and j. These auxiliary variables have constant
values which may not be used by the program we want to derive, their only
purpose is to make the specification and design process easier. Variables n
and m, ranging respectively from 1 to N and from 1 to M, are the addresses
of the sender and receiver of the packet (or, in other words, the numbers
identifying the source input queue and destination output queue). Variable i
is the number of the message the packet belongs to. We define the number
of the first message sent by each sender to be equal to 1, the number of
the second message to be equal to 2, and so on. Finally, variable j is the
packet number, that is, the position of the packet within the message.
A packet augmented with the auxiliary variables is called a logical packet, as
opposed to the physical packets carried by the network. We use notation 7(n,
m, i, jlv] to designate a logical packet. Note that the pair (n, i)—(sender
number, message number)—identifies uniquely a message in the system, and
that the triple (n, i, j)—(sender number, message number, packet number)
—identifies uniquely a packet.

In the specification, the notation 7(n, m, i, j)[v] is never used. Rather we
designate logical packets by Greek letters («, 8, or §), and access the packet
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attributes through several access functions. Function type, applied to a
packet, returns the type of the packet (7). Functions src and dest return the
identity of the source input queue (n) and of the destination output queue
(m). The message number (i) and packet number (j) are given by functions
mnr and pnr. Finally, we use the functions mid and pid to access the
message identifier (i.e., the pair (n, i)) and the packet identifier (i.e., the
triple (n, i, j))—the lexicographical order is assumed whenever identifiers
are compared in logical expressions such as pid.B8 < pid.«. When it is
necessary to deal explicitly with the value of a packet, we use the notation
olv], where o represents r{n, m, i, j).

The location of packets in the system is given by the function II. Let A be
the set of all logical packets in the router and its environment. Let E be the
set of locations in the environment

E=(setp,q:(1<p<NAg<OV(pzN+1Aal<qg<M):(p,g))

where negative values of ¢ are associated with packets which have not yet
entered the router while values of p exceeding N are associated with
delivered packets. Let R be the set of locations in the router (the value of R
is unknown at this time). Function II is then defined as

IH:A—>EUR.

To make the specification easier to read, we use the notation a@A\ to mean
that packet « is at location A—i.e., Il.a = A (throughout the article, the
operator “.” is used to denote function application). We sometimes add a type
designator (4, b, or t) to the variables representing packets. For instance,
a" @\ means that a header packet « is at location A: a @A A type.a = h. To
state the no-reordering constraint, we define a relation T on packets. Its

definition is
aC Be
(3p,q,9':9<q' <0:a@(p, ¢) A B@(p, q')
V{3@p, p',q: N+1<p<p :a@ip, g AB@(p', g A srca=src.3)
V{@3p,p',q,q:q <OAp =N+ 1:a@(p,qg)A
B@(p', q) A sre.a = sre.3).

That is, 8 is ahead of a according to = iff B8 is in front of « in the same
input queue, or 8 is in front of « in the same output queue and both packets

! This is an example of a constructor, a syntactic element which occurs frequently in UNITY
notation. The general form of the constructor is:

{op dummy_variables : range._constraint :: expression)

where op is typically a binary, associative, and commutative operator (such as +, *, A, V,
written ¥, I1, ¥, 3, respectively). Logically, the constructor creates a multiset of values {v,,
Voyeens v,)} by evaluating the expression for every possible instantiation of the dummy_variables
satisfying the range_constraint. The final value of the constructor is obtained by evaluating the
expression v, Op Uy Op...op v,. If the range is empty the zero-element for the operator is
returned. Other frequently used operators are min, max, and set, having the obvious interpreta-
tions.
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come from the same source, or 8 is in the cutput environment, a is in the
input environment, and both packets have the same source.

The top-level specification S, is given below. (While every informal require-
ment can be traced to one or more logical assertions, the formal specification
does not follow the exact structure of the informal specification.) Any free
variable appearing in the UNITY assertions is assumed to be universally
quantified over all the elements of its domain. Explanations follow the
specification.

Message Representation

inv(Fr @) Ak=(X B, A: @A A mid.f = mid.a = 1) Prn
= k>3 A(pnr.a =1 o type.a = k) A
(1 < pnr.a < k < type.a = b) A (pnr.a = k < type.a = t)

const (v, A alv]"@A) (P2)
const (A o[v]P@A) (P3)
const {(3v, A o[v]i@A) (P4)

Message Location in the Environment
invao@p,g) A(p=2N+1Vvg=<0)A
B@(p', g ) AN(p'2N+1Vvgqg <0

= (pid.ae = pid.8 = (p, q¢) =(p’, ¢') (P5)
inv(a@(p,g)Ag<0=p=srca)A
(a@(p,g) Ap >N+ 1= g =dest.a) (P6)

Queue Properties
(3¢9,q9"':q <q' <0ua@(p, ¢) A B@(p, q'))

unless (3¢’ :q' < 0= B@(p,q') (P7)
stable (Ip:p >N+ 1ua@(p,q) A ={3p’:p' >p:B@(p’, q))) (P8)

No-Reordering Property
invaeC 8= pid.8 < pid.« (P9)

Noninterleaving Property
inva@(p, g) A B@(p’, g) A 8@(p", q) A
N+1<p<p <p” Amid.a = mid.5
= mid. = mid.« (P10)

Packet Movement
oglvl@(p, ) Ag<0—3v’,p,q :p' >N+ 1:olv@p’, g")) P11

The first four properties are related to the representation of messages.
Property (P1) states that messages are properly structured. If « is a packet
at some location in the system, and % is the number of packets in the
message « belongs to, then

—*F 1is greater than or equal to 3, i.e., each message is composed of at least
three packets;

—the packet number of « is equal to 1 iff « is a header, ranges strictly from
1 to £ iff « is a body, and is equal to % iff « is a tail.
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Properties (P2) to (P4) state that packets are neither created nor destroyed,
and that the value of body packets may not be modified. Let us for instance
explain property (P2). Going back to the definition of const, (P2) means that:

—If the header packet o[v] exists initially in the system, it will exist forever,
but not necessarily with the same value (existential quantification on v).
—If, for any value v, o[v] does not initially exist in the system, then it will

never exist.

Property (P4) is the symmetric of (P2) for tail packets. Additionally, property
(P3) prevents the value of the body packets to be changed.

Properties (P5) and (P6) specify packet locations in the environment. (P5)
states that each packet has a unique location, and that each location contains
at most one packet. Property (P6) expresses the requirement that each packet
in the input environment resides in its source input queue, and each packet
in the output environment resides in its destination output queue.

Properties (P7) and (P8) specify that the input rows and output columns
are queues. (P7) states that packets are sent in the order they are queued,
le., a packet cannot be sent if there are packets in front of it in the queue:
considering packet B in its input queue, and packet a behind B in the same
queue, o must stay behind B as long as B is in the input queue. Property
(P8) states that packets received in the output queues can only appear behind
the packets already present in the queues. One way to specify this is to say
that, considering two packets « and B, if « is in its output queue and S is
not ahead of « in the queue, then it will never be.

The no-reordering and noninterleaving constraints are expressed by prop-
erties (P9) and (P10). Initially, the packets in the input environment are
queued in the order they have to be sent—i.e., the packets with the lexico-
graphically smallest identifiers are in the first positions of the queues. This
means that if packet B8 is ahead of a (a = 8), 8’s pid is smaller than «’s. To
express the no-reordering constraint, we have to state that this relation is
invariant all along the execution, as expressed by property (P9). The nonin-
terleaving requirement is specified by property (P10). Considering three
packets @, B, and & such that 8§ is ahead of 8 which is ahead of «, if o and
8 belong to the same message, B must also belong to the same message.

The first ten properties are all safety properties. The only progress require-
ment is stated by property (P11). Each packet o[v] in the input environment
must eventually reach the output environment, but not necessarily with the
same value. '

2.4 Discussion

The development of the initial specification requires a careful balancing act.
One must seek simplicity, generality, and convenience. Simplicity is achieved
through a solid understanding of the problem which facilitates elegant model-
ing of the environment and proper choice of notation. The key decisions we
took regarding modeling the environment were to treat the router and its
environment as a closed system and to view the senders and receivers as
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unbounded queues. The closed-system assumption is motivated by our desire
to avoid dealing with conditional properties which add a certain degree of
complexity to the specification and verification processes. As long as the
assumptions about the environment are clearly distinguishable from the
properties of the router and the environment is not unduly restricted, the
design of the router is made simpler without loss of generality. The price we
pay for this becomes evident only if we compose the router with some other
device and attempt to prove properties of the composite, an equivalent
open-system specification may need to be developed. This potential penalty
may be acceptable if the design of the router is made simpler by the
closed-system assumption—our experience to date leads us to believe that
this is actually the case.

