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7. Shortest Path Case Study (ch. 5) 

Problem definition 
a. Definitions 

- G = (V, E) — directed graph 

- V = vertices in the range 0...(N-1) 

- E = edges of the form (i,j) 

- path(i,j) = sequence of edges starting with i and ending with j 

- cycle(i) = a path starting and ending with i 

- w : E ® ℕ — positive weights associated with each edge, edge weight function 

- path length = sum of weights along the path 

- W : V ´ V ® ℕ — the edge weight matrix is a useful extension 
 
    W(i,j) = w(i,j) if (i,j) Î E 
      ~ ∞   if (i,j) ∉ E 
      ~ 0   if i=j 

- D : V ´ V ® ℕ — the shortest length  over all paths from i to j 

 

b. Problem specification 

- write a terminating program which computes D in some matrix d 
 
    true leads-to FP 
    FP Þ (d = D) 
 

c. Illustration 

 
d. Methodology 

1. refine the specification by examining alternatives 

2. seek to discover a program that meets the specification 

3. establish which architecture is compatible with the program 
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Refinement 1 
Refined specification 

a. Find alternative formulation of the relation between d and D 
 
   1. FP º á " i,j :: d[i,j] = á min k :: d[i,k] + d[k,j] ñ ñ 
   2. inv. d[i,j] ≤ W(i,j) Ù  
        (d[i,j] is the length of some path from i to j) 
   3. ¬FP Ù (num,sum) = (m,n) ® (num,sum) < (m,n) 
 
     num = á Σ i,j : d[i,j] = ∞ :: 1 ñ 
     sum = á Σ i,j : d[i,j] ≠ ∞ :: d[i,j] ñ 

Refinement correctness 
 

   a. (1) and (2) Þ d=D   
    — by induction on the number m of edges in the shortest path 
 
    Base case:  m=1 and d[i,j] = W(i,j) since there is only one edge 
    Inductive step: 
     - consider (x,y) having the shortest path p of length (m+1) 
     - assume p = p’.(z,y) where the number of edges in p' is m 
     - d[x,y] ≤ d[x,z] + d[z,y] due to (1) 
     - d[x,y] is the length of some path due to (2) 
     - d[x,y] must equal D(x,y) 
 
   b. (3) guarantees termination due to well-foundness and induction 

Program 
a. Replace the "=" by ":=" in the FP expression 

b. Select an appropriate initialization 
 
    Program SP1 (P5 in the text) 
     initial á || i,j :: d[i,j] = W(i,j) ñ 
     assign á || i,j :: d[i,j] := á min k :: d[i,k] + d[k,j] ñ ñ 
    end 

c. Illustration 
 
     d(0,3) = min over k := 0..3 0+∞  2+6  3+2  ∞+0 

d. Correctness follows trivially from the proof above 

Architecture 
a. Synchronous parallel architecture 

b. N3 processors require O(log2N) steps 

-- N3 processors compute d[i,k] + d[k,j] in constant time 

-- min can be computed in O(logN) steps (tree shaped computation) 

-- FP is achieved in O(logN) assignments 

 let m be the number of assignments executed so far 
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   inv. d[i,j] is the shortest distance along a path  

     using at most 2
m
-1 intermediate vertices 

 
      m=0 no intermediate vertices (initilization) 
      m=1 one intermediate vertex (i,k).(k,j) 
      m=2 three intermediate vertices (i,a).(a,k) . (k,b).(b,j) 

      d[i,k] + d[k,j] involves (2
m
-1 + 2

m
-1 +1) = 2

m+1
-1   

        intermediate vertices (vertex k needs to be added) 

Refinement 2 
Refined specification 

a. Revisit the FP definition and replace the minimization with comparisons against d[i,j] 
 
     1. FP º á " i,j :: d[i,j] = á min k :: d[i,k] + d[k,j] ñ ñ 
    is replced by 
     1'. FP º á " i,j,k :: d[i,j] = min(d[i,j], d[i,k] + d[k,j]) ñ 

Refinement correctness 
 

   a. Preserved. 

