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Introduction to Turtle Geometry

We start with the simplest vocabulary of images,
with "left" and "right" and "one, two, three," and
before we know how it happened the words and
numbers have conspired to make a match with
nature: we catch in them the pattern of mind and
matter as one.

Jacob Bronowski, The Reach of Imagination

This chapter is an introduction on three levels. First, we introduce you
to a new kind of geometry called turtle geometry. The most important
thing to remember about turtle geometry is that it is a mathematics
designed for exploration, not just for presenting theorems and proofs.
When we do state and prove theorems, we are trying to help you to
generate new ideas and to think about and understand the phenomena
you discover.

The technical language of this geometry is our second priority. This
may look as if we're describing a computer language, but our real aim is
to establish a notation for the range of complicated things a turtle can
do in terms of the simplest things it knows. If you wish to actually pro-
gram a computer-controlled turtle using one of the standard programing
languages, you will need to know more details than are presented here;
see appendixes A and B.

Finally, this chapter will introduce some of the important themes
to be elaborated in later chapters. These themes permeate not oniy
geometry but all of mathematics, and we aim to give you rich and varied
experiences with them.

1.1 Turtle Graphics

Imagine that you have control of a little creature called a turtle that
exists in a mathematical plane or, better yet, on a computer display
screen. The turtle can respond to a few simple commands: FORWARD

moves the turtle, in the direction it is facing, some number of units.
RIGHT rotates it in place, clockwise, some number of degrees. BACK

and LEFT cause the opposite movements. The number that goes with a
command to specify how much to move is called the command's input.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1626040/9780262362740_caa.pdf by University of New Mexico user on 18 January 2022



4 Introduction

A
(a) Turtle starts (b) FORWARD loo

(e) RIGHT 90 (d) FORWARD 150
LEFT 45

A

(e) BACK 100

Figure 1.1
A sequence of turtle commands.

(f) LEFT 45
PENIJP

FORWARD 100

/
In describing the effects of these operations, we say that FORWARD and

BACK change the turtle's position (the point on the plane where the turtle
is located); RIGHT and LEFT change the turtle's heading (the direction in
which the turtle is facing).

The turtle can leave a trace of the places it has been: The position-
changing commands can cause lines to appear on the screen. This is
controlled by the commands PENUP and PENDOWN. When the pen is down,
the turtle draws lines. Figure 1.1 illustrates how you can draw on the
display screen by steering the turtle with FORWARD, BACK, RIGHT, and
LEFT.
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Turtle Graphics 5

1.1.1 Procedures

Turtle geometry would be rather dull if it did not allow us to teach the
turtle new commands. But luckily all we have to do to teach the turtle a
new trick is to give it a list of commands it already knows. For example,
here's how to draw a square with sides loo units long:

TO SQUARE

FORWARD 100

RIGHT 90

FORWARD 100

RIGHT 90

FORWARD 100

RIGHT 90

FORWARD 100

This is an example of a procedure. (Such definitions are also com-
monly referred to as programs or functions.) The first line of the pro-
cedure (the title line) specifies the procedure's name. We've chosen to
name this procedure SQUARE, but we could have named it anything at
all. The rest of the procedure (the body) specifies a list of instructions
the turtle is to carry out in response to the SQUARE command.

There are a few useful tricks for writing procedures. One of them
is called iteration, meaning repetition doing something over and over.
Here's a more concise way of telling the turtle to draw a square, using
iteration:

TO SQUARE

REPEAT 4

FORWARD 100

RIGHT 90

This procedure will repeat the indented commands FORWARD 100 and
RIGHT 90 four times.

Another trick is to create a SQUARE procedure that takes an input for
the size of the square. To do this, specify a name for the input in the
title line of the procedure, and use the name in the procedure body:

TO SQUARE SIZE

REPEAT 4

FORWARD SIZE

RIGHT 90
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6 Introduction

Now, when you use the command, you must specify the value to be used
for the input, so you say SQUARE 100, just like FORWARD 100.