Modeling the senders and receivers as unbounded queues is a direct
consequence of the fact that any formal characterization of the router behav-
ior must have some representation for its input and output histories. Each
input queue simply reflects the future inputs from that particular sender
while each output queue captures the past outputs directed to the particular
receiver. This characterization imposes no constraints on what messages a
sender supplies to the router except for the fact that they are independent of
its outputs and other inputs. Moreover, the size of the specification is reduced
by having certain environmental obligations automatically satisfied, e.g., the
guarantee that a sender eventually transmits the entire message. One techni-
cal detail we had to consider carefully was the use of unbounded structures
inside of a UNITY specification, particularly in light of the property (P11)
which requires each input message eventually to be delivered. Since for any
given message, the number of messages ahead of it is finite and messages
cannot pass each other, the specification is technically correct. Finally, one
should not underestimate the power of mathematical notation as a complex-
ity control mechanism. The packet location function (IT) and the packet
ordering relation (C) are indicative of level of compactness one can achieve
by employing proper mathematical notation and of the manner in which
single symbols may be associated with concepts which, though intuitive in
nature, have complex formal definitions.

Generality means avoiding design biases in the initial specification. We
accomplished this by simply saying nothing about the router itself aside from
the fact that it exists. The only reference to the router is the set R of router
locations. Since R is left undefined, no conceivable design solution is ruled
out. For instance, by allowing the elements of R to be sets of nodes in a
network one could design a router that makes use of message duplication to
achieve reliable delivery. Packets could be interleaved, combined, or re-
ordered freely by the router as long as their delivery to the output ports is in
accordance with the stated specification. Finally, we must note that the
specification does not even require for the router and the output queues to be
initially empty.

Convenience is concerned with the ability to use effectively the notation
introduced in the initial specification throughout the remainder of the design
process, even though one does not know what the ultimate outcome of the
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design will be. Experience can be called upon to anticipate the general
direction the design will assume, and preliminary design exercises can pro-
vide hints that help one choose among alternatives. Our choice for numbering
the input and output ports, while natural for any router, will turn out to be
particularly well suited for the specific router topology we will adopt in the
next section. A related decision, that of representing the input and output
queues as unbounded arrays rather than sequences, led to a uniform repre-
sentation of both the environment and the router—here insight in the design
direction we planned to pursue influenced our choice of representation.
However, one cannot accomplish with notation that which the problem itself
does not allow; even though both the inputs and the outputs are represented
as queues, their distinct nature (no enqueuing permitted on the input and no
dequeuing permitted on the output) did not allow us to unify their treatment,
and we had to include in the specification two distinct properties, (P7) and
(P8). Reasonable sacrifices with respect to generality buy often a significant
level of convenience. We chose, for instance, to center the specification
process around the packet concept rather than develop first a specification
which is independent of the message structure. Such an unnecessarily gen-
eral specification would have added a significant level of complexity to the
design by increasing the size of the specification and the amount of notation
required to accommodate it.

3. ROUTER DESIGN

The type of router specified in Section 2 could be found in the design of a
multiprocessor interconnection network, an area of much research and com-
mercial interest in recent years. The reader who desires to learn more about
such networks may want to use Ni and McKinley [1993] as a starting point.
This article, however, is not about network topologies or routing algorithms.
The router is simply a vehicle to help us develop a better understanding
about formal design methods and the obstacles one faces in their application
to industrial problems. For this reason, we make no attempt to explore a
large design space but focus our attention on how a specific design idea
shapes the specification refinement process. The final result is a mesh-
connected network and a deadlock-free, deterministic routing algorithm.
More specifically, we employ wormhole routing [Dally and Seitz 1987] by
using the header packet to construct a path from the sender to the receiver.
The path is followed blindly by all subsequent packets belonging to the same
message. The tail message frees the path for use by other messages.

The details of the solution emerge through a design process entailing
multiple refinement steps. The objective of these steps is to gradually give a
more and more detailed description of the router, up to the point where a
UNITY program can be derived trivially from the specification. To be correct,
each refined specification must imply the specification of the previous step.
We start with a brief overview of the refinement steps.

Refinement 1. In the first refinement, we define the general topology of
the router as a grid of N X M switches. The N input lines and M output
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lines are thus extended inside the router. Each switch can receive packets
from its left neighbor on the row or its bottom neighbor on the column, and
can route them either to its right neighbor on the row or to its upper neighbor
on the column, depending on the destination of the packets. So, to move from
its source row to its destination column, each packet first travels along the
row (one switch at a time) until it reaches the destination column, and then
just moves up the column (also one switch at a time).

Refinement 2. The second refinement provides additional details about
the behavior of each single switch, by defining the mechanism that prevents
messages from being interleaved along the columns. We will see that this can
be done by associating two mutually exclusive signals—turn and up—with
each switch. Signal turn prevents messages to move through the switch along
the column when a message is currently passing through the switch from the
row to the column, and the other way around for signal up.

Refinement 3. In the third refinement, we specify further the behavior of
the switches by introducing a strong fairness constraint, i.e., the existence of
a constant upper bound on the number of messages that can block a particu-
lar message from passing through each switch. We choose a design in which a
message waits for at most one other message to pass through the switch
before it can proceed.

Refinement 4. At this point in the design, each switch on the rows makes
the decision to route messages either to the next switch on the row, or to the
next switch on the column, by comparing the message destination to the
number of the column it is located at. This implies that each switch has to
know its location. The purpose of the fourth refinement is to eliminate this
knowledge by using the value of the header packets. We will make the value
of each header packet decrease by one each time the packet passes through a
switch along the row. Since the value is initially equal to the destination
column, this implies that a message will have to take a turn when the value
is equal to 1.

Refinement 5. The fifth refinement deals with the execution control we
impose on the switches. A possible choice is to have the switches running
asynchronously; another choice is to have them working in a synchronous
way. We chose the more realistic asynchronous behavior. Since each location
can contain at most one packet, this implies that a packet will not be able to
move to the next location, unless it is empty.

Refinement 6. Finally, the last refinement step is the transformation of
the leads-to properties into ensures properties. As we said earlier in the
paper, ensures properties are strongly related to the text of the program,
which implies that we can easily derive assignment statements from them.

3.1 Refinement 1: Definition of the Router Topology

In this section we introduce a router design consisting of an N X M grid of
switches. As an example, a three-sender four-receiver router is depicted in

ACM Transactions on Software Engineering and Methodology. Vol 3, No. 4. October 1994



Formal Specification and Design of a Message Router . 283

1 2 3 4

Fig. 3. Internal structure of the three-sender
four-receiver router.

Figure 3. The location of each switch in the grid is given by the pair (p, ¢)
where p is the row number, and g the column number. Each switch (p, ¢)
contains two registers—a row and a column register—and an arbitration
element (Figure 4). We identify the location of the row register by the triple
(p, q, 0), and the location of the column register by ( p, g, 1). The function of
the arbitration element is to handle the movement of the packets showing up
in the row and column registers, in order to avoid interleaving of messages on
the columns. Its design will be the subject of refinement 2.

The packet movement inside the router is defined as follows: from the row
register of switch (p, g)—i.e., location (p, ¢, 0)—a packet moves to the row
register of switech (p, g + 1)—i.e., location (p, ¢ + 1, 0)—if ¢ is not the
destination column, or to the column register of switch (p + 1, ¢)—i.e.,
location (p + 1, g, 1)—if q is the destination column. Once it has reached its
destination column, a packet just goes up, one location at a time.

Let us now give some definitions and notation. To make the location spaces
inside and outside the router uniform, and thus make the specification
simpler, we redefine environment locations ( p, g) to be triples (p, ¢, 0) in the
input queues, and triples (p, g, 1) in the output queues. The previous set E
of environment locations is thus refined into

E' =(setp,q,r:(1l<p<NAg<O0Ar=0
Vipz2N+1Al<g<MAr=10:(p,q,r)).

The definition of R, the set of locations inside the router, is
R={setp,q,r:1<p<NAl<qgq<MAO<r<l:(p,q,r).

With this definition of R, the function II returns pairs when that message is
outside the router and triples when the message is inside. This lack of
uniformity is rectified by refining the location function Il into a new function
I

n:A—-E UR.

ACM Transactions on Software Engineering and Methodology, Vol. 3, No 4., October 1994.



