
 4.

1. Introduction (ch. 1)

Predicate logic fundamentals
- See separate class notes (required self-study)

- Illustration: truth tables for not, and, or, imply, etc.

System specifications in context
- programming language semantics, e.g., sequence construct “c1 ; c2”

- denotational: E(c2, E(c1, state0))

- operational: exec(c1), exec(c2)

- axiomatic: given {P} c1 {Q}, {R} c2 {W}, Q Þ R conclude {P} c1 ; c2 {W}

- software engineering

- program design and coding, e.g., array sorting

- component specifications as part of the software architecture design

- requirements engineering

- formal verification and analysis, e.g., security

Proof systems — a historical perspective
Sequential programming tradition

Floyd — flowchart annotations and backward substitution
- partial and total correctness

Hoare triple — structured programs
• {P} s {Q} is true if whenever s is started in a state satisfying P, the resulting state

satisfies Q, if s terminates

• {P} skip {P} — skip axiom

• {P xe } x := e {P} — assignment axiom, e.g., {true} x := 5 {x=5}

• P' Þ P, {P} s {Q}, Q Þ Q' |- {P'} s {Q'} — consequence

• {P} s1 {Q}, {Q} s2 {R} |- {P} s1 ; s2 {R} — sequential composition

• P Ù ¬(B1 Ú ... Ú Bn) Þ Q, for 1≤i≤n {P Ù Bi} si {Q} |- {P} IF {Q}

— alternative rule

• for 1≤i≤n {I Ù Bi} si {I} |- {I} DO {I Ù ¬(B1 Ú ... Ú Bn) }

— iterative rule

 5.

- Illustration: zero an array of integers

- use deterministic sequential processing inside a loop

- use non-deterministic selection inside a loop

Dijkstra — wp-calculus
- statements are viewed as predicate transformers

- the programmer usually knows what is the desired result

- wp(s,Q) — the largest set of states such that, if s is started in one of these states, s is
guaranteed to terminate in a state satisfying Q

• {wp(s,Q)} s {Q}

• P Þ wp(s,Q) |- {P} s {Q}

• wp(s,false) = false — law of excluded miracle

• wp(s,Q) Ù wp(s,R) = wp(s,Q Ù R) — distributive law of conjunction

• wp(s,Q) Ú wp(s,R) Þ wp(s,Q Ú R) — distributive law of disjunction

Note: this is due to the presence of nondeterminism

wp(flip_coin, head) = false and wp(flip_coin, tail) = false

but

wp(flip_coin, head Ú tail) = true

• wp(skip,Q) = Q

• wp(x:=e,Q) = Q xe

• wp(s1 ; s2 ,Q) = wp(s1,wp(s2 ,Q))

• wp(IF,Q) = ¬ (B1 Ú ... Ú Bn) Þ Q Ù for 1≤i≤n (Bi Þ wp(si ,Q))

• wp(DO,Q) = ($ k: 0≤k : Hk(Q))

 H0(Q) = ¬BB Ù Q; Hk(Q) = H0(Q) Ú wp(IF,Hk-1(Q))

 terminate after k or fewer iterations

 H1(Q) = H0(Q) Ú wp(IF,H0(Q))

Concurrent programming tradition
- Note: |- is logical deduction while |= is satisfiability in this model

Owiki and Gries
 the idea is to build upon the sequential programming tradition and add a non-interference

requirement

• á atomic statement ñ
• co s1 // ... // sn oc

 6.

• {P Ù B} s {Q} |- {P} áawait B ® sñ {Q} — synchronization rule
(Note: s may be skip; B may be true)

• critical assertions are assertions that must hold in the sequential program before each
atomic statement (programs are annotated with assertions of this type)

• NI(a,C) holds, i.e., assignment a does not interfere with critical assertion C
if {C Ù pre(a)} a {C} where pre(a) is the annotation for a

• Interference freedom: {Pi} si {Qi} are interference-free if for all assignments a in si
and for all critical assertions C in sj (j≠i) NI(a,C) holds

• {Pi} si {Qi} are interference-free |- {AND Pi} co s1 // ... // sn oc {AND Qi}

Temporal logic (Manna and Pnueli)
 computations generate behaviors, sequences of states

• state formulas: given the sequence of states s, P holds in the j'th state
(s,j) |= P

• temporal formulas

(s,j) |= Q P iff (s,j+1) |= P — next

(s,j) |= q P iff for all k≥j (s,k) |= P — henceforth

(s,j) |= à P iff for some k≥j (s,k) |= P — eventually

(s,j) |= P U Q
iff for some k≥j (s,k) |= Q and for all j≤i<k (s,i) |= P — until

(s,j) |= P W Q iff (s,j) |= P U Q or (s,j) |= q P — unless

UNITY Perspective
- understand and manage the complexity of the programming task

- extract what is common to the programming task—avoid focusing on specific languages and
architectures, yet accommodate all when necessary

- show that a small theory is adequate for a variety of tasks

- specification

- derivation

- verification

- the elements of the UNITY theory

- computational model—minimalist

- proof logic—simple, assertional, avoids operational thinking

- design heuristics and methodology

- UNITY strategy on proofs

- extricate the proofs from the text

- avoid the need to concern oneself with non-interference

- avoid reasoning about computational histories

 7.

- reason about properties which are true in every state

Model
The basic question is “what is actually fundamental?”

State
- there are models that focus on states (TLA, IOA, shared variables)

—logic based reasoning, specification refinement

- there are models that focus on events (CSP, CCS, p-Calculus)
—algebra of events, composition

- “state transition systems” are common to many fields including computer science, control
theory, circuit design, communication theory, operations research, etc.

- Example:

a* composed with b* produces (a Ú b)*

a :=`a [] b :=`b may not be as clean, but …

n, m := n*m, (m-1) if m>0 with n initially set to 1 is rather simple (factorial m!)

Deterministic atomic assignment
- all or nothing effect

- common assumption in many areas
(database, operating systems, programming languages)

- other options (safe or regular vs atomic) complicate programming and can be simulated if
necessary

- various granularities may be considered

- determinate (predictable, unique) effect (function-like behavior) simplifies the theory

Non-deterministic flow of control
- it is intrinsic to many problem areas

- often offers simple abstract solutions

Flow of control constructs are not fundamental
- it is a historical accident

(Turing Machine, von Neumann computer, flowcharts, structured programming)

- perpetuates sequential programming biases
(the process concept, e.g., CSP)

- creates an unnecessary tie between modularity (placing related concerns together, having
a clean interface, compact abstract specification) and one-way-in/one-way-out flow

- a number of models raised objections about flow of control (dataflow, logic
programming)

Synchrony vs asynchrony
- these concepts are at the core of any unified theory

- many instances of both cases: systolic arrays, circuits, multiprocessors, networks

 8.

Methodology
- after the fact proofs are too difficult

- emphasis on program derivation

• formal specification

• solution strategy leading to refinement (strengthen the specification)

• target architecture considerations leading to refinement (strengthen the specification)

• mapping to specific architecture

- program ® WHAT should be done

- mapping ® WHEN, WHERE, and HOW should the assignments be performed or
should the program halt

• assessment of the complexity (time and space) w.r.t. the mapping!!!

- this approach promises to reshape the way we do design

