11.

2. A Programming Notation
(ch. 2 & 6)

Special Notation

- Quantified expressions assume the form

(operator variables : range :: expression)

e operator is generally associative and commutative (plus, minus, min, max, and, or,
set, sequence, etc.)

e if the range is empty the result is the unit element for that operator
(+ k ¢ 1=k=N :: X(k))

X(1) X(2) .. X(N-1) X(N)
X(1) + X(2) + .. + X(N-1) + X(N)

(Z k ¢ 1=k=N :: X(k))

(A k 1=k=N :: X(k)=0)
(V k 1=k=N :: X(k)=0)
(v k : 1=k=N :: X(k)=0)
(3 k : 1sk=N :: X(k)=0)

(U k ¢ 1=k=N :: {X(k)})
(set k ¢ 1=k=N :: X(k))

(seq k ¢ 1=k=N :: X(k))
¢ []Jcan be used to create lists of definitions
(] k ¢+ 1sk<N :: sorted(k) = X(k) = X(k+1))

¢ []Jcan be used to create sets of statements
(0 k : 1sk<N :: X(k),X(k+1) := X(k+1),X(k) if —sorted(k))

e |l can be used to construct complex single statements
(Il'k ¢ 1=sk<N :: X(k) := X(k+1) Il X(N) = 0)

Program structure

Program program name
declare variable declarations

always macro definitions
initially initial values
assign assignment statements

end

- Example: matrix transposition

12.

Declare
- Pascal-like declarations

- Typical types: integer, boolean, array, set, sequence

declare

N : integer
' M : array[l..N, 1..N] of integer
[B : array[l..N, 1..N] of boolean

Always
- It defines transparent variables
- macro-like definitions (referential transparency)
- simplify reasoning (act as invariants)
- are efficient to implement
- The definition is given in terms of a set of equations

- The definition must be non-circular under some ordering of the equations

always
(i : 1=i=N :: rok(i) = (A k ¢ 1=k=N :: B[i,k]))

- Note that:
e the [Jacts as a separator and allows for reordering
e transparent variables must appear once and only once on the left

e iand k are quantified variables, not part of the program state and not available
outside the quantification scope
Initially
- It defines the initial values of the variables

- It follows the same form and rules as the always section

initially

N = 10
0 (04i,j ¢ 1=isN A 1=j=N :: B[i,]j] = false)
0 (04i,3 ¢ 1=i=N A 1=j=N :: M[i,]] = £(4,3))

- Note:
e the absence of input/output
¢ N and M do not need to be initialized
e it is reasonable to state that N>1
initially

N >1
[B = false

13.

Assign
- Set of conditional multiple-assignment statements
- The set is fixed
- All statements are deterministic

- Weak fairness — each statement is executed infinitely often

assign

i,j,B[1,1] := 1,1,true if —B[1,1]
0 4i,3 == i+1,1 if rok(i) A i<N
0 3 := j+1 if B[i,J] A J<N
0 Mri,j1,Mr3j,i1,B14i,31,B[3,1]

:= M[j,1],M[i,]],true,true if —B[i,]]
- Note that i and j may start with any legal values and should have be declared

declare
i,j : integer

- What if we were to use ...
i=d+41 [i :=d-1 [] J :=3+1 [3§ := j-1

no fixpoint;
no sure coverage of M — some (i,j) may not be generated

i e=4i+1 I 1 :=1i-1 I J = J+1 I j := j-1
illegal; Il creates a single statement!

i,j ¢= i+1,j if —-B[i+l,j] ~ i-1,j if —-B[i-1,3j] ... etc.
nondeterministic; no initial values; may get stuck

i,j ¢= i+1,j if —-B[i+l,3j] [0 4i-1,j 4if —-B[i-1,3J] ... etc.

deterministic; no initial values; may get stuck

- Enumerated assignments — building a set of statements

(Q0i,j ¢« 1=i,3j=N ::
M[i,j1,M[3,1]1,B[i,31,B[],1]
:= M[j,i],M[i,]],true,true if —-B[i,]])

- Quantified assignments — building a large statement

(Ihi,j ¢ 1=i,j=N ::
M[i,j1,M[3,1]1,B[i,31,B[],1]
:= M[j,1],M[i,]],true,true if —B[i,j])
or
(Ihi,j ¢ 1=i,j=N ::
M[{i,j1,M[j,1i],B := M[J,1],M[i,]],true if —B)

- Note:
e box versus parallel bar — building multiple statements versus a single statement

e box cannot be used under the scope of a parallel bar

14.

- What if initially k=1+1 and we have

k := k+1 if kK<N+N
(Ihi,j : 1=isN A 1=jsN A i+j=k::
M[i,3],M[J,1i] == M[],i],M[i,3])

ok; fixed number of statements, each of variable size;
replacing the | is not possible

- Whole diagonals are processed one at a time in order

Sample programs

Petri Net simulation

- Mutual exclusion logic

10 Oa

Program Mutex
declare p,d,s : boolean
initially p,q,s = 0,0,1

assign
p,s := 1,0 if s =1
0 gq,s :=1,0 if s =1
0l p,s :=0,1 ifp=1
0 gq,s :=0,1 if g=1
end

Comparing two ascending sequences

- Given two ascending sequences of numbers, determine if they represent the same set

- Assumptions
£[0] = g[0]
f[N] = g[N]
f[N] > f[N-1]
g[N] > g[N-1]
(V i : 0si<N :: f[i] = f[i+1])
(V i : 0si<N :: g[i] = g[i+l])

Program Compare

declare u,v : integer

initially u,v = 0,0

assign

u := ut+tl if u<N A f[u]=f[u+l]

J v := v+l 1if v<N A g[v]=g[v+1]

0 wu,v :=utl,vtl if v<N A u<N A f[u+l]=g[v+1]
end

- Key invariant property

0=usN A 0=v=N A
(set i : 0Osi=u :: f[i]) = (set 1 : 0s=isv :: g[i])

Maximum of a set

- Find the largest integer in a set represented as an array A[0..N-1]

- Assumptions
N=2*M

Program Maximum

assign

(i ¢ 0=i<M :: A[i] := max(A[2*i], A[2*i+1]))
end

- O(log N) steps on a synchronous machine

- The basic idea is to create a tree-like computation

0 1 2 3 4 5 6 7 8 9
0/1 2/3 4/5 6/7 8/9

0/1/2/3 4/5/6/7 8/91...

0/1/2/3/4/5/6/7 8/9/...

0/1/2/3/4/5/6/7/8/91 ...

Saddle point of a matrix

16.

The problem requires one to detect only the existence of a saddle point (not its location)

The solution is in the style of the equational programming paradigm

Alu,v] is a saddle point if it has

e the lowest value along the column — denoted by X[v]

e the largest value along the row — denoted by Y[u]

In general, any matrix element satisfies the property X[v]<A[u,v]<Y[u]
i.e., higher than the min on column, and lower than the max on the row

For saddle point we also have X[v]=A[u,v]=Y[u]
i.e., equality X[v]=A[u,v]=Y[u]

If this is true for A[u,v] it follows that

(max v ::

X[v]) = X[v]=zA[u,v]=Y[u] = (min u ::

Program Saddle-Point

end

declare

always

I
I

(
(
S

a
a
p

X,Y array[0..N-1] of integer

\%
u sz
= ((max v ::

t: X[v]
Y[u] =

= (min i ::

A[i,v])

(max j :: A[u,j])

X[v]) =2 (min u ::

Y[u])

Y[u]))

