
CS580
Homework 07:
Elevator system.
Yie Sheng Chen 1303

Introduction

A formal specification of an elevator system with a single cabin in a building with N floors is to be developed. There are upCall and downCall buttons on each floor
except the first and Nth floors where there is only downCall button at the Nth floor and upCall button at the first floor.

Abstract State Model

cMo : cabin motion ;

 integer enumerated type with 3 possible values:

 0:STOPPED,

 1:UP(going up),

 2:DOWN (going down)

cLoc : cabin location

 integer ;

 0 means the cabin is between any 2 floors

 1~N means the cabin is at exactly one of the floors

cDoorOpen : cabin door is open

 boolean

fDoorOpen : door to the shaft is open

 boolean array of length N

 where the k-th element represents

 whether door at k-th floor is open

downCall : down call button at each floor

 boolean array of length N

 where the k-th element represents the down call button

 at k-th floor is pressed

upCall : up call button at each floor

 boolean array of length N

 where the k-th element represents the up call button

 at k-th floor is pressed

cReq : cabin request

 boolean array of length N

 where the k-th element represents a stop

 at k-th floor is requested

fireAlarm : whether the fire alarm is on

 boolean

cDir : the direction of cabin and is used for spec no. 3

 integer enumerated type with 3 possible values:

 0:NONE (no need to go anywhere),

 1:UP(going up),

 2:DOWN (going down)

cStop2s : whether the cabin stop for 2 seconds and is used for spec no. 3

 boolean

notations used:

Catalin
Highlight
Not a good idea.

Catalin
Highlight
You are confusing motion with direction.

Catalin
Highlight
Not at the initial specification level.

Catalin
Sticky Note
80/100

|-> : leads to

=> : logical implication

<=> : if and only if

inv. q : q is invariant

{comments} : comments are enclosed in curly brackets

specification no. 1

a highly abstract and minimal specification of the requirements the system must meet.

{safety req:}

inv. ¬(cMo=STOPPED) <=> ¬cDoorOpen ^ ¬fDoorOpen[k]

inv. cDoorOpen <=> cMo=STOPPED ^ fDoorOpen[cLoc] ^ ¬(cLoc=0)

{service req:}

upCall[k] until ¬upCall[k] ^ cMo=STOPPED ^ cLoc=k ^ cDoorOpen

downCall[k] until ¬downCall[k] ^ cMo=STOPPED ^ cLoc=k ^ cDoorOpen

cReq[k] until ¬cReq[k] ^ cMo=STOPPED ^ cLoc=k ^ cDoorOpen

{additional formuals for call buttons at 1st and Nth floors}

inv. upCall[N]=False

inv. downCall[1]=False

specification no. 2

In this spec., presence of the fire alarm and any requirements related to handling the fire emergency are factored in

{safety req:}

inv. ¬(cMo=STOPPED) <=> ¬cDoorOpen ^ ¬fDoorOpen[k]

inv. cDoorOpen <=> cMo=STOPPED ^ fDoorOpen[cLoc] ^ ¬(cLoc=0)

{service req:}

upCall[k] ^ ¬fireAlarm until ¬upCall[k] ^ cMo=STOPPED ^ cLoc=k

downCall[k] ^ ¬fireAlarm until ¬downCall[k] ^ cMo=STOPPED ^ cLoc=k

cReq[k] ^ ¬fireAlarm until ¬cReq[k] ^ cMo=STOPPED ^ cLoc=k

fireAlarm until fireAlarm ^ cLoc=1 ^ cMo=STOPPED ^ cDoorOpen ^ fDoorOpen[1]

{additional formuals for call buttons at 1st and Nth floors}

inv. upCall[N]=False

inv. downCall[1]=False

specification no. 3

a more detailed and prescriptive refinement of spec. no. 2

{function definition:}

isUpCalled(k) : <∃ i : k < i <= N :: upCall[i] V cReq[i]>
isDownCalled(k) : <∃ i : 0 < i < k :: downCall[i] V cReq[i]>

{safety req:}

inv. ¬(cMo=STOPPED) <=> ¬cDoorOpen ^ ¬fDoorOpen[k]

inv. cDoorOpen <=> cMo=STOPPED ^ fDoorOpen[cLoc] ^ ¬(cLoc=0)

{service req:}

{no.1}

p1 until q1

where

p1 = cLoc=k ^ isUpCalled(k) ^ cDir=UP

 ^ (upCall[k+1] V cReq[k+1]) ^ ¬fireAlarm

Catalin
Highlight
What you want door on floor k open iff cabin stopped with door open on floor k

Catalin
Highlight
This prevents the fire alarm from being pulled until ALL requests are serviced.

Catalin
Pencil

Catalin
Highlight
Too many problems for me to study in detail.
Too long.
Too complicated.
See class discussion.

 ^ ¬(cLoc=N)

q1 = cLoc=k+1 ^ upCall[k+1]=False ^ cReq[k+1]=False

 ^ cDir=UP ^ cStop2s=True

{no.2}

p2 until q2

where

p2 = cLoc=k ^ isUpCalled(k) ^ cDir=UP

 ^ ¬(upCall[k+1] V cReq[k+1]) ^ ¬fireAlarm

 ^ ¬(cLoc=N)

q2 = cLoc=k+1 ^ cDir=UP ^ cStop2s=False

{no.3}

cStop2s until cStop2s=False

{no.4}

p3 until q3

where

p3 = cLoc=k ^ ¬isUpCalled(k) ^ ¬isDownCalled(k)

 ^ (cDir=UP V cDir=DOWN) ^ ¬fireAlarm

q3 = cDir=NONE

{no.5}

p4 until q4

where

p4 = cLoc=k ^ ¬isUpCalled(k) ^ isDownCalled(k)

 ^ cDir=UP ^ ¬fireAlarm

q4 = cDir=DOWN

{no.6}

p5 until q5

where

p5 = cLoc=k ^ isDownCalled(k) ^ cDir=DOWN

 ^ (downCall[k-1] V cReq[k-1]) ^ ¬fireAlarm

 ^ ¬(cLoc=1)

q5 = cLoc=k-1 ^ upCall[k-1]=False ^ cReq[k-1]=False

 ^ cDir=DOWN ^ cStop2s=True

{no.7}

p6 until q6

where

p6 = cLoc=k ^ isDownCalled(k) ^ cDir=DOWN

 ^ ¬(downCall[k-1] V cReq[k-1]) ^ ¬fireAlarm

 ^ ¬(cLoc=1)

q6 = cLoc=k-1 ^ cDir=DOWN ^ cStop2s=False

{no.8}

p7 until q7

where

p7 = cLoc=k ^ isUpCalled(k) ^ ¬isDownCalled(k)

 ^ cDir=DOWN ^ ¬fireAlarm

q7 = cDir=UP

{no.9}

fireAlarm ^ cLoc=k ^ ¬(cLoc=1) until cLoc=k-1

{no.10}

fireAlarm ^ cLoc=1 until cDir=NONE ^ cDoorOpen

{additional formuals for call buttons at 1st and Nth floors}

inv. upCall[N]=False

inv. downCall[1]=False

	Introduction
	Abstract State Model
	notations used:
	specification no. 1
	specification no. 2
	specification no. 3