284 . C. Creveuil and G.-C. Roman

/ arbitration element

1
4

Fig. 4. Internal structure of switch (p, q).
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The relation between II and II' is given by the following coupling invariant:
Va, p,q,r:
p<NAg=21A0=<rc<i
=s[Il.a=(p,q,r)el'.a=(p,q,r)]
ANqg<0=[Il.a=(p,qg)el'.a=(p,q,0)]
Ap=2N+1=[Il.a=(p,q)eIl".a=(p,q,]).

We now use a@(p, g, r) to mean II'.a = (p, ¢, r), and we introduce the
notation (p, q, r) > (p’, ¢/, r') to mean

(p'=pAqg =q+1Ar=r'=0VvI(p =p+1aqg =qAr =1).

The operator “> ” relates valid pairs of consecutive locations along legal
paths through the router, i.e., from a row register to the one to its right,
from a row register to the column register above, or from a column register
to the one above. Location ( p, ¢, 0) is thus in relation with (p, ¢ + 1, 0) and
(p +1, g, 1), and location (p, g, 1) is in relation with (p + 1, ¢, 1). The
relation T is refined into the relation < . Its definition is

a<Be{Ip,q,9':9 <q' :a@(p,q,0) A B@(p,q',0)
V{3p,p,q:p<p uta@lp,qg,1) AB@(p’,q,1) Asrc.a =src.8)
V{@p,p,q,¢:q" <gra@(p,q’,0 AB@(p',q,1) A src.a =src.8).

That is, 8 is ahead of « according to < iff 8 is in front of « on the same
row, or § is in front of o on the same column and both packets come from the
same source, or 3 is on its column, a is on its row at the left of B8, and both
packets have the same source. The refined specification S, is the following:

Message Representation
Properties (P1), (P2), (P3), and (P4).

Message Location
inva@(p, q,r) A B@(p',q', r')

= (pid.a = pid.B8 < (p,q,r)=(p',q', r') (P5.1)
inva@(p,q,r)=(p=srcarqg<destaAnr=0)V
(p>srcang=destaAr=1) (P6.1)
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No-Reordering Property
inva < 8= pid.8 < pid.« (P9.1)

Noninterleaving Property
inv a@(p, g) A B@(p', q) A S@(p", q) A
N+1<p<p' <p”" Amida = mid.§
= mid. = mid.« (P10.1D)

Packet Movement in the Environment
olvl@(p,q, ) A(pzN+1Vg<0)
until (Ap’, q', r' :(p,q,r) > (p',q', r)colvl@(p’,q’, r')y (P11.1)

Packet Movement Inside the Router
olvl@(p,q, r) Ap<NAg=1
until (Iv’, p', q’, r' :(p, q, ) > (p', q’, r)=olv'i@(p’, ¢', ')
(P11.2)

Properties (P5), (P6), (P9), (P10), and (P11) of specification S,, which define
properties of the packets in the environment, have been extended to the
entire system. Property (P5.1) specifies that each packet in the environment
or the router has a unique location, and that each location contains at most
one packet. Property (P6.1) defines the set of locations packets are allowed to
be at. Each packet can only be located in the source input row or the
destination output column, but cannot move beyond the destination column
on the row, and below the input row on the column. Property (P9.1) states
that packets remain ordered according to their identifiers, and (P10.1) speci-
fies that messages are not interleaved. Finally, property (P11), which states
that every packet in the input eventually moves to the output, has been
refined into two progress properties, one for the environment, and the other
one for the router. Property (P11.1) states that eventually each packet in the
environment moves to the next location, as defined by the “> ” operator.
Since it is an until property, (P11.1) also specifies that packets cannot move
anywhere but to the next location. Property (P11.2) is quasisymmetrical to
(P11.1) for packets inside the router. The only difference is that packet values
are allowed to change.

ProoF OBLIGATIONS. We need to show that each property of S, is implied
by S;. Note that even though properties (P1) to (P4) are not syntactically
modified, the definition of the function @ has changed, which implies that
these properties also need to be verified.

ProorF OUTLINE. The formal proof of each of the refinement steps are
omitted. In the proof outline sections, we just give an intuitive explanation in
order to convince the reader of the validity of the refinements.

The proof of properties (P1)—(P6) and (P9)-(P10) is straightforward. Each
property is directly implied by the corresponding property in S; and the
coupling invariant.

The proof that packets are sent in the order they are queued (property (P7))
follows from the fact that packets in the input queues move one location at a
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time (property (P11.1)), and that each location can contain at most one packet
(property (P5.1)). This implies that packets cannot pass each other, and hence
that they can only be sent in the order they are queued.

The proof of (P8)—packets in the output queues can only appear behind
the packets already present in the queues—is a bit more complicated. We
need to show that, considering two packets @ and B, if « is in its output
queue and B is not ahead of « in the queue, then it will never be. Three cases
are possible. If 8 does not exist in the system, then it will never be ahead of «
since packets cannot be created (properties (P2)—-(P4)). If 8 exists in the
system, but its destination column is different from the destination column of
a, then it will also never be ahead of a since a packet in the output
environment can only reside in its destination column. The final case is 8
existing in the system with the same destination column as «. In this case,
the only way for B to move ahead of « is to overtake it, which is not possible,
as stated above.

Finally, the fact that packets in the input eventually move to the output
(property (P11)) can be proved from (P11.1) and (P11.2) by a double applica-
tion of the induction principle. We can first show that a packet in the input
environment moves eventually to its destination column, by using the dis-
tance between the destination column and the position of the packet in the
row as the metric. This distance decreases by one with each move. We can
also prove that a packet on the destination column inside the router moves
eventually to the output environment. The metric in this case is the distance
between row N + 1 and the position of the packet in the column; it also
decreases by one with each move. The truth of (P11) follows from the
transitivity of leads-to.

Discussion. One of the fundamental precepts of stepwise refinement is the
notion that design decisions ought to be postponed for as long as possible in
order to avoid premature commitment to a particular solution path. While
attempting to adhere to this principle, we sometimes found that the cost
associated with maximizing the generality of the specifications at each step
was excessive and did not serve well the goal of generating a dependable
design in an easily understood and cost-effective manner. Refinement 1, for
instance, involves not one but three important design decisions regarding the
router topology, the message paths, and the buffer sizes. Since no useful
refinement is possible without considering the router topology, the commit-
ment to a cross-bar switch is a decision that clearly belongs in the first
refinement. The selection of legal message paths and buffer sizes could have
been postponed for subsequent refinements. Yet, in a practical setting these
decisions are immediate and obvious concerns on the part of the designer
because they deal with basic defining parameters of the design solution being
considered. On the formal side, the result is a simple mathematical formula-
tion—tailored to this type of design—and a major reduction in the complex-
ity of the refinements and associated proofs.

In retrospect, the decisions taken in the first refinement are precisely those
that enable the designer to move from one level of abstraction (router level) to
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Fig. 5. Possible states of the arbitration element.

the next (switch level) in the router organization. Refinement 1 establishes
the internal structure of the router and provides the requirements for its next
level components. Each switch can (logically) buffer at most two packets and
is not allowed to block indefinitely the passage of an individual message. The
precise manner in which these requirements are realized is left undefined.

3.2 Refinement 2: Arbitration Element Refinement

The role of the arbitration element is to route out of the switch the packets
showing up in the row and column registers. The main problem is to avoid
the interleaving of messages passing through the switch on the column and
from the row to the column. To solve this problem, we introduce two mutually
exclusive signals—turn and up—whose purpose is to regulate the movement
of packets at the intersection of the row and the column (Figure 5). When the
signal furn is on—which implies that up is off-—the paths from location (p,
g, 0) to location (p, ¢ + 1, 0), and from (p, ¢, 1) to (p + 1, q, 1) are broken.
Packets can only move from location ( p, g, 0) on the row to location (p + 1,
q, 1) on the column. When the signals turn and up are off, packets can only
move through the switch along the row. Finally, when the signal up is
on—which implies that turn is off—packets can simultaneously move through
the switch along the row and along the column.

The turn and up signals are initially false, and are triggered by the arrival
of header packets in the row and column registers. The turn signal is
eventually set when a header packet whose destination column is equal to ¢
shows up at location ( p, ¢, 0). The signal remains on as long as the tail of the
same message has not showed up, and is turned off as the tail moves through
the switch. The policy associated with the up signal is symmetrical. Let us
mention that we do not impose any priority between the row and column
registers. That is, when two headers (going to the same location (p + 1, g, 1))
are in the row and column registers at the same time, the choice of which
signal to be turned on is nondeterministic.

