
Maintaining user/server state: cookies

Application Layer: 2-1

Web sites and client browser use
cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message

2) cookie header line in next HTTP
request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

Example:
▪ Susan uses browser on laptop,

visits specific e-commerce site
for first time

▪ when initial HTTP requests
arrives at site, site creates:

• unique ID (aka “cookie”)

• entry in backend database
for ID

• subsequent HTTP requests
from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Maintaining user/server state: cookies

Application Layer: 2-2

client
server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

backend
database

time time

HTTP cookies: comments

Application Layer: 2-3

What cookies can be used for:
▪ authorization

▪ shopping carts

▪ recommendations

▪ user session state (Web e-mail)

cookies and privacy:
▪ cookies permit sites to

learn a lot about you on
their site.

▪ third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state:
▪ protocol endpoints: maintain state at

sender/receiver over multiple transactions
▪ cookies: HTTP messages carry state

Web caches (proxy servers)

Application Layer: 2-4

▪ user configures browser to
point to a Web cache

▪ browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client request without involving origin server

client

proxy
server

client
origin
server

origin
server

Web caches (proxy servers)

Application Layer: 2-5

▪ Web cache acts as both
client and server
• server for original

requesting client

• client to origin server

▪ typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?

▪ reduce response time for client
request
• cache is closer to client

▪ reduce traffic on an institution’s
access link

▪ Internet is dense with caches
• enables “poor” content providers

to more effectively deliver content

Caching example

Application Layer: 2-6

origin

servers
public

Internet

institutional

network
100Mbps LAN

15 Mbps

access link

Scenario:
▪ Web object size: 1 Mbits
▪ Average request rate from browsers to origin

servers: 15/sec
▪ LAN traffic intensity:
(15 requests/sec)*(1Mbits/request)/100Mbps=0.15
Tens of msec delay
▪ Access Link traffic intensity:
(15 requests/sec)*(1Mbits/request)/15Mbps=1
Minutes!

Caching example: buy a faster access link

Application Layer: 2-7

origin

servers
public

Internet

institutional

network
100Mbps LAN

15 Mbps

access link

Scenario:
▪ Web object size: 1 Mbits
▪ Average request rate from browsers to origin

servers: 15/sec
▪ LAN traffic intensity:
(15 requests/sec)*(1Mbits/request)/100Mbps=0.15
Tens of msec delay
▪ Access Link traffic intensity:
(15 requests/sec)*(1Mbits/request)/15Mbps=0.15
Minutes!

100 Mbps

100 Mbps

Seconds

Caching example: install a web cache

Application Layer: 2-8

origin

servers
public

Internet

institutional

network

Cost: web cache (cheap!)

local web cache

100Mbps LAN

15 Mbps

access link

Conditional GET

Application Layer: 2-9

Goal: don’t send object if cache has
up-to-date cached version

• no object transmission delay

• lower link utilization

▪ cache: specify date of cached copy
in HTTP request
If-modified-since: <date>

▪ server: response contains no
object if cached copy is up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection

▪ server responds in-order (FCFS: first-come-first-served scheduling) to
GET requests

▪with FCFS, small object may have to wait for transmission (head-of-
line (HOL) blocking) behind large object(s)

▪ loss recovery (retransmitting lost TCP segments) stalls object
transmission

Application Layer: 2-10

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:

▪ methods, status codes, most header fields unchanged from HTTP 1.1

▪ transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

▪ push unrequested objects to client

▪ divide objects into frames, schedule frames to mitigate HOL blocking

Application Layer: 2-11

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file, and 3 smaller
objects)

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1 Application Layer: 2-12

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

Application Layer: 2-13

HTTP/2 to HTTP/3
Key goal: decreased delay in multi-object HTTP requests

HTTP/2 over single TCP connection means:

▪ recovery from packet loss still stalls all object transmissions
• as in HTTP 1.1, browsers have incentive to open multiple parallel

TCP connections to reduce stalling, increase overall throughput

▪ no security over vanilla TCP connection

▪ HTTP/3: adds security , per object error- and congestion-
control (more pipelining) over UDP
• more on HTTP/3 in transport layer

