
TLD: authoritative servers

Application Layer: 2-1

Top-Level Domain (TLD) servers:
▪ responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all

top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp

▪ Network Solutions: authoritative registry for .com, .net TLD

▪ Educause: .edu TLD

Authoritative DNS servers:
▪ organization’s own DNS server(s), providing authoritative hostname

to IP mappings for organization’s named hosts

▪ can be maintained by organization or service provider

Local DNS name servers

Application Layer: 2-2

▪ does not strictly belong to hierarchy

▪ each ISP (residential ISP, company, university) has one
• also called “default name server”

▪ when host makes DNS query, query is sent to its local DNS
server
• has local cache of recent name-to-address translation pairs (but may

be out of date!)

• acts as proxy, forwards query into hierarchy

DNS name resolution: iterated query

Application Layer: 2-3

Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu

Iterated query:
▪ contacted server replies

with name of server to
contact

▪ “I don’t know this name,
but ask this server”

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS server

DNS name resolution: recursive query

Application Layer: 2-4

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2 3

45

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS serverRecursive query:
▪ puts burden of name

resolution on
contacted name
server

▪ heavy load at upper
levels of hierarchy?

Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu

Caching, Updating DNS Records

Application Layer: 2-5

▪ once (any) name server learns mapping, it caches mapping
• cache entries timeout (disappear) after some time (TTL)

• TLD servers typically cached in local name servers
• thus root name servers not often visited

▪ cached entries may be out-of-date (best-effort name-to-
address translation!)
• if name host changes IP address, may not be known Internet-wide

until all TTLs expire!

▪ update/notify mechanisms proposed IETF standard
• RFC 2136

DNS records

Application Layer: 2-6

DNS: distributed database storing resource records (RR)

type=NS
▪ name is domain (e.g., foo.com)

▪ value is hostname of
authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
▪ name is hostname
▪ value is IP address

type=CNAME
▪ name is alias name for some “canonical”

(the real) name
▪ www.ibm.com is really servereast.backup2.ibm.com

▪ value is canonical name

type=MX
▪ value is name of mailserver

associated with name

DNS protocol messages

Application Layer: 2-7

DNS query and reply messages, both have same format:

message header:
▪ identification: 16 bit # for query,

reply to query uses same #
▪ flags:

• query or reply
• recursion desired
• recursion available
• reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer: 2-8

DNS query and reply messages, both have same format:

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may
be used

DNS protocol messages

Inserting records into DNS

Application Layer: 2-9

Example: new startup “Network Utopia”

▪ register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)

• registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

▪ create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com

• type MX record for networkutopia.com

DNS security

Application Layer: 2-10

DDoS attacks

▪ bombard root servers with
traffic
• not successful to date

• traffic filtering

• local DNS servers cache IPs of TLD
servers, allowing root server
bypass

▪ bombard TLD servers
• potentially more dangerous

Redirect attacks
▪ man-in-middle

• intercept DNS queries

▪ DNS poisoning
• send bogus relies to DNS

server, which caches

Exploit DNS for DDoS
▪ send queries with spoofed

source address: target IP

▪ requires amplification

DNSSEC
[RFC 4033]

Application Layer: Overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-11

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture

▪ no always-on server
▪ arbitrary end systems directly

communicate
▪ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, and new service demands

▪ peers are intermittently connected
and change IP addresses
• complex management

▪ examples: P2P file sharing (BitTorrent),
streaming (KanKan), VoIP (Skype)

Application Layer: 2-12

Introduction: 1-13

File distribution: client-server vs P2P

Q: how much time to distribute file (size F) from one server to
N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Introduction: 1-14

File distribution time: client-server

▪ server transmission: must sequentially
send (upload) N file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

▪ client: each client must download
file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network

di

ui

F

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P

▪ server transmission: must upload at
least one copy:
• time to send one copy: F/us

▪ client: each client must download
file copy
• min client download time: F/dmin

us

network

di

ui

F

▪ clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer: 2-15

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e P2P

Client-Server

Application Layer: 2-16

P2P file distribution: BitTorrent

▪ file divided into 256Kb chunks
▪ peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer: 2-17

P2P file distribution: BitTorrent

▪ peer joining torrent:
• has no chunks, but will accumulate them

over time from other peers

• registers with tracker to get list of peers,
connects to subset of peers
(“neighbors”)

