
 56.

7. Shortest Path Case Study (ch. 5)

Problem definition
a. Definitions

- G = (V, E) — directed graph

- V = vertices in the range 0...(N-1)

- E = edges of the form (i,j)

- path(i,j) = sequence of edges starting with i and ending with j

- cycle(i) = a path starting and ending with i

- w : E ® ℕ — positive weights associated with each edge, edge weight function

- path length = sum of weights along the path

- W : V ´ V ® ℕ — the edge weight matrix is a useful extension

 W(i,j) = w(i,j) if (i,j) Î E
 ~ ∞ if (i,j) ∉ E
 ~ 0 if i=j

- D : V ´ V ® ℕ — the shortest length over all paths from i to j

b. Problem specification

- write a terminating program which computes D in some matrix d

 true leads-to FP
 FP Þ (d = D)

c. Illustration

d. Methodology

1. refine the specification by examining alternatives

2. seek to discover a program that meets the specification

3. establish which architecture is compatible with the program

0

1

2

3

2 6
12

3 2

 57.

Refinement 1
Refined specification

a. Find alternative formulation of the relation between d and D

 1. FP º á " i,j :: d[i,j] = á min k :: d[i,k] + d[k,j] ñ ñ
 2. inv. d[i,j] ≤ W(i,j) Ù
 (d[i,j] is the length of some path from i to j)
 3. ¬FP Ù (num,sum) = (m,n) ® (num,sum) < (m,n)

 num = á Σ i,j : d[i,j] = ∞ :: 1 ñ
 sum = á Σ i,j : d[i,j] ≠ ∞ :: d[i,j] ñ

Refinement correctness

 a. (1) and (2) Þ d=D
 — by induction on the number m of edges in the shortest path

 Base case: m=1 and d[i,j] = W(i,j) since there is only one edge
 Inductive step:
 - consider (x,y) having the shortest path p of length (m+1)
 - assume p = p’.(z,y) where the number of edges in p' is m
 - d[x,y] ≤ d[x,z] + d[z,y] due to (1)
 - d[x,y] is the length of some path due to (2)
 - d[x,y] must equal D(x,y)

 b. (3) guarantees termination due to well-foundness and induction

Program
a. Replace the "=" by ":=" in the FP expression

b. Select an appropriate initialization

 Program SP1 (P5 in the text)
 initial á || i,j :: d[i,j] = W(i,j) ñ
 assign á || i,j :: d[i,j] := á min k :: d[i,k] + d[k,j] ñ ñ
 end

c. Illustration

 d(0,3) = min over k := 0..3 0+∞ 2+6 3+2 ∞+0

d. Correctness follows trivially from the proof above

Architecture
a. Synchronous parallel architecture

b. N3 processors require O(log2N) steps

-- N3 processors compute d[i,k] + d[k,j] in constant time

-- min can be computed in O(logN) steps (tree shaped computation)

-- FP is achieved in O(logN) assignments

 let m be the number of assignments executed so far

 58.

 inv. d[i,j] is the shortest distance along a path

 using at most 2
m
-1 intermediate vertices

 m=0 no intermediate vertices (initilization)
 m=1 one intermediate vertex (i,k).(k,j)
 m=2 three intermediate vertices (i,a).(a,k) . (k,b).(b,j)

 d[i,k] + d[k,j] involves (2
m
-1 + 2

m
-1 +1) = 2

m+1
-1

 intermediate vertices (vertex k needs to be added)

Refinement 2
Refined specification

a. Revisit the FP definition and replace the minimization with comparisons against d[i,j]

 1. FP º á " i,j :: d[i,j] = á min k :: d[i,k] + d[k,j] ñ ñ
 is replced by
 1'. FP º á " i,j,k :: d[i,j] = min(d[i,j], d[i,k] + d[k,j]) ñ

Refinement correctness

 a. Preserved.