The chunk FORWARD SIZE, RIGHT 90 might be useful in other con-
texts, which is a good reason to make it a procedure in its own right:

TO SQUAREPIECE SIZE

FORWARD SIZE

RIGHT 90

Now we can rewrite SQUARE using SQUAREPIECE as

TO SQUARE SIZE

REPEAT 4

SQUAREPIECE SIZE

Notice that the input to SQUARE, also called SIZE, is passed in turn as
an input to SQUAREPIECE. SQUAREPIECE can be used as a subprocedure
in other places as wellfor example, in drawing a rectangle:

TO RECTANGLE SIDE1 SIDE2

REPEAT 2

SQUAREPIECE SIDE1

SQUAREPIECE SIDE2

To use the RECTANGLE procedure you must specify its two inputs, for
example, RECTANGLE 100 50.

When programs become more complex this kind of input notation
can be a bit hard to read, especially when there are procedures such as
RECTANGLE that take more than one input. Sometimes it helps to use
parentheses and commas to separate inputs to procedures. For example,
the RECTANGLE procedure can be written as

TO RECTANGLE (SIDE1, SIDE2)

REPEAT 2

SQUAREPIECE (SIDE1)

SQUAREPIECE (SIDE2)

If you like, you can regard this notation as a computer language that
has been designed to make it easy to interact with turtles. Appendix
A gives some of the details of this language. It should not be difficult
to rewrite these procedures in any language that has access to the basic
turtle commands FORWARD, BACK, RIGHT, LEFT, PENUP, and PENDOWN.
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Turtle Graphies 7

TO TRY.ANGLE TO TRIANGLE
REPEAT 3 REPEAT 3

FORWARD loo FORWARD 100
RIGHT 60 RIGHT 120

Figure 1.2
Attempt to draw a triangle.

Appendix B gives some tips on how to implement these commands in
some of the more common computer languages, and includes sample
translations of turtle procedures.

1.1.2 Drawing with the Turtle

Let's draw a figure that doesn't use 900 angles an equilateral triangle.
Since the triangle has 60° angles, a natural first guess at a triangle
procedure is

TO TRY.ANGLE SIZE

REPEAT 3

FORWARD SIZE

RIGHT 60

But TRY. ANGLE doesn't work, as shown in figure 1.2. In fact, running
this "triangle" procedure draws half of a regular hexagon. The bug in
the procedure is that, whereas we normally measure geometric figures
by their interior angles, turtle turning corresponds to the exterior angle
at the vertex. So if we want to draw a triangle we should have the
turtle turn 120°. You might practice "playing turtle" on a few geometric
figures until it becomes natural for you to think of measuring a vertex
by how much the turtle must turn in drawing the vertex, rather than by
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>
TO HOUSE SIDE

SQUARE SIDE
TRIANGLE SIDE

TO HOUSE SIDE
SQUARE SIDE

FORWARD SIDE
RIGHT 30
TRIANGLE SIDE

Figure 1.3
(a) Initial attempt to draw a house fails. (b) Interface steps are needed.

the usual interior angle. Turtle angle has many advantages over interior
angle, as you will see.

Now that we have a triangle and a square, we can use them as building
blocks in more complex drawingsa house, for example. But figure 1.3
shows that simply running SQUARE followed by TRIANGLE doesn't quite
work. The reason is that after SQUARE, the turtle is at neither the correct
position nor the correct heading to begin drawing the roof. To fix this
bug, we must add steps to the procedure that will move and rotate
the turtle before the TRIANGLE procedure is run. In terms of designing
programs to draw things, these extra steps serve as an interface between
the part of the program that draws the walls of the house (the SQUARE

procedure) and the part that draws the roof (the TRIANGLE procedure).
In general, thinking of procedures as a number of main steps separated
by interfaces is a useful strategy for planning complex drawings.

Using procedures and subprocedures is also a good way to create
abstract designs. Figure 1.4 shows how to create elaborate patterns by
rotating a simple "doodle."

