2. A Programming Notation (ch. 2 & 6)

Special Notation

- Quantified expressions assume the form

```
⟨ operator variables : range :: expression ⟩
```

- operator is generally associative and commutative (plus, minus, min, max, and, or, set, sequence, etc.)
- if the range is empty the result is the unit element for that operator

```
\langle + k : 1 \le k \le N :: X(k) \rangle
                 X(1) X(2) ... X(N-1)
                                                                X(N)
                 X(1) + X(2) + ... + X(N-1) + X(N)
     \langle \Sigma k : 1 \le k \le N :: X(k) \rangle
     \langle \land k : 1 \le k \le N :: X(k) = 0 \rangle
     \langle \forall k : 1 \le k \le N :: X(k) = 0 \rangle
     \langle \lor k : 1 \le k \le N :: X(k) = 0 \rangle
     \langle \exists k : 1 \le k \le N :: X(k) = 0 \rangle
     \langle \cup k : 1 \le k \le N :: \{X(k)\} \rangle
     \langle set k : 1\leqk\leqN :: X(k) \rangle
     \langle \text{ seq } k : 1 \leq k \leq N :: X(k) \rangle
[] can be used to create lists of definitions
     \langle [] k : 1 \le k < N :: sorted(k) = X(k) \le X(k+1) \rangle
[] can be used to create sets of statements
     \langle [] k : 1 \le k < N :: X(k), X(k+1) := X(k+1), X(k) \text{ if } \neg sorted(k) \rangle
Il can be used to construct complex single statements
```

Program structure

```
Program program name
declare variable declarations
always macro definitions
initially initial values
assign assignment statements
end
```

 $\langle \parallel k : 1 \le k < N :: X(k) := X(k+1) \parallel X(N) := 0 \rangle$

- Example: matrix transposition

Declare

- Pascal-like declarations
- Typical types: integer, boolean, array, set, sequence

declare N : integer [] M : array[1..N, 1..N] of integer [] B : array[1..N, 1..N] of boolean

Always

- It defines transparent variables
 - macro-like definitions (referential transparency)
 - simplify reasoning (act as invariants)
 - are efficient to implement
- The definition is given in terms of a set of equations
- The definition must be non-circular under some ordering of the equations

```
always \langle [] i : 1 \le i \le N :: rok(i) = \langle \land k : 1 \le k \le N :: B[i,k] \rangle \rangle
```

- Note that:
 - the [] acts as a separator and allows for reordering
 - transparent variables must appear once and only once on the left
 - i and k are quantified variables, not part of the program state and not available outside the quantification scope

Initially

- It defines the initial values of the variables
- It follows the same form and rules as the always section

- Note:
 - the absence of input/output
 - N and M do not need to be initialized
 - it is reasonable to state that N>1

```
initially
   N > 1
[] B = false
```

Assign

- Set of conditional multiple-assignment statements
- The set is fixed
- All statements are deterministic
- Weak fairness each statement is executed infinitely often

assign

```
i,j,B[1,1] := 1,1,true if \negB[1,1]

[] i,j := i+1,1 if rok(i) \land i<N

[] j := j+1 if B[i,j] \land j<N

[] M[i,j],M[j,i],B[i,j],B[j,i]

:= M[j,i],M[i,j],true,true if \negB[i,j]
```

- Note that i and j may start with any legal values and should have be declared

declare

```
i,j : integer
```

- What if we were to use ...

```
i := i+1 [] i := i-1 [] j := j+1 [] j := j-1
    no fixpoint;
    no sure coverage of M - some (i,j) may not be generated
i := i+1 || i := i-1 || j := j+1 || j := j-1
    illegal; || creates a single statement!
i,j := i+1,j if ¬B[i+1,j] ~ i-1,j if ¬B[i-1,j] ... etc.
    nondeterministic; no initial values; may get stuck
i,j := i+1,j if ¬B[i+1,j] [] i-1,j if ¬B[i-1,j] ... etc.
    deterministic; no initial values; may get stuck
```