We define the predicate turn(p, ¢) to mean that the turn signal in switch
(p, q) is on, and up(p, q) to mean that the up signal in switch (p, q) is on.
We also define a two-parameter function message. The expression
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message.A.A" is interpreted to mean that there is a message in the system

whose head is at location A, and tail at location A'. Formally

message.A.A' = (e, B:mid.a = mid.B:: a"@A A BI@A').

The refined specification S, is the following:

Message Representation
Properties (P1), (P2), (P3), and (P4).

Message Location
Properties (P5.1) and (P6.1).

No-Reordering and Noninterleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
inv = (turn(p, ¢) A up(p, q))
invgz1A<3p,q,r,q":¢" <qg<q':
message(p’, q¢', r')(p, ¢", 0)) = —turn(p, q)
invg>1A3p,q':p'>pArqg <q:
message(p’, ¢, D.p, ', 0)) = turn(p, q)
invp <NA3p,p"q, r:p >pn
(p" <pV{(p' =pAr =1):
message(p’, g, D.(p", ¢", r")) = up(p, q)
invturn(p, ¢) = (3p’, ¢', r':(+' =0 Ap =p) V
(r'=1Ap " >p)Aq <q:
message(p’, q,r')(p, q',0)
invup(p, ¢) = (3p’, p", ¢", r":p' =p A
" <pVv@® =pAr =1)
:imessage(p’, ¢, DAp”, q", r"))

a"@(p, q,0) A g = dest.a A turn(p, ¢) unless - a@(p, q, 0)

a"@(p,q, ) Ap <N Aup(p, g)unless - a@(p, g, 1)
a'@(p, q,0) Ag=1A turn(p, q)

unless - a@(p, g, 0) A —turn(p, q)
a'@(p,q, 1) Ap <N A up(p, q)

unless — a@(p, ¢, 1) A —up(p, q)

Packet Movement in the Environment
Property (P11.1).

Packet Movement Inside the Router
olvl@p, g, r)Ap<NAg>=1

(P12)
(P13)

(P14)

(P15)

(P16)

P17
(P18)
(P19)
(P20)

(P21)

unless (Iv', p’, ¢’, r' :(p, q, r) > (p’, q', rYcolv]@(p’, q', r')

alv]"@(p, q,0) Ag=>1Aq # dest.o[v]
~{(3v'zolv]@(p, g+ 1,0)

alv]’@(p, ¢, O AT7+h Ag=1A —turn(p, g)
—~{(Jv':olv'l@(p, g+ 1,0))

alvl*@(p, q,0) A g = dest.a — olvl@(p, g, 0) A turn(p, g)

olvl@(p, g, 00 A g =1 A turn(p, q)
= (Fv'zolvl@(p + 1, g, 1)
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Fig. 6. The turn signal is off when a message is in transit through the switch along the row.

olv]*@(p,q, D) Ap <N - olvl@(p, ¢, Aup(p, q) (P11.2.6)
aolvl@(p, q, 1) Ap <N Aup(p, q)
(v tolv]@p +1,q,1) (P11.2.7)

The safety properties of the switch signals are described by (P12)-(P21).
The fact that the two signals are mutually exclusive is expressed by (P12).
The meaning of invariant (P13) is illustrated in Figure 6. If a message is in
transit through the switch (p, ¢) along the row—i.e., the header is past the
switch, either still on the row, or already on the destination column, and the
tail has not passed the switch yet—then the turn signal is off.

As depicted in Figure 7, invariant (P14) states that, if a message is in
transit through the switch (p, ¢) from the row to the column—i.e., the
header is past the switch on the column, and the tail is still on the row—then
the turn signal is on.

Invariant (P15) is symmetric to (P14) for the up signal. It states that, if a
message is in transit through the switch (p, ¢) along the column—i.e., the
header is past the switch on the column, and the tail is either on the column
and has not moved through the switch yet, or is still on the source row—then
the up signal is on, as shown in Figure 8.

Invariants (P16) and (P17) further specify that when the turn signal (up
signal) is on, there must exist a message in transit through the switch from
the row to the column (on the column). Note that, as opposed to (P14) and
(P15), properties (P16) and (P17) provide for the case where the header of the
message is still in the row register (column register) of the switch. The reason
is that, when a header is in the row or column register, the proper signal is
first turned on, and only in a subsequent step the packet is allowed to move.

Properties (P18) and (P19) state that once a signal is turned on, it remains
on until the header moves. This prevents signals from being turned on and off
repeatedly while the header of the message is still waiting in the row or in
the column register. Finally, properties (P20) and (P21) express the fact that
signals are turned off at the same time the tail of the message moves through
the switch.

The movement of the packets inside the router is now described by proper-
ties (P11.2.1)-(P11.2.7). As in the previous specification, packets can only
move to the next location (property (P11.2.1)). Properties (P11.2.2) and
(P11.2.3) specify the movement of the packets along the rows. The former
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Fig. 8. The up signal is on when a message is in transit through the switch along the column.

states that a header packet at location (p, ¢, 0), with ¢ different from the
destination column, eventually moves to the next location on the row. The
latter states that the body and tail packets showing up at location (p, g, 0)
eventually move to the next location on the row if the signal turn is off, i.e., if
it has not been turned on by the header of the message. Properties (P11.2.4)
and (P11.2.5) deal with the movement of the packets from the row to the
column. The furn signal in switch (p, g) is eventually turned on after the
arrival of a header packet whose destination column is g (property (P11.2.4)).
Once the signal has been turned on, packets are allowed to move to location
(p +1, g, 1) on the column (property (P11.2.5)). Properties (P11.2.6) and
(P11.2.7) are symmetric to (P11.2.4) and (P11.2.5) for the up signal.

PROOF OBLIGATIONS. The only change brought to specification S; is the

refinement of (P11.2) into (P11.2.1)~(P11.2.7). So we only need to show that
S, implies (P11.2).

ProoF OUTLINE. The unless part of (P11.2) is equivalent to (P11.2.1). To
prove the leads-to part, we need to show that every packet inside the router
moves eventually to the next location. The movement on the rows is implied
by properties (P11.2.2), (P11.2.3), and invariant (P13). Property (P11.2.2)
states directly that the header of each message will eventually move to the
next location. The movement of the remaining packets of the message is
guaranteed by (P11.2.3) when the turn signal is off, which is implied by
invariant (P13). The movement from the row to the column is implied by

ACM Transactions on Software Engineering and Methodology, Vol 3. No. 4, October 1994



Formal Specification and Design of a Message Router . 291

properties (P11.2.4), (P11.2.5), and invariant (P14). The movement of the
header packets follows from the transitivity of leads-to applied to (P11.2.4)
and (P11.2.5). The movement of the nonheader packets is guaranteed by
(P11.2.5) when the turn signal is on, which is implied by (P14). The proof of
the movement on the columns follows similarly from (P11.2.6), (P11.2.7), and
(P15).

Discussion. This refinement moves the design process to the next logical
level in the router’s structure, the internal logic of the individual switches.
Since the switch behavior is actually controlled by the flow of packets, it
comes to no surprise that the refinement consists mainly of safety conditions
which establish what the switch must do upon the arrival and departure of
various kinds of packets. These new properties are simply added on to the
earlier specification. The requirement that messages move along toward their
destination remains unaltered, but knowledge of the switch logic permits us
to break down the packet movement requirement into distinct cases that
differentiate among packet types, their intended destinations, and their
location in the two switch registers. While this latter aspect of Refinement 2
could be postponed for a later step, its presence here is motivated by the need
to understand (and explain to others) the implications of the switch logic and
to involve it in a meaningful verification step capable of revealing possible
logical errors.

3.3 Refinement 3: Introduction of a Fairness Constraint

At this point in the design, packets are guaranteed to move through the
switches without being interleaved on the columns, but no property in the
specification constrains the arbitration elements to behave fairly. Consider
for instance the case where n consecutive messages going to the same
destination ¢ have been sent by the same sender p. Suppose that when the
first of these messages arrives at switch (p, ¢), another message is waiting
on the column for moving up through the switch. Then a possible scenario is
to have the n messages on the row moving through the switch up to the
column, before the message on the column is allowed to do so, thus blocking
all the messages behind it. A symmetric problem occurs when a message is
waiting on the row, while several messages are passing through the switch
along the column.