After all these straight line drawings, it is natural to ask whether the
turtle can also draw curvescircles, for example. One easy way to do

8 Introduction
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Figure 1.4
Designs made by rotating a simple doodle.
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TO THING2 TO THING3

REPEAT FOREVER REPEAT FOREVER
THING THING

RIGHT 10 LEFT 45

FORWARD 50 FORWARD 100

TO THING

FORWARD loo
RIGHT 90
FORWARD loo
RIGHT 90
FORWARD SO
RIGHT 90

FORWARD 50

RIGHT 90

FORWARD loo
RIGHT 90

FORWARD 25

RIGHT 90

FORWARD 25 TO THING1

RIGHT 90 REPEAT 4

FORWARD 50 THING
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Figure 1.5
FORWARD 1, RIGHT 1, repeated draws a circular arc.

this is to make the turtle go FORWARD a little bit and then turn RIGHT a
little bit, and repeat this over and over:

TO CIRCLE

REPEAT FOREVER

FORWARD i

RIGHT i

This draws a circular arc, as shown in figure 1.5. Since this program
goes on "forever" (until you press the stop button on your computer), it
is not very useful as a subprocedure in creating more complex figures.
More useful would be a version of the CIRCLE procedure that would
draw the figure once and then stop. When we study the mathematics of
turtle geometry, we'll see that the turtle circle closes precisely when the
turtle has turned through 3600. So if we generate the circle in chunks
of FORWARD i, RIGHT i, the circle will close after precisely 360 chunks:

TO CIRCLE

REPEAT 360

FORWARD i

RIGHT i

If we repeat the basic chunk fewer than 360 times, we get circular arcs.
For instance, 180 repetitions give a semicircle, and 60 repetitions give a
60° arc. The following procedures draw left and right arcs of DEG degrees
on a circle of size R:

TO ARCR R DEG

REPEAT DEG

FORWARD R

RIGHT i

10 Introduction
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Turtle Graphics 11

TO ARCL R DEG

REPEAT DEG

FORWARD R

LEFT i

(See figure 1.6 and exercise 3 for more on making drawings with arcs.)
The circle program above actually draws regular 36Ogons, of course,

rather than "real" circles, but for the purpose of making drawings on
the display screen this difference is irrelevant. (See exercises 1 and 2.)

1.1.3 Turtle Geometry versus Coordinate Geometry

We can think of turtle commands as a way to draw geometric figures on
a computer display. But we can also regard them as a way to describe
figures. Let's compare turtle descriptions with a more familiar system
for representing geometric figuresthe Cartesian coordinate system, in
which points are specified by two numbers, the x and y coordinates rela-
tive to a pair of axes drawn in the plane. To put Cartesian coordinates
into our computer framework, imagine a "Cartesian turtle" whose moves
are directed by a command called SETXY. SETXY takes two numbers as
inputs. These numbers are interpreted as x and y coordinates, and the
turtle moves to the corresponding point. We could draw a rectangle with
SETXY using

TO CARTESIAN.RECTANGLE (WIDTH, HEIGHT)

SETXY (WIDTH, O)

SETXY (WIDTH, HEIGHT)

SETXY (O, HEIGHT)

SETXY (O. O)

You are probably familiar with the uses of coordinates in geometry:
studying geometric figures via equations, plotting graphs of numerical
relationships, and so on. Indeed, Descartes' marriage of algebra and
geometry is one of the fundamental insights in the development of math-
ematics. Nevertheless, these kinds of coordinate systemsCartesian,
polar, or what have youare not the only ways to relate numbers to
geometry. The turtle FORWARD and RIGHT commands give an alterna-
tive way of measuring figures in the plane, a way that complements the
coordinate viewpoint. The geometry of coordinates is called coordinate
geometry we shall refer to the geometry of FORWARD and RIGHT as turtle
geometry. Aiid even though we will be making use of coordinates later
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TO CIRCLES

REPEAT 9
ARCR 1 360

RIGHT 40

TO RAY R
REPEAT 2

ARCL R 90
ARCR R 90

TO SUN SIZE

REPEAT 9
RAY SIZE

RIGHT 160

Figure 1.6
Some shapes that can be made using arcs.

TO PETAL SIZE
ARCR SIZE 60
RIGHT 120
ARCR SIZE 60
RIGHT 120

TO FLOWER SIZE
REPEAT 6

PETAL SIZE
RIGHT 60

MONSTER

12 Introduction
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Turtle Graphics 13

on, let us begin by studying turtle geometry as a system in its own right.
Whereas studying coordinate geometry leads to graphs and algebraic
equations, turtle geometry will introduce sorne less familiar, but no less
important, mathematical ideas.