Application Layer: 2-14

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-15

E-mail

Application Layer: 2-16

Three major components:
▪user agents
▪mail servers
▪ simple mail transfer protocol: SMTP

User Agent
▪ a.k.a. “mail reader”
▪ composing, editing, reading mail messages
▪ e.g., Outlook, iPhone mail client
▪outgoing, incoming messages stored on

server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

E-mail: mail servers

Application Layer: 2-17

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

mail servers:

▪mailbox contains incoming
messages for user

▪message queue of outgoing (to
be sent) mail messages

▪ SMTP protocol between mail
servers to send email messages

• client: sending mail server

• “server”: receiving mail server

E-mail: the RFC (5321)

Application Layer: 2-18

▪ uses TCP to reliably transfer email message from client (mail server
initiating connection) to server, port 25

▪ direct transfer: sending server (acting like client) to receiving server

▪ three phases of transfer
• handshaking (greeting)

• transfer of messages

• closure

▪ command/response interaction (like HTTP)
• commands: ASCII text

• response: status code and phrase

▪messages must be in 7-bit ASCI

Scenario: Alice sends e-mail to Bob

Application Layer: 2-19

1) Alice uses UA to compose e-mail
message “to” bob@someschool.edu

4) SMTP client sends Alice’s message
over the TCP connection

user

agent
mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

2) Alice’s UA sends message to her
mail server; message placed in
message queue

3) client side of SMTP opens TCP
connection with Bob’s mail server

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

Sample SMTP interaction

Application Layer: 2-20

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

SMTP: closing observations

Application Layer: 2-21

▪ SMTP uses persistent
connections

▪ SMTP requires message
(header & body) to be in
7-bit ASCII

▪ SMTP server uses
CRLF.CRLF (carriage
return, line feed) to
determine end of
message

comparison with HTTP:

▪ HTTP: pull

▪ SMTP: push

▪ both have ASCII command/response
interaction, status codes

▪ HTTP: each object encapsulated in its
own response message

▪ SMTP: multiple objects sent in
multipart message

Mail message format

Application Layer: 2-22

SMTP: protocol for exchanging e-mail
messages, defined in RFC 531 (like HTTP)

RFC 822 defines syntax for e-mail message
itself (like HTML)

▪ header lines, e.g.,
• To:

• From:

• Subject:

these lines, within the body of the email
message area different from SMTP MAIL FROM:,
RCPT TO: commands!

▪ Body: the “message” , ASCII characters only

header

body

blank

line

Mail access protocols

Application Layer: 2-23

sender’s e-mail
server

SMTP SMTP
e-mail access

protocol

receiver’s e-mail
server

(e.g., IMAP,
HTTP)

user

agent

user

agent

▪ SMTP: delivery/storage of e-mail messages to receiver’s server

▪mail access protocol: retrieval from server
• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP

provides retrieval, deletion, folders of stored messages on server

▪ HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Application Layer: Overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-24

DNS: Domain Name System

Application Layer: 2-25

people: many identifiers:

• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) - used for

addressing datagrams

• “name”, e.g., cs.umass.edu -
used by humans

Q: how to map between IP
address and name, and vice
versa ?

Domain Name System:

▪ distributed database implemented in
hierarchy of many name servers

▪ application-layer protocol: hosts,
name servers communicate to resolve
names (address/name translation)

• note: core Internet function,
implemented as application-layer
protocol

• complexity at network’s “edge”

DNS: services, structure

Application Layer: 2-26

Q: Why not centralize DNS?
▪ single point of failure
▪ traffic volume
▪ distant centralized database
▪ maintenance

DNS services

▪hostname to IP address translation

▪host aliasing

• canonical, alias names

▪ mail server aliasing

▪ load distribution

• replicated Web servers: many IP
addresses correspond to one
name

A: doesn‘t scale!
▪ Comcast DNS servers

alone: 600B DNS queries
per day

DNS: a distributed, hierarchical database

Application Layer: 2-27

Root DNS Servers

.com DNS servers .org DNS servers .edu DNS servers

nyu.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers

amazon.com

DNS servers

pbs.org

DNS servers

… …

Client wants IP address for www.amazon.com; 1st approximation:

▪ client queries root server to find .com DNS server

▪ client queries .com DNS server to get amazon.com DNS server

▪ client queries amazon.com DNS server to get IP address for www.amazon.com

Top Level Domain

Root

Authoritative

…… … …

DNS: root name servers

Application Layer: 2-28

▪ official, contact-of-last-resort by
name servers that can not
resolve name

▪ incredibly important Internet
function

• Internet couldn’t function without it!

