
CS 580

Homework #01

Game of life.

Jin Zhang 7788

Yie Sheng Chen 1303

Question 1,

Problem Definition:

Simulate Conway’s Game of Life where births and deaths take place one at a time nondeterministically

Design Concept:

We used the “box” to make the nondeterministic one at a time update as the following unity program:

Unity program:

Program A1

delare

 G: array [0..N+1,0..N+1] of integers

always

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) = <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] >

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~

 false

initially

 < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 >

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 >

assign

 < [] i,j : 1<= i <= N ∧ 1<= j <= N ::

 G[i,j] := 1 if birth(I,j) ~

 0

end{A1}

Question 2,

Problem Definition:

Simulate Conway’s Game of Life where births and deaths take place simultaneously over the entire

community

Design Concept:

We used the “parallel bars” to make simultaneous update as the following unity program:

Unity Program:

Program A2

delare

 G: array [0..N+1,0..N+1] of integers

Always

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) = <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] >

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~

 false

initially

 < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 >

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 >

Assign

 < || i,j : 1<= i <= N ∧ 1<= j <= N ::

 G[i,j] := 1 if birth(I,j) ~

 0

end{A2}

Question 3,

Problem Definition:

Simulate Conway’s Game of Life where births and deaths take place simultaneously within a single

colony at a time.

Design Concept:

We construct neighborhood mask for each point using the concept of fix points: an synchronous group

of operations updates the neighborhood mask for a particular point, (x,y), and after N such synchronous

group of operations the neighborhood mask of (x,y) will reach fixed point and can be used to update

births and deaths of a single colony. And such idea is implemented as the following unity program:

Unity Program:

Program A3

delare

 G: array [0..N+1,0..N+1] of integers

 NM: array [1..N,1..N,1..N,1..N] of boolean

 Iter: array [1..N,1..N]

Always

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) = <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] >

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~

 false

 < [] i,j,x,y : 1<= i <= N ∧ 1<= j <= N ∧ 1<= x <= N ∧ 1<= y <= N:: colony(x,y,i,j) := true if NM[x,y,i,j] ==1 ∨

 < ∨ : -1 <= xk <= 1 ∧ -1 <= yk <= 1 :: NM[x,y,i+xk,j+yk]==1 >

 >

initially

 < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 >

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 >

[] <|| i,j : 1<= i <= N ∧ 1<= j <= N ∧ 1<= x <= N ∧ 1<= y <= N :: NM[x,y,i,j] := 0 if ¬(i==x ∧j==y) >

[] <|| i,j : 1<= i <= N ∧ 1<= j <= N :: NM[I,j,I,j] := 1 >

assign

 < [] x,y : 1<= x <= N ∧ 1<= y <= N ::

 < <|| i,j : 1<= i <= N ∧ 1<= j <= N ::

 G[i,j] := 1 if birth(i,j) ∧ colony(x,y,i,j) == 1 ∧ Iter[x,y] == N ~

 0 if colony(x,y,i,j) == 1 ∧ Iter[x,y] == N

 >

 || Iter[x,y] :=0 if Iter[x,y] == N

 || NM[x,y,x,y] := 1 if Iter[x,y] == N

 || <|| i,j : 1<= i <= N ∧ 1<= j <= N :: NM[x,y,i,j] := 0 if Iter[x,y] == N ∧¬(i==x ∧j==y) >

 >

 [] <|| i,j : 1<= i <= N ∧ 1<= j <= N ::

 NM[x,y,i,j] := < ∨ : -1 <= xk <= 1 ∧ -1 <= yk <= 1 :: NM[x,y,i+xk,j+yk] >

 || Iter[x,y] := Iter[x,y] + 1

 >end{A3}