We want to prevent such undesirable behaviors by imposing a strong
fairness constraint on the arbitration elements. No more than one message
must pass through a switch from the row to the column (along the column),
while another message is waiting on the column (on the row). Figures 9 and
10 describe a simple mechanism implementing this requirement. In the first
case—a message m, is waiting on the column while another message m, is
moving from the row to the column (Figure 9)—the solution is to turn the up
signal on as the tail of 7, is passing through the switch. Since the specifica-
tion guarantees that the up signal cannot be turned off before the head of m,
moves (property (P21)), no other message will be able to move from the row to
the column.
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In the second case—a message m, is waiting on the row while another
message m; is moving along the column (Figure 10)—the solution is to turn
the turn signal on as the tail of m, is passing through the switch.

Formally, this refinement entails the addition of two new properties de-
scribing the preceding behaviors. The refined specification S, is:

Message Representation
Properties (P1)—(P4).

Message Location
Properties (P5.1) and (P6.1).

No-Reordering and Noninterleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
Properties (P12)-(P21).
a'@(p, q,0 Ag=1Aturn(p, q) A B *@(p, q, 1

unless - o’'@(p, q,0) A up(p, q) (P22)
a'@(p, q, D Ap <N Aup(p, ¢) A B"@(p, q,0) A g = dest.p
unless - o'@(p, q, 1) A turn(p, q) (P23)

Packet Movement in the Environment
Property (P11.1).

Packet Movement Inside the Router
Properties (P11.2.1)-(P11.2.7).

Discussion. This refinement encapsulates a subtle technical and special-
ized issue which is better kept separate from other design decisions. Earlier
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specifications ruled out any possibility of starvation but never stated how
long a message may have to wait at a switch. Refinement 3 places a tight
bound on the blocking time, the time it takes for all the packets of the
blocking message to pass through. Because of the noninterleaving require-
ment no tighter bound is possible. Of course, since this requirement only adds
constraints to the existing specification no proof of correctness is necessary.

3.4 Refinement 4: Refinement of the Header Values

A shortcoming of the design at this point is that switches need to know their
location in the grid to route the packets. This knowledge appears in proper-
ties (P11.2.2) and (P11.2.4), which state that when a header packet shows up
in a row register, the switch either routes the packet to the next location on
the row if the number of the column is different from the packet destination
((P11.2.2)), or sets the turn signal if the number of the column is equal to the
packet destination ((P11.2.4)).

The purpose of the fourth refinement is to eliminate this knowledge by
making the value of each header decrease by one, each time the packet moves
through a switch along the row—this is possible only because we assumed
that destinations are designated by column numbers. Since the value is
initially equal to the number of the destination column, switches can now
make the decision to route the header packets to the next location on the row
when the header value is different from 1, and to set the turn signal when
the header value is equal to 1. The location knowledge is not needed anymore.
The refined specification S, is:

Message Representation
Properties (P1)—(P4).

Message Location
Properties (P5.1) and (P6.1).

No-Reordering and Noninterleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
Properties (P12)-(P23).

Header Value Invariant
invel[v]*@(p,q,r) Aqg=1=v=destolv]—qg+1 (P24)

Packet Movement in the Environment
Property (P11.1).

Packet Movement Inside the Router
Property (P11.2.1).
olv]*@(p,q, 0 Ag=1Av+*1-colv—1l@p,qg+ 1,0 (P11.2.2.1)
olol"@(p, g, 0 AT#h Ag=1A —turn(p, q)

- oglv]@(p, g+ 1,0) (P11.2.3.1D
olv]"@(p, q,0 Av =1 olv]@(p, q,0) A turn(p, q) (P11.24.D
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olvl@(p,q,0) Ag=1Aturn(p, q) » olvl@(p + 1, ¢, 1) (P11.2.5.1)

olv]"@(p, q,1) Ap <N olv]@(p, g, ) Auplp, q) (P11.2.6.1)
oglvl@(p,q, D) Ap <N Aup(p, q) ~ olvl@(p +1,q,1) (P11.2.7.1)

The value of the header packets is constrained by the invariant (P24) which
states that, along the rows inside the router, the value is decreased by one
with each move, and that it remains constant once the packet has reached
the destination column. The movement of the packets inside the router is
refined by properties (P11.2.2.1)-(P11.2.7.1). The fact that we know now how
the values in the header and tail packets are being used results in the
removal of the earlier existential quantification in the right-hand side.

Proor OBLIGATIONS. We need to show that properties (P11.2.1)-(P11.2.7)
are implied by S,.

ProoF OUTLINE. The proof is straightforward. Properties (P11.2.3),
(P11.2.5), (P11.2.6), and (P11.2.7) are directly implied by the corresponding
refined properties (P11.2.3.1), (P11.2.5.1), (P11.2.6.1), and (P11.2.7.1). To prove
that (P11.2.2) and (P11.2.4) are implied by (P11.2.2.1) and (P11.2.4.1), we only
need to show

invelv]"@(p,q,0) Ag>1= (q=dest.o[v] ®v=1)
which is implied by the invariant (P24).

Discussion. This refinement is motivated by a strong engineering consid-
eration: the desire to simplify the complexity of the router’s circuitry by
eliminating the need for the individual switches to store information about
their position in the router. Such knowledge would require additional storage
and would increase manufacturing costs. It is not difficult to argue that this
is the proper time to address this issue—having established the pattern of
movement of packets through the switch, it is only natural to reexamine the
logic used to determine that a message arrived at the destination column.
The idea of modifying the header is well known among switch designers, and
it was natural for us to use it. What may be surprising to some of the readers
is the fact that after several fairly detailed refinements the option to employ
this design strategy was still present in the specification. Design experience
suggested to us from the very start that changes in the header and tail
packets ought to be permitted, and this notion made its way into the initial
specification. In addition, careful attention to separation of concerns and a
modular design philosophy kept considerations regarding the arrival to the
destination column separate from the other aspects of the routing logic
during the refinement process.

3.5 Refinement 5: Switches Work in an Asynchronous Way

The last design decision concerns the execution control we impose on the
switches. Between the two possible choices—either synchronous behavior or
asynchronous behavior—we chose the more realistic asynchronous behavior.
Since each location can contain at most one packet, this means that, before
routing a packet to the next location, a switch must first check whether this
location is empty. Note that, in the case of a synchronous behavior, this
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constraint would not have been needed, since two consecutive packets have to
move synchronously in this case.

Let us define the predicate empty@(p, g, r) to mean that location (p, g, r)
does not contain any packet

empty@(p, g, r) = Vo~ a@(p,q,r)).

A way to specify the asynchronous behavior is to state that each packet inside
the router must leave an empty location behind it when it moves

a@(p,q,r) Ap <N A q = 1unless empty@(p, q, r).

This forces the switches to wait for the next location to be emptied, before
routing a packet. The refined specification S; contains all the properties of S,
plus the property above. The proof of the refinement is therefore straightfor-
ward.

Message Representation
Properties (P1)-(P4).

Message Location
Properties (P5.1) and (P6.1).

No-Reordering and Noninterleaving Properties
Properties (P9.1) and (P10.1).

Signal Properties
Properties (P12)-(P23).

Header Value Invariant
Property (P24).

Packet Movement in the Environment
Property (P11.1).

Packet Movement Inside the Router

Property (P11.2.1).

Properties (P11.2.2.1)-(P11.2.7.1).

a@(p,q,r) Ap <N A q > 1unless empty@(p, q, r). (P25)

Discussion. The decision to adopt an asynchronous packet movement
strategy is again motivated by the desire to keep the circuitry simple. A
single bit of information is needed to signal that the next location can receive
a new packet. A router capable of moving packets synchronously along a
single path would entail a complicated design since knowledge that the
header packet can advance would have to be transmitted to all the packets
that follow it. It should be noted, however, that asynchrony applies only to
the movement of packets while the underlying hardware can still be syn-
chronous in its behavior.

3.8 Refinement 6: Transformation of the Leads-to Properties into Ensures
Properties

This last refinement is not motivated by a design decision. The motivation
here is to transform the specification into a form that can be directly
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translated into program text, i.e., introduce ensures properties expressing
atomic transformations. The progress properties are property (P11.1) specify-
ing the packet movement in the environment, and properties (P11.2.2.1)-
(P11.2.7.1) expressing the packet movement inside the router. Since we are
only interested in the design of the message router, we will not transform the
environment property (P11.1) into an ensures property. We will just make
sure that it is satisfied when deriving the program. However, to make it more
explicit, we can split it into two properties, one for the input queues and the
other one for the output queues

olv]l@(p, q,0) A g <Ountil olv]@(p,q + 1,0) (P11.1.1)
olvl@(p,q, D Ap =N+ luntil g{vl@(p + 1, q, 1). (P11.1.2)

Let us now focus on properties (P11.2.2.1)-(P11.2.7.1). The simplest way to
transform a leads-to property into an ensures property is to directly replace
— by ensures, and to see if the resulted property can be satisfied in an
atomic transformation. By applying this method on (P11.2.2.1), we get

olv]"@(p,q,00 Ag=1Av+ 1ensures o[v — 1l@(p, q + 1, 0).