• DNSSEC – provides security
(authentication and message
integrity)

▪ ICANN (Internet Corporation for
Assigned Names and Numbers)
manages root DNS domain

13 logical root name “servers”
worldwide each “server” replicated

many times (~200 servers in US)

TLD: authoritative servers

Application Layer: 2-29

Top-Level Domain (TLD) servers:
▪ responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all

top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp

▪ Network Solutions: authoritative registry for .com, .net TLD

▪ Educause: .edu TLD

Authoritative DNS servers:
▪ organization’s own DNS server(s), providing authoritative hostname

to IP mappings for organization’s named hosts

▪ can be maintained by organization or service provider

Local DNS name servers

Application Layer: 2-30

▪ does not strictly belong to hierarchy

▪ each ISP (residential ISP, company, university) has one
• also called “default name server”

▪ when host makes DNS query, query is sent to its local DNS
server
• has local cache of recent name-to-address translation pairs (but may

be out of date!)

• acts as proxy, forwards query into hierarchy

DNS name resolution: iterated query

Application Layer: 2-31

Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu

Iterated query:
▪ contacted server replies

with name of server to
contact

▪ “I don’t know this name,
but ask this server”

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS server

DNS name resolution: recursive query

Application Layer: 2-32

requesting host at
engineering.nyu.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2 3

45

6

authoritative DNS server

dns.cs.umass.edu

7

8

TLD DNS serverRecursive query:
▪ puts burden of name

resolution on
contacted name
server

▪ heavy load at upper
levels of hierarchy?

Example: host at engineering.nyu.edu

wants IP address for gaia.cs.umass.edu

Caching, Updating DNS Records

Application Layer: 2-33

▪ once (any) name server learns mapping, it caches mapping
• cache entries timeout (disappear) after some time (TTL)

• TLD servers typically cached in local name servers
• thus root name servers not often visited

▪ cached entries may be out-of-date (best-effort name-to-
address translation!)
• if name host changes IP address, may not be known Internet-wide

until all TTLs expire!

▪ update/notify mechanisms proposed IETF standard
• RFC 2136

DNS records

Application Layer: 2-34

DNS: distributed database storing resource records (RR)

type=NS
▪ name is domain (e.g., foo.com)

▪ value is hostname of
authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
▪ name is hostname
▪ value is IP address

type=CNAME
▪ name is alias name for some “canonical”

(the real) name
▪ www.ibm.com is really servereast.backup2.ibm.com

▪ value is canonical name

type=MX
▪ value is name of mailserver

associated with name

DNS protocol messages

Application Layer: 2-35

DNS query and reply messages, both have same format:

message header:
▪ identification: 16 bit # for query,

reply to query uses same #
▪ flags:

• query or reply
• recursion desired
• recursion available
• reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer: 2-36

DNS query and reply messages, both have same format:

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may
be used

DNS protocol messages

Inserting records into DNS

Application Layer: 2-37

Example: new startup “Network Utopia”

▪ register name networkuptopia.com at DNS registrar (e.g., Network
Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)

• registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

▪ create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com

• type MX record for networkutopia.com

DNS security

Application Layer: 2-38

DDoS attacks

▪ bombard root servers with
traffic
• not successful to date

• traffic filtering

• local DNS servers cache IPs of TLD
servers, allowing root server
bypass

▪ bombard TLD servers
• potentially more dangerous

Redirect attacks
▪ man-in-middle

• intercept DNS queries

▪ DNS poisoning
• send bogus relies to DNS

server, which caches

Exploit DNS for DDoS
▪ send queries with spoofed

source address: target IP

▪ requires amplification

DNSSEC
[RFC 4033]

Application Layer: Overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-39

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture

▪ no always-on server
▪ arbitrary end systems directly

communicate
▪ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, and new service demands

▪ peers are intermittently connected
and change IP addresses
• complex management

