
CS 580 

Homework #01 

Game of life. 

Jin Zhang 7788 

Yie Sheng Chen 1303 

 

Question 1,  

Problem Definition: 

Simulate Conway’s Game of Life where births and deaths take place one at a time nondeterministically 

 

Design Concept: 

We used the “box” to make the nondeterministic one at a time update as the following unity program: 

 

Unity program: 

Program A1 

delare 

  G: array [0..N+1,0..N+1] of integers 

always 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) =  <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] > 

 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~ 

                                                                                  false 

initially 

    < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 > 

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 > 

 

assign 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N ::  

    G[i,j] := 1 if birth(I,j) ~ 
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                   0 

end{A1} 

 

 

Question 2, 

Problem Definition: 

Simulate Conway’s Game of Life where births and deaths take place simultaneously over the entire 

community 

 

Design Concept: 

We used the “parallel bars” to make simultaneous update as the following unity program: 

 

Unity Program: 

Program A2 

delare 

  G: array [0..N+1,0..N+1] of integers 

Always 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) =  <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] > 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~ 

                                                                                  false 

initially 

    < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 > 

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 > 

 

Assign 

  < || i,j : 1<= i <= N ∧ 1<= j <= N ::  

    G[i,j] := 1 if birth(I,j) ~ 

                   0 

end{A2} 
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Question 3, 

Problem Definition: 

Simulate Conway’s Game of Life where births and deaths take place simultaneously within a single 

colony at a time. 

 

Design Concept: 

We construct neighborhood mask for each point using the concept of fix points: an synchronous group 

of operations updates the neighborhood mask for a particular point, (x,y), and after N such synchronous 

group of operations the neighborhood mask of (x,y) will reach fixed point and can be used to update 

births and deaths of a single colony. And such idea is implemented as the following unity program: 

 

Unity Program: 

Program A3 

delare 

  G: array [0..N+1,0..N+1] of integers 

  NM: array [1..N,1..N,1..N,1..N] of boolean 

  Iter: array [1..N,1..N] 

Always 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) =  <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] > 

  < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~ 

                                                                                  false 

  < [] i,j,x,y : 1<= i <= N ∧ 1<= j <= N ∧ 1<= x <= N ∧ 1<= y <= N:: colony(x,y,i,j) := true if NM[x,y,i,j] ==1 ∨  

    < ∨ : -1 <= xk <= 1 ∧ -1 <= yk <= 1 :: NM[x,y,i+xk,j+yk]==1 >  

  > 

initially 

    < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 > 

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 > 

[] <|| i,j : 1<= i <= N ∧ 1<= j <= N ∧ 1<= x <= N ∧ 1<= y <= N ::  NM[x,y,i,j] := 0  if ¬(i==x ∧j==y) > 

Catalin
Sticky Note
Bad direction.
Too many problems for me to mark up.



[] <|| i,j : 1<= i <= N ∧ 1<= j <= N :: NM[I,j,I,j] := 1 > 

 

assign 

  < [] x,y : 1<= x <= N ∧ 1<= y <= N ::  

        < <|| i,j : 1<= i <= N ∧ 1<= j <= N ::   

           G[i,j] := 1 if birth(i,j) ∧ colony(x,y,i,j) == 1 ∧ Iter[x,y] == N ~  

                         0 if colony(x,y,i,j) == 1 ∧ Iter[x,y] == N  

          >  

        || Iter[x,y] :=0 if Iter[x,y] == N 

        || NM[x,y,x,y] := 1 if Iter[x,y] == N 

        ||  <|| i,j : 1<= i <= N ∧ 1<= j <= N ::  NM[x,y,i,j] := 0  if Iter[x,y] == N ∧¬(i==x ∧j==y) > 

        > 

    []  <|| i,j : 1<= i <= N ∧ 1<= j <= N ::   

         NM[x,y,i,j] := < ∨ : -1 <= xk <= 1 ∧ -1 <= yk <= 1 :: NM[x,y,i+xk,j+yk] > 

        || Iter[x,y] := Iter[x,y] + 1 

  >end{A3} 

 

 




