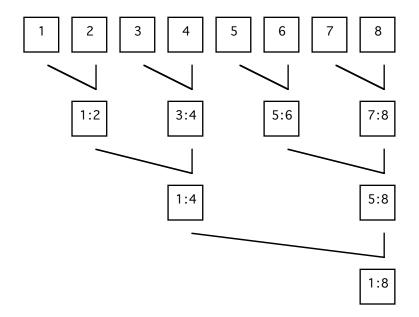
4. Sample Proofs (ch. 3)

Synchronous array summation

- Problem specification
 - Given an array A of size N (some power of 2) compute in logN steps the sum of all its array entries
- Basic idea
 - Sum pair wise (odd-even positions) and place the results in the even position
 - Treat the even positions as a new array and apply the procedure again



The program

- Helpful definitions

```
pow2(k) \equiv \langle \exists p : p\geq0 :: k = 2<sup>p</sup> \rangle sum(i,u) \equiv \langle + k : i<k\lequ :: A[k] \rangle node(k,i) \equiv 1\leqk\leqN \wedge k mod i = 0 -- the nodes of interest to us in phase i = 1, 2, 4, 8
```

- Proof obligations
 - 1. (Sum Completion)

```
Initial \rightarrow Post
where
Initial \equiv pow2(N) \wedge j=1 \wedge x=A
Post \equiv j=N \wedge x[N]=sum(0,N)
```

2. (Sum Stability)

stable Post

Proof: When j=N none of the assignments alter the state.

- Sum Completion proof
 - 2.1 (Phase Invariants)

```
inv. pow2(N)
(I1)
        inv. pow2(j)
(I2)
(I3)
        inv. 1≤j≤N
(I4)
        inv. \langle \forall i : node(i,j) :: x[i] = sum(i-j,i) \rangle
    - initially they all hold
    - I1 follows from the assumption that N is constant
    - I2 follows from the fact that j is only doubled
    - I3 requires to show
        {I1 \land I2 \land I3 \land j < N} j:=2*j {I3}
        pow2(N) \land pow2(j) \land j \le N \land j < N \Rightarrow 2*j \le N
    - I4 requires to show
         \{I1 \land I2 \land I3 \land I4\}  \$1 \parallel \$2  \{I4\}
        I1 \wedge I2 \wedge I3 \wedge I4
             \Rightarrow \langle \forall i : node(i,2*j) :: x[i] + x[i-j] = sum(i-2*j,i) \rangle
```

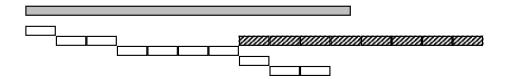
- 2.2 (Sum Completion)
 - We select the well-founded metric N/j (goes from N to 1)
 - We show that it is well-founded due to I3 above
 - We need to show that it decreases (i.e., j increases)
 j<N ∧ j=k → j>k
 which can be proved from
 j<N ∧ j=k ensures j>k
 since the program has one statement which doubles j when j<N

Integer division (pg 54)

- Problem specification
 - Given two strictly positive integers M and N
 - Write a program which satisfies the following properties (x is the quotient and y is the remainder)

```
true \rightarrow FP
FP \Rightarrow (x * N + y = M) \land N>y\ge0
```

- Basic idea
 - Remove one or more multiples of N from M until no longer possible



The program

```
Program Division
   declare x,y,z,k: integer
    initially x,y,z,k = 0,M,N,1
   assign
           z,k := 2*z, 2*k \text{ if } y \ge 2*z
   s1
                 ~ N, 1
                              if y<2*z
           x,y := x+k, y-z \text{ if } y \ge z
end
```

