1. Introduction (ch. 1)

Predicate logic fundamentals

- See separate class notes (required self-study)

- IMNustration: truth tables for not, and, or, imply, etc.

System specifications in context
- programming language semantics, e.g., sequence construct “cl ; c2”
- denotational: E(c2, E(cl, state0))
- operational: exec(cl), exec(c2)
- axiomatic: given {P} cl {Q}, {R} c2 {W},Q = R conclude {P} c1;c2 {W}
- software engineering
- program design and coding, e.g., array sorting
- component specifications as part of the software architecture design
- requirements engineering

- formal verification and analysis, e.g., security

Proof systems — a historical perspective

Sequential programming tradition

Floyd — flowchart annotations and backward substitution

- partial and total correctness

Hoare triple — structured programs

e {P} s {Q} is true if whenever s is started in a state satisfying P, the resulting state
satisfies Q, if s terminates

e {P} skip {P} — skip axiom

. {PZ } x :=e {P} — assignment axiom, e.g., {true} x := 5 {x=5}

e P =P {P}s{Q},Q=Q' | {P'} s {Q'} — consequence

« {P} 5, {Q}, {Q} s, {R} |- {P} S35, {R} — sequential composition

e PAa —|(B1 V..V Bn) = Q, for 1=<i=n {P A Bi} s, {Q} F {P}IF{Q}
— alternative rule

e for I=i=zn {IA Bi} s, {I} F{I}DO{IA —|(B1 V.V Bn) }

— iterative rule




- Illustration: zero an array of integers
- use deterministic sequential processing inside a loop

- use non-deterministic selection inside a loop

Dijkstra — wp-calculus
- statements are viewed as predicate transformers
- the programmer usually knows what is the desired result

- wp(s,Q) — the largest set of states such that, if s is started in one of these states, s is
guaranteed to terminate in a state satisfying Q

. (wpsQ} s {Q}
« PowpsQ) F {P}s{Q}

*  wp(s,false) = false — law of excluded miracle
o wp(s,Q) Awp(s,R) =wp(s,Q A R) — distributive law of conjunction
e wp(s,Q) vwp(s,R) = wp(s,Q v R) — distributive law of disjunction
Note: this is due to the presence of nondeterminism
wp(flip_coin, head) = false and wp(flip_coin, tail) = false
but
wp(flip_coin, head v tail) = true

* wp(skipQ)=Q
.+ wpx=eQ)=Q,
* owp(s; 38, Q) =wp(s wp(s, Q)
e wpIF,Q)=— (B1 V..V Bn) = Q A for I1=i=n (Bi = wp(si Q)
e wp(DO,Q)=(Fk: 0=k : Hk(Q) )
H (Q=-BBAQ: H (Q=H(Q vwpIFH Q)

terminate after k or fewer iterations

H,(Q) = H,(Q) v wp(IFH (Q))

Concurrent programming tradition
- Note: |- is logical deduction while [=is satisfiability in this model

Owiki and Gries

the idea is to build upon the sequential programming tradition and add a non-interference
requirement

e (atomic statement )

e cos_ //../ls oc
1 n



e {PAB}s{Q} | {P}(await B — s) {Q} — synchronization rule
(Note: s may be skip; B may be true)

e critical assertions are assertions that must hold in the sequential program before each
atomic statement (programs are annotated with assertions of this type)

e NI(a,C) holds, i.e., assignment a does not interfere with critical assertion C
if {C A pre(a)} a {C} where pre(a) is the annotation for a

e Interference freedom: {P.}s. {Q.} are interference-free if for all assignments a in s,
1 1 1 1

and for all critical assertions C in sj (j#1) NI(a,C) holds
. {Pi} s, {Qi} are interference-free -~ {AND Pi} co s, /.1 s oc {AND Qi}
Temporal logic (Manna and Pnueli)

computations generate behaviors, sequences of states

e state formulas: given the sequence of states G, P holds in the j'th state

(o)) EP
e temporal formulas
(o)) E OP iff (c,j+1) P — next
(o)) E QP iff forallk=j(c k) EP — henceforth
(o,)) E OP iff for some k=j (ck) P — eventually
(cj) EPUQ

iff for some k=j (c,k) E Q and for all j<i<k (5,i)) E P — until
(cj) EPWQ iff (6j) EPUQor(c)j) EQ P — unless

UNITY Perspective

understand and manage the complexity of the programming task

extract what is common to the programming task—avoid focusing on specific languages and
architectures, yet accommodate all when necessary

show that a small theory is adequate for a variety of tasks

- specification

- derivation

- verification

the elements of the UNITY theory

- computational model—minimalist

- proof logic—simple, assertional, avoids operational thinking
- design heuristics and methodology

UNITY strategy on proofs

- extricate the proofs from the text

- avoid the need to concern oneself with non-interference

- avoid reasoning about computational histories



- reason about properties which are true in every state

Model

The basic question is “what is actually fundamental?”’

State

- there are models that focus on states (TLA, IOA, shared variables)
—Tlogic based reasoning, specification refinement

- there are models that focus on events (CSP, CCS, n-Calculus)
—algebra of events, composition

- “state transition systems” are common to many fields including computer science, control
theory, circuit design, communication theory, operations research, etc.

- Example:
a* composed with b* produces (a v b)*
a:= a[]b:= b may not be as clean, but ...

n, m :=n*m, (m-1) if m>0 with n initially set to 1 is rather simple (factorial m!)

Deterministic atomic assignment
- all or nothing effect

- common assumption in many areas
(database, operating systems, programming languages)

- other options (safe or regular vs atomic) complicate programming and can be simulated if
necessary

various granularities may be considered

- determinate (predictable, unique) effect (function-like behavior) simplifies the theory

Non-deterministic flow of control
- itis intrinsic to many problem areas

- often offers simple abstract solutions

Flow of control constructs are not fundamental

- itis a historical accident
(Turing Machine, von Neumann computer, flowcharts, structured programming)

- perpetuates sequential programming biases
(the process concept, e.g., CSP)

- creates an unnecessary tie between modularity (placing related concerns together, having
a clean interface, compact abstract specification) and one-way-in/one-way-out flow

- anumber of models raised objections about flow of control (dataflow, logic
programming)

Synchrony vs asynchrony

- these concepts are at the core of any unified theory

- many instances of both cases: systolic arrays, circuits, multiprocessors, networks



Methodology

after the fact proofs are too difficult
emphasis on program derivation
e formal specification
e  solution strategy leading to refinement (strengthen the specification)
e target architecture considerations leading to refinement (strengthen the specification)
*  mapping to specific architecture
- program — WHAT should be done

- mapping > WHEN, WHERE, and HOW should the assignments be performed or
should the program halt

e assessment of the complexity (time and space) w.r.t. the mapping!!!

this approach promises to reshape the way we do design



