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3. Programming Logic (ch. 3)

Operational Semantic Model

- The meaning of a program is given by a set E(P) of infinite sequences:
e R e E(P) is an execution sequence: (So,lo) (s1,l1) ...

e R is the i'th element of the sequence
1

e R .state is the program state before the i'th step
1

. RO.state is the initial program state (one of many—e.g., some variables may not be

initialized)
¢ R .label is the program statement selected in the i'th step

1
- Constraints over the set E(P):
e deterministic
R .state and R label fully determine R 1.state
1 1 1+

e weakly fair

(V s,i 22 (3 k:: Rk.label=s N

AR .label=s = (3 j : j>i :: R _.label=s ) )
3

1
- Discussion:

- If fair interleaving and atomicity are preserved, the number of parallel machines
executing the program does not alter its semantics

- Infinite sequences are needed in order to talk about fairness—one cannot prove properties
of a fair sequence by proving properties of its finite subsequences

- This model is not actually used for reasoning about programs

- Proofs involve reasoning about assertions

Proving properties of assignment statements

- Assignment axiom

X
{p} x :=exp {q} =p = g = p = wp(x:=exp,q)

exp

e Given a state in which p holds, the execution of the assignment s produces a state in
which q holds

e This is a well understood concept in sequential programming

e The statement must be terminating and deterministic

- Simple multiple assignments

{y=k} x,y = 0,y+1 {x>-3 A y>k}
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= X7y
(Y_k) = (X>_3 N Y>k)0;y+1

(y=k) = (0>-3 A y+1>k)

Conditional multiple assignments

exp = E0 if BO ~ E1 if Bl ~ ... ~En if Bn
X b4 X
qexp = (B0 = 9o ) A eee A (Bn = dgn ) A ((=BO A ... A —=Bn) = q)

{true} x := -1 if x<0 ~ 0 if x=0 ~ 1 if x>0 {-1=x<1}

requires one to prove

{true A %<0} x := -1 {-1=x=1}
{true A x=0} x := 0 {-1=x=1}
{true A x>0} x :=1 {-1=x=1}
(true A false) = (-1=x=1)

Assignments involving arrays

* (A;imu) =same as array A except for the value u being associated with index i
(i : 0sisN :: A[i] := A[N-i] ) {{ V J ¢ 0=j<N :: A[]J] < A[J+1] )}
using the substitution rule

(V j : 0sj<N ::
( A; 1 : 0=isN :: A[N-i] )[J] < ( A; i : 0=<isN :: A[N-1i] )[J+1] )

(V j : 05j<N :: A[N-j] < A[N-(j+1)]1 )

(V3 : 0sj<N :: A[(N-3)] < A[(N-j)-1] )

(V J : 0<j=N :: A[J] < A[J-1])

Assertions about programs

Assignment axiom revisited

e sis astatement in P and has a finite execution

{p} s {q} =(V R,i1 : R € E(P) A i20 ::
( p(R .state) A R .label=s ) = g(R. 1.state) N
1 1 1+

General properties
{p} s {true}

{false} s {q}
{p} s {false} hypothesis inference rule

—p conclusion

{p}s{q}.{p'}s{q'}




20.

{pAp'} s {qrq'}, {pvp'} s {qvq'}
p=p.{p}s{q},.q=¢

{r'}s{q'?}

- Quantification over the set of program statements

* non-decreasing x = a safety property (nothing goes wrong)
(V s :: {x=k} s {x=zk} )

e eventually-increasing x = a progress property (something does happen)
(3d s :: {x=k} s {x>k} )

e  This is all we need really!

Commonly used assertions

Sample program: Comparing two ascending sequences

- Given two ascending sequences of numbers, determine if they represent the same set

- Assumptions
£[{0] = g[0]
f[N] = g[N]

f[N] > f[N-1]
g[N] > g[N-1]
(V i : 0si<N :: f[i]
(V i : 0si<N :: g[i]

fri+l] )
gri+l] )

IN 1A

Program Compare
declare u,v : integer
initially u,v = 0,0

assign

sl u := u+l if u<N A f[u]l=f[u+l]

s2 [| v := vtl if v<N A g[v]=g[v+1l]

s3 [] wu,v := u+l,v+l if V<N A u<N A f[u+l]=g[v+1]
end

UNLESS relation

- If pand —q hold, either they hold forever or q eventually holds

(PA—q) (PA—q) (PA—Q) - .. (PA—Q) - ..
or

(pA—Qq) (pA—Qq) (a) ces? ces? ces?