This property cannot be satisfied in an atomic transformation since the next
location may be busy at the time. This suggests the following property:

olvl’*@(p, ¢, 0 A g>1Av#1A empty@(p, g+ 1, 0
ensures o [v — 1]@(p, q + 1, 0) (P11.2.2.1.1)

which can easily be satisfied in an atomic step. In the same way, we get from
(P11.2.3.1)

olv]I"@(p, ¢, 0 A 7#h Ag=>1A aturn(p, q) A empty@(p, g + 1, 0)
ensures o [v]@(p, g + 1, 0). (P11.2.3.1.1)

The transformation of the properties (P11.2.5.1) and (P11.2.7.1) is slightly
more complicated. We need to separate the cases where packets stay inside
the router (p < N) or move from the router to the output environment
{(p = N). In the former case, we can transform the properties in the same
way we did before. We get

olv]l@(p, q,0) A g =1 Ap <N A turn(p, ¢g) A empty@(p + 1, q, 1)
ensures olv]@(p +1,q,1) (P11.2.5.1.1)
and

olvl@(p, q, 1) A p <N Aup(p, g) A empty@(p + 1, q, 1)
ensures o [v]@(p + 1, g, 1). (P11.2.7.1.1)

Since we do not require that locations outside the router be emptied before
packets move, properties (P11.2.5.1) and (P11.2.7.1) with p equal to N, can
simply be transformed into

olvl@(N, q,0) A g=1A turn(N, q)
ensures o[v]@(N + 1, q,1) (P11.2.5.1.2)
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and
olv]@(N, g, 1) A up(N, q) ensures o[v]@(N + 1, q, 1). (P11.2.7.1.2)

This implies that packets moving out of the router are allowed to push
forward simultaneously all the packets in the output queues.

Let us now concentrate on property (P11.2.4.1). A direct transformation
into an ensures property

aglv]"@(p, q,0) A v = 1 ensures o[v]@(p, q, 0) A turn(p, q)

is not possible because the turn signal cannot be set when a message is
currently passing through the switch along the column, i.e., when the up
signal is on. This suggests the following transformation

alvl*@(p, ¢,00 A v=1A —up(p, q)
ensures o[v]@(p, q, 0) A turn(p, q).

This is however not yet satisfactory. Consider the case: where a header
packet with value 1 is in the row register; the up and turn signals are off}
and another header packet is in the column register. It is easy to see that the
up signal cannot be turned on without invalidating the unless part of the
previous property. This means that we need to find a mechanism for prevent-
ing the up signal to be turned on in this case. Even though it is possible to do
it, we do not want to establish any priority between the two signals, in order
to have a nondeterministic behavior. The solution to this problem is to
transform (P11.2.4.1) in the following way:

olvl*@(p, ¢,0) A v=1A —up(p, ¢)
ensures (c[v]@(p, g, 0) A turn(p, q)) vV up(p, q) (P11.2.4.1.1)

which allows the up signal to be turned on. A similar transformation on
(P11.2.6.1) leads to

olv]*@(p, ¢, ) A p <N A =turn(p, q)
ensures (c[v]@(p, g, ) A up(p, ¢)) V turn( p, g). (P11.2.6.1.1)

The final and complete specification Sy is:

Message Representation
inv{AA: a@A) Ak =(L B,A: B@A A mid.B = mid.« :: 1)

= k>3 A(pnr.a =1« type.a =h) A (P1)
(1 < pnr.a <k < type.a = b) A (pnr.a = k < type.a =t)
const (v, A:: olv]*@)) P2)
const (Ir:: o[v]P@A) (P3)
const {(Jv, A:: o[vIF@A) (P4)

Message Location
inva@(p, g, r) A pa@ip’,q’,r")

= (pid.a =pid.B=(p,q,r)=(p’,q', ') (P5.1)
inva@(p,q, r)=(p=srcang<dest.aAnr=0)Vv
(p>srcarng=destaAr=1) (P6.1)
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No-Reordering Property
inva < g = pid.g < pid.« (P9.1)

Noninterleaving Property
inva@(p, ¢) A B@(p', q) A 8@(p", q) A
N+1l<p<p <p” Amid.a = mid.8

= mid. = mid.« (P10.1)
Signal Properties
inv —(turn(p, ¢) A up(p, g)) Pr12)
invgz=21A{3p',q',r',q :q¢g" <qg<gqg':

message{p’, g', r')(p, q”", 0)) = —turn(p, q) P13)
invg>1A{3p,qg':p>pArqg <qg:

message(p’, g, 1).(p, g’, 0)) = turn(p, q) (P14)

invp<NA{Ep,p', g, r":p >pA

(p" <pVv(p' =pAr =1

message.(p’, g, D.{p", ¢”, r")) = up(p, q) (P15)
inv turn(p, ¢) =

@Ap,q,r':((r'=0Ap =p)V(r' ' =1Ap >p)Aqg <q::

message.(p’, q, r'){p, q’,0) (P16)
inv up(p, g) =

<3p/, pH, ql/7 r// :pl Zp /\ (p// <p \/ (p// :p /\ r/V — 1)) ::

messagep’, q, D(p", ¢", r")) (P17)
a"@(p, q,0) A g = dest.a A turn(p, ¢) unless — a@(p, g, 0) (P18)
a"@(p,q, 1) Ap <N Aup(p, g)unless - a@(p, g, 1) (P19)
a'@(p,q,0) Ag=1Aturn(p, q)

unless — a@(p, q,0 A —turn(p, q) (P20)
a'@(p,q, D) Ap <N Aup(p, q)

Runless = a@(p, q, 1) A —up(p, q) (P21)
a'@(p, q,00 Ag=1Aturn(p, @) A B @(p, ¢, D

unless — a@(p, q,0) A up(p, q) (r22)
a'@(p,q, ) Ap <N Aup(p, @) A B"@(p, q,0) A g = dest.B

unless — a@(p, ¢, 1) A turn(p, q) (23)
Header Value Invariant
involv]"@(p,q, ") Ag>1=v=desto[v] —q+1 (P24)
Packet Movement in the Environment
olvl@(p, q,0) A g < O0until o[v]i@(p, g + 1,0 (P11.1.1)
alvl@(p,q, 1) Ap =N + 1luntil olvl@(p + 1, g, 1). (P11.1.2)

Packet Movement Inside the Router
olvl@p, g, r)Ap<NAg=>=1
unless (3v’, p’, ¢', r':(p,q, r) > (p',q’, r):

olv]@(p’, q',r') (P11.2.1)
olvl@(p,q,r) Ap <N A g = 1unless empty@(p, q, r) (P25)
alvl*@(p, ¢, 00 Ag=1Av+#1Aempty@(p, g+ 1, 0)

ensures o[v]@(p,qg + 1,0) (P11.2.2.1.1)
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alvl’@(p, g, O AT+ h Ag>1A
—turn(p, ¢) A empty@(p, g + 1, 0)

ensures o[v]@(p, g + 1,0) (P11.2.3.1.1)
olv"@(p, q,0) Av=1A —up(p, q)

ensures (o[v]@(p, g, 0) A turn(p, ¢)) V up(p, q) (P11.2.4.1.1)
olvl@(p, q, D Aq>1Ap <N Aturn(p, q) A empty@(p + 1, ¢, 1)

ensures o[vl@(p+1,q,1) (P11.2.5.1.3)
alvl@(N, q,0 A g >1 A turn(N, q)

ensures o[v]l@(N + 1,q, 1) (P11.2.5.1.2)
olv]®@(p, q, 1) Ap < N A —turn(p, q)

ensures (c[v]@(p, q, 1) A up(p, q)) V turn(p, q) (P11.2.6.1.1
olvl@(p, g, D) Ap <N Aup(p, q) A empty@(p + 1, q, 1)

ensures o[v]@(p + 1, ¢, 1) (P11.2.7.1.1)

alv]l@(N, q,1) A up(N, q) ensures c[v]@(N + 1, g, 1) (P11.2.7.1.2)

Proor OBLIGATIONS. We need to show that properties (P11.2.1.1)-
(P11.2.7.1) are implied by S;.