▪ examples: P2P file sharing (BitTorrent),
streaming (KanKan), VoIP (Skype)

Application Layer: 2-40

Introduction: 1-41

File distribution: client-server vs P2P

Q: how much time to distribute file (size F) from one server to
N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Introduction: 1-42

File distribution time: client-server

▪ server transmission: must sequentially
send (upload) N file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

▪ client: each client must download
file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network

di

ui

F

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P

▪ server transmission: must upload at
least one copy:
• time to send one copy: F/us

▪ client: each client must download
file copy
• min client download time: F/dmin

us

network

di

ui

F

▪ clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer: 2-43

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e P2P

Client-Server

Application Layer: 2-44

P2P file distribution: BitTorrent

▪ file divided into 256Kb chunks
▪ peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer: 2-45

P2P file distribution: BitTorrent

▪ peer joining torrent:
• has no chunks, but will accumulate them

over time from other peers

• registers with tracker to get list of peers,
connects to subset of peers
(“neighbors”)

▪ while downloading, peer uploads chunks to other peers

▪ peer may change peers with whom it exchanges chunks

▪ churn: peers may come and go

▪ once peer has entire file, it may (selfishly) leave or (altruistically) remain
in torrent

Application Layer: 2-46

BitTorrent: requesting, sending file chunks

Requesting chunks:
▪ at any given time, different

peers have different
subsets of file chunks

▪ periodically, Alice asks
each peer for list of chunks
that they have

▪ Alice requests missing
chunks from peers, rarest
first

Sending chunks: tit-for-tat
▪ Alice sends chunks to those four

peers currently sending her chunks
at highest rate
• other peers are choked by Alice (do

not receive chunks from her)
• re-evaluate top 4 every10 secs

▪ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer: 2-47

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better trading
partners, get file faster !

Application Layer: 2-48

Application layer: overview

▪ Principles of network
applications

▪ Web and HTTP

▪ E-mail, SMTP, IMAP

▪ The Domain Name System
DNS

▪ P2P applications

▪ video streaming and content
distribution networks

▪ socket programming with
UDP and TCP

Application Layer: 2-49

Video Streaming and CDNs: context

▪ stream video traffic: major consumer of Internet
bandwidth
• Netflix, YouTube, Amazon Prime: 80% of residential ISP

traffic (2020)

▪ challenge: scale - how to reach ~1B users?
• single mega-video server won’t work (why?)

▪ challenge: heterogeneity
▪ different users have different capabilities (e.g., wired

versus mobile; bandwidth rich versus bandwidth poor)

▪ solution: distributed, application-level infrastructure

Application Layer: 2-50

Multimedia: video

▪ video: sequence of images
displayed at constant rate

• e.g., 24 images/sec

▪ digital image: array of pixels

• each pixel represented by bits

▪ coding: use redundancy within and
between images to decrease # bits
used to encode image

• spatial (within image)

• temporal (from one image to
next)

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

Application Layer: 2-51

Multimedia: video

……………………..

spatial coding example: instead

of sending N values of same

color (all purple), send only two

values: color value (purple) and

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:

instead of sending

complete frame at i+1,

send only differences from

frame i

▪ CBR: (constant bit rate): video
encoding rate fixed

▪ VBR: (variable bit rate): video
encoding rate changes as
amount of spatial, temporal
coding changes

▪ examples:

• MPEG 1 (CD-ROM) 1.5 Mbps

• MPEG2 (DVD) 3-6 Mbps

• MPEG4 (often used in
Internet, 64Kbps – 12 Mbps)

Application Layer: 2-52

Main challenges:
▪ server-to-client bandwidth will vary over time, with changing network

congestion levels (in house, in access network, in network core, at
video server)

▪ packet loss and delay due to congestion will delay playout, or result in
poor video quality

Streaming stored video
simple scenario:

video server

(stored video)
client

Internet

Application Layer: 2-53

Streaming stored video

1. video
recorded
(e.g., 30
frames/sec)

2. video
sent

streaming: at this time, client playing out
early part of video, while server still sending
later part of video

network delay
(fixed in this

example)

time

3. video received, played out at client
(30 frames/sec)