Program 
a. Adjust the form of the assignment 

b. Replace the "||" by "[]" to avoid multiple values being assigned to d[i,j] 
 
    Program SP2 (P1 in the text) 
     initial á || i,j :: d[i,j] = W(i,j) ñ 
     assign á [] i,j,k :: d[i,j] := min(d[i,j], d[i,k] + d[k,j]) ñ 
    end 

c. Illustration 
 
     d(0,3) = ∞ for k := 0..3  
     is replaced (if possible) by  0+∞  2+6 (yes)  3+2 (yes)  ∞+0 

Architecture 
a. Sequential architecture 

b. O(N3) assignments if we allow i and j to run faster than k 

-- (k i j) := (k i j) + (0 0 1) 

 treating the triple as a 3-digit number in base N 

 let m be the number of assignments executed so far 
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Refinement 3 
Program 

a. Make the sequencing explicit -- Floyd-Warshall 
 
    Program SP3 (P3 in the text) 
    initial  á || i,j :: d[i,j] = W(i,j) ñ 
      || x,u,v = 0,0,0 
    assign  d[u,v] := min(d[u,v], d[u,x] + d[x,v]) 
      || (x u v) := (x u v) + (0 0 1) if (x,u,v) ≠ (N-1,N-1,N-1) 
    end 

Proof 
a. Define H(i,j,k) to be the minimum length over all paths from i to j and using only 

intermediate vertices in the range 0 to (k-1) 
 
     H(i,j,0) = W(i,j)  —  since the range is empty 
     H(i,j,k+1) = min(H(i,j,k), H(i,k,k)+H(k,j,k)) 

b. Illustration 

 
c. Show that the definition is correct 

 
    Base case:  k=0 and H(i,j,0) = W(i,j)   
    —  since the range is empty 
    Inductive step: 
    - k is not on the shortest path from i to j using vetices 0 to k 
      -- H(i,j,k+1) = H(i,j,k) 
    - k is on the shortest path from i to j using vetices 0 to k 
      -- H(i,j,k+1) = H(i,k,k)+H(k,j,k) 
       - k is on the shortest path 
       - the distances from j and i are minimal 
       - if the equality does not hold,  
        there must be a shorter path through k (?) 
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d. Proof of progress is trivial 

e. The following invariant is needed 
 
    inv. (d[i,j] is the length of some path from i to j) Ù 
      á " i,j : (i,j)<(u,v) :: d[i,j] ≤ H(i,j,x+1) ñ Ù 
      -- given the current value of x  
       some (i,j) distances have been updated 
      á " i,j : (i,j)≥(u,v) :: d[i,j] ≤ H(i,j,x) ñ 
      -- while the rest of (i,j) distances have not been updated 
       (one step lag) 

Refinement 4 
Program 

a. The updates could be carried out in parallel  

b. The proof is not affected 
 
    Program SP4 (P4 in the text) 
    initial  á || i,j :: d[i,j] = W(i,j) ñ 
       || k = 0 
    assign  á || i,j :: d[i,j] := min(d[i,j], d[i,k] + d[k,j]) if k<N ñ 
       || k := k+1 if k<N 
    end 

Refinement 5 
Program 

a. Try to use H in the program 

b. Employ the equational schema 
 
    Program SP5 (P2 in the text) 
    always 
     á [] i,j :: H(i,j,0) = W(i,j) ñ 
    [] á [] k :: á || i,j ::  
        H(i,j,k+1) = min(H(i,j,k), H(i,k,k)+H(k,j,k)) ñ ñ 
    [] á [] i,j :: d(i,j) = H(i,j,N) ñ 
    end 

Refinement 6 
Program 

a. In SP4 the following invariant holds 
 
    inv. d[i,j] = H(i,j,k) Ù  
     (d[i,j] is the length of some path from i to j) Ù k≤N 

b. We note that H(i,j,k+m) ≤ H(i,j,k) with (k < k+m ≤ N)  
-- the metric can only be reduced as we consider more vertices 

c. Let each processor have its own local variable k[i,j] and access distances on other 
processors only if their values of k are at least as far along 
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   Program SP6 (P6 in the text) 
   initial á || i,j :: d[i,j], k[i,j] = W(i,j), 0 ñ 
   assign á [] i,j ::  
      d[i,j], k[i,j] :=  
       min(d[i,j], d[i,k[i,j]] + d[k[i,j],j]), k[i,j]+1 
       if k[i,j]<N Ù k[i, k[i,j]]≥k[i,j] Ù k[k[i,j],j]≥k[i,j] ñ 
   end 

d. Read-only schema 