Proor OuTLINE. The proof that packets inside the router move eventually
to the next location—properties (P11.2.2.1), (P11.2.3.1), (P11.2.5.1), and
(P11.2.7.1)—can be decomposed into three cases: packet movement along the
columns, from the rows to the columns, and finally along the rows. The
movement along the columns can be proved by induction on the row number.
The base case is established by the property (P11.2.7.1.2) which directly
implies the packet movement from the upper locations (N, g, 1) to the output
queues. Since a packet leaves an empty location behind it when it moves,
the base case and the property (P11.2.5.1.1) allows us to prove that packets
at locations (N — 1, g, 1) will move to locations (N, g, 1), and so on, down to
row 1.

Packet movement from the row N to the output environment is directly
implied by (P11.2.5.1.2). For p between 1 and N — 1, we have just proved
that packets along the columns are guaranteed to move to the next location.
This implies that locations along the columns will eventually be emptied, and
thus, according to (P11.2.5.1.1), that packets at their turning switches will
eventually move to their destination columns.

The packet movement along the rows can be proved by induction on the
column number. We know that packets at the right end of the rows (locations
(p, M, 0)) are necessarily at their turning switches. They will thus move to
the columns and leave empty locations behind them. This will allow packets
at locations (p, M — 1, 0) to move to locations (p, M, 0) (properties
(P11.2.2.1.1) and (P11.2.3.1.1)), and so on, down to column 1.

Finally, we need to prove that the proper signals are eventually turned on
when header packets show up in the registers (properties (P11.2.4.1) and
(P11.2.6.1)). From (P11.2.4.1.1) we know that the turn signal will eventually
be turned on, unless the up signal is turned on. In this case, the fairness
property (P23) assures that the turn signal will also be turned on, as the tail
of the message moving along the column will pass through the switch. The
proof of (P11.2.6.1) is symmetrical.
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Discussion. All previous refinements involved design activities which were
germane to the router design and not specific to the formal method being
applied. Of course, the manner in which the design decisions were formally
captured was UNITY logic specific. Refinement 6 is the first one not to be tied
directly to the traditional engineering process. The refinement is needed for
technical reasons specific to the formal method we are employing. While this
step cannot be eliminated, the overhead it adds is minimal and limited to a
specific point in the application of the method. In some sense, this refinement
is a test to verify that individual progress conditions do actually have
statement-level counterparts. If this were not the case, additional refine-
ments would be required. The reason progress conditions associated with the
environment are not subject to the same scrutiny is because they are not to
be implemented as such—they merely reflect obligations the environment
must meet.

4. DERIVATION OF A PROGRAM FROM THE SPECIFICATION

The final step of the design consists of writing the program text. We first
define the types and data structures used in the program, and then derive the
program statements from the progress properties of the final specification.

4.1 Types and Data Structures of the Program

We define the type packet to be the Cartesian product between {%, b, ¢} and
the set V of all the possible packet values. If p is a variable of type packet,
we use the notation p.1 to access the type, and p.2 to access the value. The
grid of N X M switches is implemented by a three-dimensional array

switch :array[1..N, 1..M, 0..1] of packet U{ L}

such that switch[ p, g, 0] represents the row register of switch (p, ¢) and
switch[ p, ¢, 1] the column register. When a register does not contain any
packet, we agsume that its value is equal to L . We define functions header,
body, tail, empty, and val in the following way:

header.(p, g, r) = (switch[ p, ¢q, r].1 = h),

body.{ p, q, r) = (switch[ p, ¢, r].1 = b),

tail.(p, q, r) = (switch[ p, g, r].1 =),
empty.(p, g, r) = (switch[ p, g, r] = 1),

val.p, g, r) = switch[ p, q, r].2.

We also define the function dec_val which accepts a header packet (4, v) as
argument and returns the packet (4, v — 1). The switch signals turn and up
are implemented by two Boolean arrays

turn, up :array[1..N, 1..M ] of Boolean,
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and the N input queues and M output queues are represented by two arrays
of sequences of packets

input: array[1..N] of sequence of packet,
output: array[1..M ] of sequence of packet.

We suppose that the output queues are initially empty, and that the input
queues contain all the packets that have to be sent. Finally, we use the
following operations on sequences:

hd.s = head element of the sequence s,

tl.s = tail sequence of the sequence s,
(s; x) = sequence obtained by appending the element
x at the end of the sequence s,
nil.s = s is an empty sequence.

4.2 Program Text

Let us first briefly describe the UNITY program notation. As we stated at the
beginning of the article, a typical UNITY program consists of a declare
section, which contains Pascal-style declarations of variables; an initially
section, where all or some of the variables are initialized; and an assign
section, which is a set of multiple assignment statements separated by the
operator [. The statements may be of the form

var_list == exp_list
or may be conditional
var_list, = exp_list, if bexp, ~ exp_list, if bexp, ~ ...
Several statements may be composed with the parallel bar to form a bigger
statement
statement, [lstatement,|l...

Finally, it is possible to generate a list of statements by using the following
constructor

(I dummy_variables : range_constraint :: statement).

The program derived from the specification is as follows (we omitted the
declare section):

Program Message Router
initially
(p,g:l<sp<NAl<g<M:
switch[ p, g, 0], switch| p, g, 1], turn[ p, g, upl p, q] =
1, i ,false,false)

assign
{Packet movement from the input to the router: property (P11.1.1)}

(I p:1 <p < N ::switch p, 1, 0], input] p] =
hd.input| p], tL.input] p]
if empty.(p, 1,0) A = nil.input( p])
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{Packet movement along the rows: properties (P11.2.2.1.1) and
(P11.2.3.1.1)}
dp,g:l<p<NAl<g<M:
switch[ p, g, 0], switch[ p, g + 1,0} =
1 ,dec_val.switch| p, g, 0]
if header(p, q,0) A val(p,q,0) # 1 A empty{p,q + 1,0) ~
1, switch[ p, g, 0]
if (body.(p, g,0) V tail.(p, g,0)) A
—turn] p, ¢] A empty(p, ¢ + 1,0))
{ Packet movement from the rows (< N) to the columns: properties
(P11.2.5.1.1), (P20), and (P22)}
Ip,g:1l<p<NAl<g=<M:
switch[ p, q,0], switch[ p + 1, ¢, 1] :=
L, switeh[ p, g, 0]
if turn] p, g] A —empty(p,q,0) A empty(p + 1,4,1)
| turn| p, q] = false
if turn| p, g] A tail(p, ¢,0) A empty(p + 1,q,1)
| uplp,q] = true
if turn[ p, g] A tail(p,q,0) A empty(p + 1,q,1) A
header.(p, g, 1))
{Packet movement from row N to the output: properties (P11.2.5.1.2),
(P20), and (P22)}
lg:l<g=<M:
switch[ N, g, 0], outputlq] == L ,(output| ¢ ]; switch[ N, g, 0])
if turn[ N, ¢] A —empty(N, g, 0)
I turn[ N, g] = false if turn[ N, q] A tail{N, g, 0)
I uplN, q] = true
if turn[ NV, q] A tail(N, q,0) A header(N, q, 1))
{Packet movement along the columns inside the router: properties
(P11.2.7.1.1), (P21), and (P23))
(Ip,g:1l<p<NAl<g<M:
switch[ p, ¢, 1], switch[ p + 1, ¢, 1] == L ,switch[ p, g, 1]
if upl p,q]l A —empty(p,q,1) A empty(p +1,q,1)
I uplp, q] == false
if upl p, gl A tail(p,q,1) A empty(p + 1,q,1)
I turn p, q] == true
if upl p, q] Atail{p,q,1) A empty(p + 1,q,1) A
header(p, q,0) A val(p,q,0) = 1)
{Packet movement from the columns to the output: properties
(P11.2.7.1.2), (P21), and (P23))}
(lg:l<g<M:
switch[ N, g, 1], output[ g] == L , (output] g]; switch[ N, ¢, 1]
if up[ N, g] A —empty.(N, q,1)
I uplN,q] = false if up[ N, g] A tail(N, g, 1)
I turn[ N, g] = true
if upl N, g] A taildN, q, 1) A header{N, q,0) A
val({N,q,0) = 1)
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I {Signal changes: Properties (P11.2.4.1.1) and (P11.2.6.1.1)]
(Ip,g:1<p<NA1<q<M:turn]p, q] = true
if —turn[ p,q] A —upl p, g1 A header.(p, q,0) A val(p, q,0) = 1)
I dp,gq:l1<p<NAl<g<M:
upl p, g] = true
if —upl p, 9] A —turn| p, g] A header(p, q,1))
end

Initially, all the row and column registers are empty, and the turn and up
signals are off. The packet movement in the input queues (property (P11.1.1))
is implemented by the first statement of the assign section. As long as there
exists an input queue that is not empty, its head element is removed and
assigned to the first register on the row, if it is empty. This implies that all
the packets in the queue simultaneously move forward one position.

