
CS 580

Homework #01

Game of life.

Jin Zhang 7788

Yie Sheng Chen 1303

Question 1,

Problem Definition:

Simulate Conway’s Game of Life where births and deaths take place one at a time nondeterministically

Design Concept:

We used the “box” to make the nondeterministic one at a time update as the following unity program:

Unity program:

Program A1

delare

 G: array [0..N+1,0..N+1] of integers

always

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) = <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] >

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~

 false

initially

 < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 >

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 >

assign

 < [] i,j : 1<= i <= N ∧ 1<= j <= N ::

 G[i,j] := 1 if birth(I,j) ~

Catalin
Highlight
The presentation needs to be complete and professional.
Have multiple sections: problem definition, problem 1, ...
Also, present an overview of the solution before the code.

Catalin
Highlight
Refer to the text of the assignment.

Catalin
Pencil

Catalin
Sticky Note
You are defining a predicate.
It can only be a expression that is true or false.
Also, if can be used ONLY as a guard in the assign section.

The correct definition is
birth(i,i) = G(,ij)=0 and sum(i,j)=3

You also need to define
death(i,j) = ...

Catalin
Pencil

Catalin
Sticky Note
:= is assignment and can be used only with assignment statements.

"=" is equality test and can be used in predicates.

[] is not a logical operator. You needed AND.

The initialization is incorrect. The condition is
0≤i,j≤N+1 and (i=0 or i=N+1 or ...)

 0

end{A1}

Question 2,

Problem Definition:

Simulate Conway’s Game of Life where births and deaths take place simultaneously over the entire

community

Design Concept:

We used the “parallel bars” to make simultaneous update as the following unity program:

Unity Program:

Program A2

delare

 G: array [0..N+1,0..N+1] of integers

Always

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) = <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] >

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~

 false

initially

 < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 >

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 >

Assign

 < || i,j : 1<= i <= N ∧ 1<= j <= N ::

 G[i,j] := 1 if birth(I,j) ~

 0

end{A2}

Catalin
Highlight
Illegal. You are missing the guard not(birth(i,j))

Also you are not handling death properly.

Catalin
Highlight
Yes, this is the correct idea.
But, you need to fix the code.

Question 3,

Problem Definition:

Simulate Conway’s Game of Life where births and deaths take place simultaneously within a single

colony at a time.

Design Concept:

We construct neighborhood mask for each point using the concept of fix points: an synchronous group

of operations updates the neighborhood mask for a particular point, (x,y), and after N such synchronous

group of operations the neighborhood mask of (x,y) will reach fixed point and can be used to update

births and deaths of a single colony. And such idea is implemented as the following unity program:

Unity Program:

Program A3

delare

 G: array [0..N+1,0..N+1] of integers

 NM: array [1..N,1..N,1..N,1..N] of boolean

 Iter: array [1..N,1..N]

Always

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: sum (i,j) = <+ x,y : -1<= x <= 1 ∧ -1<= y <= 1 :: G(i+x,j+y)> - G[i,j] >

 < [] i,j : 1<= i <= N ∧ 1<= j <= N :: birth(i,j) := true if sum(i, j) - G[i, j] ==3 ~

 false

 < [] i,j,x,y : 1<= i <= N ∧ 1<= j <= N ∧ 1<= x <= N ∧ 1<= y <= N:: colony(x,y,i,j) := true if NM[x,y,i,j] ==1 ∨

 < ∨ : -1 <= xk <= 1 ∧ -1 <= yk <= 1 :: NM[x,y,i+xk,j+yk]==1 >

 >

initially

 < [] i,j : 0<= i <= N+1 ∧ j== 0 :: G[i,j] := 0 [] G[j,i] := 0 >

[] < [] i,j : 0<= i <= N+1 ∧ j== N+1 :: G[i,j] := 0 [] G[j,i] := 0 >

[] <|| i,j : 1<= i <= N ∧ 1<= j <= N ∧ 1<= x <= N ∧ 1<= y <= N :: NM[x,y,i,j] := 0 if ¬(i==x ∧j==y) >

Catalin
Sticky Note
Bad direction.
Too many problems for me to mark up.

[] <|| i,j : 1<= i <= N ∧ 1<= j <= N :: NM[I,j,I,j] := 1 >

assign

 < [] x,y : 1<= x <= N ∧ 1<= y <= N ::

 < <|| i,j : 1<= i <= N ∧ 1<= j <= N ::

 G[i,j] := 1 if birth(i,j) ∧ colony(x,y,i,j) == 1 ∧ Iter[x,y] == N ~

 0 if colony(x,y,i,j) == 1 ∧ Iter[x,y] == N

 >

 || Iter[x,y] :=0 if Iter[x,y] == N

 || NM[x,y,x,y] := 1 if Iter[x,y] == N

 || <|| i,j : 1<= i <= N ∧ 1<= j <= N :: NM[x,y,i,j] := 0 if Iter[x,y] == N ∧¬(i==x ∧j==y) >

 >

 [] <|| i,j : 1<= i <= N ∧ 1<= j <= N ::

 NM[x,y,i,j] := < ∨ : -1 <= xk <= 1 ∧ -1 <= yk <= 1 :: NM[x,y,i+xk,j+yk] >

 || Iter[x,y] := Iter[x,y] + 1

 >end{A3}