Program
a. Adjust the form of the assignment

b. Replace the "||" by "[]" to avoid multiple values being assigned to d[i,j]

 Program SP2 (P1 in the text)
 initial á || i,j :: d[i,j] = W(i,j) ñ
 assign á [] i,j,k :: d[i,j] := min(d[i,j], d[i,k] + d[k,j]) ñ
 end

c. Illustration

 d(0,3) = ∞ for k := 0..3
 is replaced (if possible) by 0+∞ 2+6 (yes) 3+2 (yes) ∞+0

Architecture
a. Sequential architecture

b. O(N3) assignments if we allow i and j to run faster than k

-- (k i j) := (k i j) + (0 0 1)

 treating the triple as a 3-digit number in base N

 let m be the number of assignments executed so far

 59.

Refinement 3
Program

a. Make the sequencing explicit -- Floyd-Warshall

 Program SP3 (P3 in the text)
 initial á || i,j :: d[i,j] = W(i,j) ñ
 || x,u,v = 0,0,0
 assign d[u,v] := min(d[u,v], d[u,x] + d[x,v])
 || (x u v) := (x u v) + (0 0 1) if (x,u,v) ≠ (N-1,N-1,N-1)
 end

Proof
a. Define H(i,j,k) to be the minimum length over all paths from i to j and using only

intermediate vertices in the range 0 to (k-1)

 H(i,j,0) = W(i,j) — since the range is empty
 H(i,j,k+1) = min(H(i,j,k), H(i,k,k)+H(k,j,k))

b. Illustration

c. Show that the definition is correct

 Base case: k=0 and H(i,j,0) = W(i,j)
 — since the range is empty
 Inductive step:
 - k is not on the shortest path from i to j using vetices 0 to k
 -- H(i,j,k+1) = H(i,j,k)
 - k is on the shortest path from i to j using vetices 0 to k
 -- H(i,j,k+1) = H(i,k,k)+H(k,j,k)
 - k is on the shortest path
 - the distances from j and i are minimal
 - if the equality does not hold,
 there must be a shorter path through k (?)

0

1

2

3

2 6
12

3 2

0

1

2

3

2 6
12

3 2

0

1

2

3

2 6
12

3 2

 60.

d. Proof of progress is trivial

e. The following invariant is needed

 inv. (d[i,j] is the length of some path from i to j) Ù
 á " i,j : (i,j)<(u,v) :: d[i,j] ≤ H(i,j,x+1) ñ Ù
 -- given the current value of x
 some (i,j) distances have been updated
 á " i,j : (i,j)≥(u,v) :: d[i,j] ≤ H(i,j,x) ñ
 -- while the rest of (i,j) distances have not been updated
 (one step lag)

Refinement 4
Program

a. The updates could be carried out in parallel

b. The proof is not affected

 Program SP4 (P4 in the text)
 initial á || i,j :: d[i,j] = W(i,j) ñ
 || k = 0
 assign á || i,j :: d[i,j] := min(d[i,j], d[i,k] + d[k,j]) if k<N ñ
 || k := k+1 if k<N
 end

Refinement 5
Program

a. Try to use H in the program

b. Employ the equational schema

 Program SP5 (P2 in the text)
 always
 á [] i,j :: H(i,j,0) = W(i,j) ñ
 [] á [] k :: á || i,j ::
 H(i,j,k+1) = min(H(i,j,k), H(i,k,k)+H(k,j,k)) ñ ñ
 [] á [] i,j :: d(i,j) = H(i,j,N) ñ
 end

Refinement 6
Program

a. In SP4 the following invariant holds

 inv. d[i,j] = H(i,j,k) Ù
 (d[i,j] is the length of some path from i to j) Ù k≤N

b. We note that H(i,j,k+m) ≤ H(i,j,k) with (k < k+m ≤ N)
-- the metric can only be reduced as we consider more vertices

c. Let each processor have its own local variable k[i,j] and access distances on other
processors only if their values of k are at least as far along

 61.

 Program SP6 (P6 in the text)
 initial á || i,j :: d[i,j], k[i,j] = W(i,j), 0 ñ
 assign á [] i,j ::
 d[i,j], k[i,j] :=
 min(d[i,j], d[i,k[i,j]] + d[k[i,j],j]), k[i,j]+1
 if k[i,j]<N Ù k[i, k[i,j]]≥k[i,j] Ù k[k[i,j],j]≥k[i,j] ñ
 end

d. Read-only schema