- Enumerated assignments — building a set of statements

```
⟨ [] i,j : 1≤i,j≤N ::
    M[i,j],M[j,i],B[i,j],B[j,i]
    := M[j,i],M[i,j],true,true if ¬B[i,j] ⟩
```

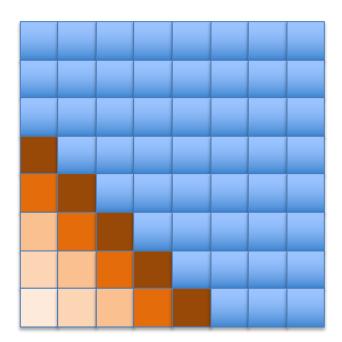
- Quantified assignments — building a large statement

- Note:
 - box versus parallel bar building multiple statements versus a single statement
 - box cannot be used under the scope of a parallel bar

- What if initially k=1+1 and we have

ok; fixed number of statements, each of variable size; replacing the $\mbox{\tt I}$ is not possible

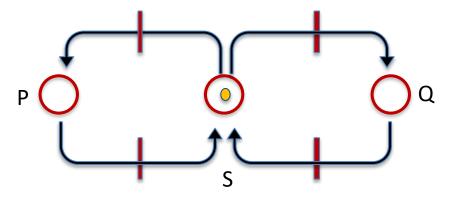
- Whole diagonals are processed one at a time in order



Sample programs

Petri Net simulation

- Mutual exclusion logic



```
Program Mutex
  declare   p,q,s : boolean
  initially p,q,s = 0,0,1
  assign
      p,s := 1,0   if s = 1
  []   q,s := 1,0   if s = 1
  []   p,s := 0,1   if p = 1
  []   q,s := 0,1   if q = 1
end
```

Comparing two ascending sequences

- Given two ascending sequences of numbers, determine if they represent the same set

```
Assumptions
    f[0] = g[0]
    f[N] = g[N]
    f[N] > f[N-1]
    g[N] > g[N-1]
    \langle \ \forall \ i : 0 \le i < N :: f[i] \le f[i+1] \ \rangle
    \langle \forall i : 0 \le i < N :: g[i] \le g[i+1] \rangle
    Program Compare
        declare u,v : integer
        initially u,v = 0,0
        assign
             u := u+1 \text{ if } u < N \wedge f[u]=f[u+1]
            v := v+1 \text{ if } v < N \land g[v] = g[v+1]
        П
        u,v := u+1,v+1 \text{ if } v<N \land u<N \land f[u+1]=g[v+1]
```

Key invariant property

```
0 \le u \le N \land 0 \le v \le N \land \langle set i : 0 \le i \le u :: f[i] \rangle = \langle set i : 0 \le i \le v :: g[i] \rangle
```

Maximum of a set

- Find the largest integer in a set represented as an array A[0..N-1]
- Assumptions

```
N = 2 * M

Program Maximum
    assign
    ⟨ || i : 0≤i<M :: A[i] := max(A[2*i], A[2*i+1]) ⟩
end
```

- O(log N) steps on a synchronous machine
- The basic idea is to create a tree-like computation

```
0 1 2 3 4 5 6 7 8 9 0/1 2/3 4/5 6/7 8/9 0/1/2/3 4/5/6/7 8/9/... 0/1/2/3/4/5/6/7 8/9/... 0/1/2/3/4/5/6/7/8/9/...
```

Saddle point of a matrix

- The problem requires one to detect only the existence of a saddle point (not its location)
- The solution is in the style of the equational programming paradigm
- A[u,v] is a saddle point if it has
 - the lowest value along the column denoted by X[v]
 - the largest value along the row denoted by Y[u]
- In general, any matrix element satisfies the property $X[v] \le A[u,v] \le Y[u]$ i.e., higher than the min on column, and lower than the max on the row
- For saddle point we also have X[v]≥A[u,v]≥Y[u] i.e., equality X[v]=A[u,v]=Y[u]
- If this is true for A[u,v] it follows that