Application Layer: 2-54

Streaming stored video: challenges

▪ continuous playout constraint: once client
playout begins, playback must match original
timing
• … but network delays are variable (jitter), so will

need client-side buffer to match playout
requirements

▪ other challenges:

• client interactivity: pause, fast-forward, rewind,
jump through video

• video packets may be lost, retransmitted

Application Layer: 2-55

Streaming stored video: playout buffering

constant bit
rate video

transmission

time

variable
network

delay

client video
reception

constant bit
rate video

playout at client

client playout
delay

b
u

ff
er

ed
vi

d
eo

▪client-side buffering and playout delay: compensate for
network-added delay, delay jitter

Application Layer: 2-56

Streaming multimedia: DASH
▪DASH: Dynamic, Adaptive Streaming over HTTP

▪ server:
• divides video file into multiple chunks

• each chunk stored, encoded at different rates

• manifest file: provides URLs for different chunks

▪ client:
• periodically measures server-to-client bandwidth

• consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given current bandwidth

• can choose different coding rates at different points in time (depending
on available bandwidth at time)

client

Internet

Application Layer: 2-57

Streaming multimedia: DASH

client

Internet

▪“intelligence” at client: client
determines
• when to request chunk (so that buffer

starvation, or overflow does not occur)

• what encoding rate to request (higher
quality when more bandwidth
available)

• where to request chunk (can request from URL server that is “close”
to client or has high available bandwidth)

Streaming video = encoding + DASH + playout buffering

Application Layer: 2-58

Content distribution networks (CDNs)

▪ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

▪ option 1: single, large “mega-server”
• single point of failure

• point of network congestion

• long path to distant clients

• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Application Layer: 2-59

Content distribution networks (CDNs)

▪ challenge: how to stream content (selected from millions of
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many
access networks

• close to users
• Akamai: 240,000 servers deployed in more than 120

countries (2015)

• bring home: smaller number (10’s) of larger
clusters in POPs near (but not within) access
networks

• used by Limelight

▪ option 2: store/serve multiple copies of videos at multiple
geographically distributed sites (CDN)

Application Layer: 2-60

▪ subscriber requests content from CDN

Content distribution networks (CDNs)
▪ CDN: stores copies of content at CDN nodes

• e.g. Netflix stores copies of MadMen

where’s Madmen?

manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

Application Layer: 2-61

Internet host-host communication as a service

OTT challenges: coping with a congested Internet
▪ from which CDN node to retrieve content?

▪ viewer behavior in presence of congestion?

▪ what content to place in which CDN node?

OTT: “over the top”

Content distribution networks (CDNs)

Application Layer: 2-62

CDN content access: a closer look

netcinema.com

KingCDN.com

1

1. Bob gets URL for video

http://netcinema.com/6Y7B23V

from netcinema.com web page

2

2. resolve http://netcinema.com/6Y7B23V

via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns CNAME for

http://KingCDN.com/NetC6y&B23V 4

56. request video from

KINGCDN server,

streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Bob (client) requests video http://netcinema.com/6Y7B23V
▪ video stored in CDN at http://KingCDN.com/NetC6y&B23V

Application Layer: 2-63

Case study: Netflix

1

Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2

Bob browses
Netflix video

Manifest file,
requested
returned for
specific video

DASH server
selected, contacted,
streaming begins

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

3

4

Application Layer: 2-64

Chapter 2: Summary

▪ application architectures
• client-server

• P2P

▪ application service requirements:
• reliability, bandwidth, delay

▪ Internet transport service model
• connection-oriented, reliable: TCP

• unreliable, datagrams: UDP

our study of network application layer is now complete!

▪ specific protocols:
• HTTP
• SMTP, IMAP
• DNS
• P2P: BitTorrent

▪ video streaming, CDNs
▪ socket programming:

TCP, UDP sockets

Application Layer: 2-65

Chapter 2: Summary
Most importantly: learned about protocols!

▪ typical request/reply message
exchange:
• client requests info or service

• server responds with data, status code

▪ message formats:
• headers: fields giving info about data

• data: info(payload) being
communicated

important themes:
▪ centralized vs. decentralized
▪ stateless vs. stateful
▪ scalability
▪ reliable vs. unreliable

message transfer
▪ “complexity at network

edge”

Application Layer: 2-66