The second statement takes care of the packet movement along the rows. It
was trivially derived from the properties (P11.2.2.1.1) and (P11.2.3.1.1).

The movement from the lower rows (below row N) to the columns is
realized by the third statement, which consists of three components. The first
component was trivially derived from the progress property (P11.2.5.1.1). The
second component makes sure that the turn signal is turned off when the tail
of the message is passing through the switch. It was suggested by the safety
property (P20), or more precisely by the conjunction of (P20) and (P11.2.5.1.1).
The third component, which was derived from the conjunction of (P22) and
(P11.2.5.1.1), makes sure that the up signal is turned on when the tail of the
message is passing through the switch and a header packet is waiting in the
column register. The packet movement along the columns inside the router
(fifth statement) was derived from the properties (P11.2.7.1.1), (P21), and
(P23) in a similar way.

The movement of the packets from the upper locations inside the
router—either on the rows (fourth statement) or on the columns (sixth
statement)—is achieved by just appending the outgoing packet at the end of
the output queue. Note that this implies that packets move forward simulta-
neously one position in the output queue, and thus satisfies the property
(P11.1.2).

Finally, the properties (P11.2.4.1.1) and (P11.2.6.1.1), specifying that the
turn or up signals are turned off when a header packet shows up in the row
or column registers, suggested the last two statements. To be complete, we
also need to show that each statement preserves the safety and invariant
properties of the specification. The proofs can be verified using the program
text.

Discussion. One interesting feature of the UNITY program we generated
is the fact that all the obligations imposed upon the environment are satisfied
by simply treating the router’s inputs and outputs as unbounded queues. As
long as the input queues contain full messages, the program is correct.
Moreover, correct execution is guaranteed in any environment which can be
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modeled by unbounded queues. These kind of assumptions are common in
the communications research and reinforce our view that adopting a closed-
system model for the specifications led to no loss of generality.

For purposes of this article the derivation is complete in the sense that the
basic structure and logic of the router is made explicit in the program
structure and behavior. It is conceivable, however, that one may want to take
the program one step further to the level of registers and wires. This can be
achieved in two ways. One can either return to the specification resulting
from the Refinement 5 or attempt to apply correctness-preserving transfor-
mations to the final program. The latter approach seems preferable to us.
Simple mechanical transformations can be employed at this point because the
program is sufficiently close to the circuit-level representation.

5. CONCLUSION

This article presents the formal derivation of a message router. The refine-
ment method is that of UNITY. Although UNITY-style formal derivations
have appeared in print before, the questions addressed by this case study are
different, and the lessons learned bear careful scrutiny and further investiga-
tion. Others have been concerned with the issue of whether formal derivation
can be applied successfully to sophisticated problems, such as the router. We
are intrigued by the possibility that careful management of the refinement
process may render formal derivation capable of supporting industrial-grade
applications. Most of our effort went not into the router derivation per se but,
in fine tuning the derivation process. In earlier sections we described the
ultimate outcome of this study: a series of refinements and their motivation.
Now we turn our attention to those elements of the derivation process that
have been instrumental in shaping the specification style and the derivation
strategy.

Early on we observed that it is better to specify and reason about a closed
system—i.e., a system and its environment—rather than an open one. In the
latter case, conditional properties make specifications more complex and
proofs more difficult. In the router example, we have been able to specify a
closed system by representing the input and output environments as infinite
input and output queues, with the input queues initially containing all the
packets that had to be sent. The unified formal treatment of the system and
its environment reduced complexity without compromising the desire to
separate concerns; the two types of properties were simply identified as
addressing distinct issues. Naturally, only system properties were refined
while the environmental properties were left unchanged. This would not be
the case if one were free to alter the relation between the system and its
environment. One may also conceive of situations in which the complexity of
the task is such that multiple environment specifications, at different levels
of abstraction, may prove to be helpful.

Another critical element is the formulation of the top-level specification. On
one hand, it should be as general as possible so as not to restrict prematurely
the range of possible designs; on the other hand, it cught to make the
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refinements simple. The former is achievable by focusing the top-level specifi-
cation on I/0 properties alone while the latter is facilitated by selecting the
“right” notation. For instance, by identifying packet locations in the environ-
ment as pairs of coordinates (row, column) the refinement of the router as a
grid of switches became very natural. One does not stumble upon appropriate
notation. Experience, exploration, and some looking ahead can provide the
required insight. Derivation papers are often criticized for fortuitous early
decisions which seem to indicate that the authors already have seen the final
solution. Such objections are valid only if one claims that the nature of the
specification dictates (in some mechanistic way) the next refinement step.
True design, however, never makes such pretense. Looking ahead and back-
tracking are part of the method. Insights gained from considering various
alternatives ultimately led—relatively early in the process—to the notation
we adopted and to the choice of auxiliary variables: n (source row), m
(destination column), i (message number), and j (packet number). The selec-
tion of auxiliary variables was one of the key decisions we had to make; it
enabled simple formulation of many central properties such as those involv-
ing message location, no-reordering, and noninterleaving. Note, for instance,
that using the destination column variable in the early stages of the design
allowed us to deal with the value of the header packets only in the fourth
refinement.

The scope of the individual refinements is another issue affecting the ease
with which the derivation can be explained to others and verified formally. As
expected, small refinements proved helpful in both respects. They also seem
to help the designer avoid premature commitments. The refinement process
can be viewed as a tree, where internal nodes represent specifications, and
leafs represent programs. The more internal nodes, the more leafs at the
bottom of the true. This conservative strategy leads to a broader exploration
of alternatives and a decrease in the likelihood that not all implications of
each design decision are well understood and considered.

Finally, we discovered that it was relatively easy to separate the formal
treatment of the proofs from the refinement process itself. We spent a lot of
investigation time on choosing the right top-level specification, the right
notation and auxiliary variables, and the right sequence of refinements.
During all this time, we came up with different solutions, but we hardly ever
felt the need to verify formally the correctness of the refinements we gener-
ated—only at the end of the design, when all the design decisions were set,
we generated the required formal proofs for each refinement step. This made
us conclude that the refinement process is sufficiently intuitive to allow a
rigorous design methodology to proceed without the burden of unnecessary
and cumbersome proofs. This also means that design and verification can
actually be carried out by different people. People with synthetic skills could
focus their energy on the design while people with strong analytical skills
could deal mostly with the proofs, often without even requiring an under-
standing of the design details. These observations strengthen our belief that
formal methods may soon play an important role in the development of
industrial-grade software systems.
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APPENDIX

FORMAL DEFINITION OF THE UNITY LOGIC OPERATORS
The definition of the UNITY operators is based on the Hoare triple
{p}siq}

which means that, starting in a state satisfying the precondition p, the
execution of the statement s ends in a state satisfying the postcondition q.
Let F' be a UNITY program, F.assign be the assign the section of F, and
INIT a predicate denoting the initial state of F. The UNITY operators are
formally defined in the following way:

—p unless g = (Vs:s € Fassign::{p A =g}s{p V qg}).

Whenever the predicate p holds for a program state, it continues to hold at
least until ¢ holds.

—stable p = (Vs:s € F.assign::{p}s{p}) = p unless false.

The predicate p is a stable predicate if it remains true forever once it
becomes true.

~—const p = stable p A stable — p.

The predicate p is constant if it remains true forever if it is initially true,
and false forever if it ig initially false.

—inv p = (INIT = p) A stable p.

The predicate p is tnvariant if it holds in the initial state, and is stable all
along the execution.

—p ensures ¢ = p unless ¢ A (Is:s € Fassign::{p A = q}s{g}).
Whenever p holds, it must hold at least until g holds ( p unless ¢), and
there must exist a statement in the program that establishes the truth
of g.

—PpPr—q.

The assertion p — g (p leads to ¢) is true iff it can be derived by a finite
number of applications of the following inference rules:

p ensures g
p+—q
p—qg,q—r ..
- (transitivity)

pr

(Vm:m e W:plm)—q)

@mim e Wapon)s > for any set W (disjunction)
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