Sample execution

- The proof
 - 1. Compute FP

$$\begin{array}{ll} FP &\equiv& (y{\geq}2z \Rightarrow z, k=2z, 2k) \wedge (y{<}2z \Rightarrow z, k=N,1) \wedge \\ & (y{\geq}z \Rightarrow x, y=x{+}k, y{-}z) \\ &\equiv& \{using\ p \Rightarrow q \equiv \neg p \vee q\} \\ & (y{<}2z \vee (z{=}2z \wedge k{=}2k)) \wedge (y{\geq}2z \vee (z{=}N \wedge k{=}1)) \wedge \\ & (y{<}z \vee (x{=}x{+}k \wedge y{=}y{-}z)) \end{array}$$

- 2. Show $FP \Rightarrow x * N + y = M \land N > y \ge 0$
 - 2.1 Find invariant I such that

 $I \wedge FP \equiv$

$$(FP \land I) \Rightarrow (x * N + y = M \land N > y \ge 0)$$

$$I \equiv y \ge 0 \land k \ge 1 \land z = N^*k \land (x^*N + y = M)$$

- \Rightarrow {simplification using k=1 and z=N) $N>y\ge 0 \land x*N+y=M$
- 2.2 Prove {I} s {I} for statements s1 and s2

$$s1 \{I \land y \ge 2z\}$$
 $z,k := 2z, 2k \{I\}$
 $\{I \land y < 2z\}$ $z,k := N, 1 \{I\}$

$$s2 \{I \land y \ge z\}$$
 $x,y := x+k, y-z \{I\}$

```
e.g., proved by y \ge 0 \ \land \ k \ge 1 \ \land \ z = N * k \ \land \ x * N \ + \ y \ = \ M \ \land \ y \ge z \Rightarrow y - z \ge 0 \ \land \ k \ge 1 \ \land \ z = N * k \ \land \ (x + k) * N \ + \ y - z \ = \ M
```

- 3. Show that true $\rightarrow I \land FP$
 - 3.1 Actually, due to I, it is enough to prove true $\rightarrow N>y\geq 0$
 - We introduce a well-founded metric (a decreasing function bounded from below)
 - Let's consider (y,z) and the lexicographical order <
 - (y,z) starts as (M,N) and remains positive, actually reaches (remainder, N), and tends to decrease—except for occasional increases in z
 - 3.2 We must consider three possible situations

```
y\ge z -- y can decrease by s2 y<z \land z>N -- z decreases to N y<z \land z\le N -- fixed point is reached (need not consider it)
```

thus we must prove

$$(y,z)=(m,n) \land y \ge z \to y < m$$
 eventually remainder is established $(y,z)=(m,n) \land y < z \land z > N \to y = m \land z < n$ z drops once remainder is established

which by applying the disjunction rule results in

$$(y,z)=(m,n) \land (y\geq z \lor z>N) \rightarrow (y,z) < (m,n)$$

by applying the induction rule, the LHS must eventually become false thus we have $\neg (y \ge z \lor z > N) \equiv y < z \land z \le N$

3.3 Prove (skipped)

$$(y,z)=(m,n) \land y < z \land z > N \rightarrow y=m \land z < n$$

3.4 Prove

$$(y,\!z)\!\!=\!\!(m,\!n) \land y\!\!\geq\!\! z \to y\!\!<\!\!m$$

we observe that

that is

$$\{(y,z)=(m,n) \ \land \ y \ge z\} \ x,y := x+k, \ y-z \ \text{if} \ y \ge z \ \{y < m\} \\ \text{and} \\ y=m \land y \ge z \ \textbf{unless} \ y < m$$

which can be proven by using the assignment axiom for

a) statement s1 part 1 (guard in bold)

$$y \ge z \land y = m \land (y \ge 2z) \Rightarrow (y \ge 2z \land y = m) \lor y < m$$

b) statement s1 part 2 (guard in bold) using the fact that $z \ge N$ $y \ge z \land y = m \land (y < 2z) \Rightarrow (y \ge N \land y = m) \lor y < m$

c) statement s2 (guard in bold)

$$y \ge z \land y = m \land (y \ge z) \Rightarrow (y - z \ge z \land y - z = m) \lor y - z < m$$