▪ while downloading, peer uploads chunks to other peers

▪ peer may change peers with whom it exchanges chunks

▪ churn: peers may come and go

▪ once peer has entire file, it may (selfishly) leave or (altruistically) remain
in torrent

Application Layer: 2-18

BitTorrent: requesting, sending file chunks

Requesting chunks:
▪ at any given time, different

peers have different
subsets of file chunks

▪ periodically, Alice asks
each peer for list of chunks
that they have

▪ Alice requests missing
chunks from peers, rarest
first

Sending chunks: tit-for-tat
▪ Alice sends chunks to those four

peers currently sending her chunks
at highest rate
• other peers are choked by Alice (do

not receive chunks from her)
• re-evaluate top 4 every10 secs

▪ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer: 2-19

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better trading
partners, get file faster !

Application Layer: 2-20

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-21

Video Streaming and CDNs: context

▪ stream video traffic: major consumer of Internet
bandwidth
• Netflix, YouTube, Amazon Prime: 80% of residential ISP

traffic (2020)

▪ challenge: scale - how to reach ~1B users?
• single mega-video server won’t work (why?)

▪ challenge: heterogeneity
▪ different users have different capabilities (e.g., wired

versus mobile; bandwidth rich versus bandwidth poor)

▪ solution: distributed, application-level infrastructure

Application Layer: 2-22

Multimedia: video

▪ video: sequence of images
displayed at constant rate

• e.g., 24 images/sec

▪ digital image: array of pixels

• each pixel represented by bits

▪ coding: use redundancy within and
between images to decrease # bits
used to encode image

• spatial (within image)

• temporal (from one image to
next)

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

Application Layer: 2-23

Multimedia: video

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

▪ CBR: (constant bit rate): video
encoding rate fixed

▪ VBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

▪ examples:

• MPEG 1 (CD-ROM) 1.5 Mbps

• MPEG2 (DVD) 3-6 Mbps

• MPEG4 (often used in
Internet, 64Kbps – 12 Mbps)

Application Layer: 2-24

Main challenges:
▪ server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, in access network, in network core, at
video server)

▪ packet loss and delay due to congestion will delay playout, or result in
poor video quality

Streaming stored video
simple scenario:

video server

(stored video)
client

Internet

Application Layer: 2-25

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sent

streaming: at this time, client playing out
early part of video, while server still sending
later part of video

network delay
(fixed in this

example)

time

3. video received, played out at client
(30 frames/sec)

Application Layer: 2-26

Streaming stored video: challenges

▪ continuous playout constraint: once client
playout begins, playback must match original
timing
• … but network delays are variable (jitter), so will

need client-side buffer to match playout
requirements

▪ other challenges:

• client interactivity: pause, fast-forward, rewind,
jump through video

• video packets may be lost, retransmitted

Application Layer: 2-27

Streaming stored video: playout buffering

constant bit
rate video

transmission

time

variable
network

delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

b
u

ff
er

ed
vi

d
eo

▪client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Application Layer: 2-28

Streaming multimedia: DASH
▪DASH: Dynamic, Adaptive Streaming over HTTP

▪ server:
• divides video file into multiple chunks

• each chunk stored, encoded at different rates

• manifest file: provides URLs for different chunks

▪ client:
• periodically measures server-to-client bandwidth

• consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current bandwidth

• can choose different coding rates at different points in time (depending
on available bandwidth at time)

client

Internet

Application Layer: 2-29

Streaming multimedia: DASH

client

Internet

▪“intelligence” at client: client
determines
• when to request chunk (so that buffer

starvation, or overflow does not occur)

• what encoding rate to request (higher
quality when more bandwidth
available)

• where to request chunk (can request from URL server that is “close”
to client or has high available bandwidth)

Streaming video = encoding + DASH + playout buffering

Application Layer: 2-30

Content distribution networks (CDNs)

▪ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

▪ option 1: single, large “mega-server”
• single point of failure

• point of network congestion

• long path to distant clients

• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Application Layer: 2-31

Content distribution networks (CDNs)

▪ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many
access networks

• close to users
• Akamai: 240,000 servers deployed in more than 120

countries (2015)

• bring home: smaller number (10’s) of larger
clusters in POPs near (but not within) access
networks

• used by Limelight

▪ option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

Application Layer: 2-32

▪ subscriber requests content from CDN

Content distribution networks (CDNs)
▪ CDN: stores copies of content at CDN nodes

• e.g. Netflix stores copies of MadMen

where’s Madmen?

manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

Application Layer: 2-33