- which is stated operationally as

P[R'] = (VY j: jzi :: (p A -gq)[R.] ) —- holds forever
i 3

v
(3 k : k=i :: q[Rk] A{(Y J ¢ isj<k :: (p A —‘q)[Rj] YD

Note: we extended the notion to use p(R) = p(R .state)

- and as an inference rule



(Vs:sinP:{par—q}s{pvq}l)

p unless q

Other safety properties derived from unless

stable p = p unless false
cel? eel? (p) -+ (P)

const. p = stable p A stable —p

(P)---(P)+--(P) -
or

(=p) .- (=P) ... (=P) ...

inv. p = stable p A (init = p)
(P) +-- (P) ---(P) ---

Note that (const. x=3) does not mean (inv. x=3)
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Invariant Substitution Axiom=an invariant is a theorem in the context of the program; if

we have
inv. p = true

we can replace p and true anywhere

This is why we can prove the following inference rule

p unless q, inv. —q

stable p
—q = true substitution axiom
p unless q premise
p unless false using (1)
stable p definition

Ilustrations (program Compare)

const. N>7
const. £[3]=g[8]
u=k unless u>k

stable u=N

inv. 0<usN A 0=v=N

inv. flul=g[Vv]

inv. ( set i : 0Osi=u :: f[i] ) = ( set 1 :
inv. u=N = v=N

ENSURES relation

It states that (p unless q) holds and there is one statement which, when executed,

guarantees that q is established

0<isv ::

gril )

The fairness requirement guarantees that the statement is eventually executed

It provides a way of proving progress (see the existential quantification)

(PA—q) (PA—q) s (Q)

which is stated operationally as

?

?

?



p[Ri] = (3 k : k=i :: q[Rk] A{(Y J ¢ isj<k :: p[Rj] YD

A (3Is :: {pAr—q} s {q})

and as an inference rule

punlessq,(3s:sinP::{pAr—q}s{q})

p ensures q

Ilustrations (program Compare)
u=k ensures u>k
e False. The unless part holds but u may not be incremented.
f=g A u=k<N ensures u>k
e False. Consider the case in which selecting s1 will not increment u
3 u->3 4
v>3 3 4
fl[u]l=f[utl] A u=k<N ensures u>k
e True. The unless part holds. sl can increment u.
flu]=f[u+l]#g[v+1l] A u=k<N ensures u>k

e True. The unless part holds. Only sl can increment u.

u<u A v<v A ut+v=k ensures u+t+v>k
0 0
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e False. (Assume u and A represent the largest index in subarrays containing the

same set of values.)

LEADS-TO relation

Once p holds, either q holds or will hold sometime in the future

The property p need not hold in-between

This is the usual way of specifying progress (The ensures relation is too strong and too

close to the statement level.)

(p) ceo? ces? (9) L. ?

which is stated operationally as
p[Ri] = (3 k : k=i :: q[Rk] )
and deduced using the following inference rules

p ensures q

p—>q.q—>r (transitivity)



(Vm:meW :p(m)—q)

(Im:meW ::p(m))—>q

[lustrations (program Compare)

u<u A v<v A utv=k — utv>k
0 0

True. (Assume u and v, as before.)

u<u0 A v<v0 A flu]=flu+1]zg[v+1] A u+v=k — u+v>k

u<u0 A v<v0 A glv]=g[v+1]£f[u+1] A u+v=k — u+v>k

u<u0 A v<v0 A flul=g[v] A flu+1]=g[u+1] A u+v=k — u+v>k

u<u0 A v<v0 A u+v=k — u+v>k

creates disjoint cases

u,v=0,0 —» u,v=u ,v
00

(disjunction--for any set W)

(ensures s1)
(ensures s2)
(ensures s3)

(disjunction)

True. (Transitivity—with some induction to be discussed later.)

FIXED POINT

A program reaches a fixed point if the program state can no longer change

FP[R ] = (V k : k2i :: Rk.state = R .state )
1 1

A program may have more than one fixed point
x:=1 if x=0 [] x:=2 if x=0

It is a concept useful for terminating programs but not for reactive programs

In UNITY the fixed point may be characterized syntactically

FP=(V s : s in P A (s 1is X:=exp) :: X = exp )

Simple examples

k

k

= k+1

FP = k=k+1 = false -- there is none!
= k+1 if k<N

FP = k<N = k=k+1 = k<N = false = k=N

Note: k may be initially (N+3)

Ilustrations (program Compare)

the fixed point is (using p=q=—-p Vv q)

FP

(uzN v f[u]zf[u+l]) A
(vzN v g[v]=#g[v+l]) A
(u=N v v=N v f[u+l]#g[v+1l])
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e using the invariants

inv. u=N = v=N
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inv. ( set i : 0sisu :: f[i] ) = ( set 1 : 0O=sisv :: g[i] )

¢ FP simplifies as follow

Case 1:u=N A v=N

(set i : 0=i=N :: f[i] ) = ( set 1 : 0=i=N :: g[i] )

Case 2: u<N A v<N

(f[ulzf[u+l]) A (g[v]=g[v+1l]) A (f[u+tl]=#g[v+1])

( set i : 0=i=N :: f[i] ) # ( set 1 : 0<i=N :: g[i] )

flu+1]<g[v+1]
flu]<flu+1]
glv]=flu]
glvl<flu+1]<g[v+1]
flu+1] notin g

e We can conclude

FpP =
(u=N = v=N) A
(u=N = ( set i : 0=<i=N ::

assume to be the case
ascending

invariant above

the three lines above

f[i] ) = ( set i : 0=isN :: g[i] ) )