Intrinsic versus Extrinsic
One major difference between turtle geometry and coordinate geometry
rests on the notion of the intrinsic properties of geometric figures. An
intrinsic property is one which depends only on the figure in question,
not on the figure's relation to a frame of reference. The fact that a
rectangle has four equal angles is intrinsic to the rectangle. But the
fact that a particular rectangle has two vertical sides is extrinsic, for
an external reference frame is required to determine which direction is
"vertical." Turtles prefer intrinsic descriptions of figures. For example,
the turtle program to draw a rectangle can draw the rectangle in any
orientation (depending on the turtle's initial heading), but the program
CARTESIAN. RECTANGLE shown above would have to be modified if we
did not want the sides of the rectangle drawn parallel to the coordinate
axes, or one vertex at (O, O).

Another intrinsic property is illustrated by the turtle program for
drawing a circle: Go FORWARD a little bit, turn RIGHT a little bit, and
repeat this over and over. Contrast this with the Cartesian coordinate
representation for a circle, x2 + y2 = r2. The turtle representation
makes it evident that the curve is everywhere the same, since the process
that draws it does the same thing over and over. This property of the
circle, however, is not at all evident from the Cartesian representation.
Compare the modified program

TO CIRCLE

REPEAT FOREVER

FORWARD 2

RIGHT i

with the modified equation x2+2y2 = r2. (See figure 1.7.) The drawing
produced by the modified program is still everywhere the same, that is, a
circle. In fact, it doesn't matter what inputs we use to FORWARD or RIGHT
(as long as they are small). We still get a circle. The modified equation,
however, no longer describes a circle, but rather an ellipse whose sides
look different from its top and bottom. A turtle drawing an ellipse would
have to turn more per distance traveled to get around its "pointy" sides
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C)

REPEAT FOREVER
FORWARD 2

RIGHT i

x2 + 2j2 = r2

Figure 1.7
Modifying the turtle program still produces a circle. Modifying the equation gives
an ellipse.

than to get around its flatter top and bottom. This notion of "how
pointy something is," expressed as the ratio of angle turned to distance
traveled, is the intrinsic quantity that mathematicians call curvature.
(See exercises 2 and 4.)

Local versus Global
The turtle representation of a circle is not only more intrinsic than the
Cartesian coordinate description. It is also more local; that is, it deals
with geometry a little piece at a time. The turtle can forget about the
rest of the plane when drawing a circle and deal only with the small part
of the plane that surrounds its current position. By contrast, x2 + y2 =
r2 relies on a large-scale, global coordinate system to define its properties.
And defining a circle to be the set of points equidistant from some fixed
point is just as global as using x2 + y2 = r2. The turtle representation
does not need to make reference to that "faraway" special point, the
center. In later chapters we will see how the fact that the turtle does its
geometry by feeling a little locality of the world at a time allows turtle
geometry to extend easily out of the plane to curved surfaces.

Procedures versus Equations
A final important difference between turtle geometry and coordinate
geometry is that turtle geometry characteristically describes geometric
objects in terms of procedures rather than in terms of equations. In for-
mulating turtle-geometric descriptions we have access to an entire range
of procedural mechanisms (such as iteration) that are hard to capture in
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the traditional algebraic formalism. Moreover, the procedural descrip-
tions used in turtle geometry are readily modified in many ways. This
makes turtle geometry a fruitful arena for mathematical exploration.
Let's enter that arena now.

1.1.4 Some Simple Turtle Programs

If we were setting out to explore coordinate geometry we might begin
by examining the graphs of some simple algebraic equations. Our inves-
tigation of turtle geometry begins instead by examining the geometric
figures associated with simple procedures. Here's one of the simplest:
Go FORWARD some fixed amount, turn RIGHT some fixed amount, and
repeat this sequence over and over. This procedure is called POLY.

TO POLY SIDE ANGLE

REPEAT FOREVER

FORWARD SIDE

RIGHT ANGLE

It draws shapes like those in figure 1.8.
POLY is a generalization of some procedures we've already seen. Setting

the angle inputs equal to 90, 120, and 60, we get, respectively, squares,
equilateral triangles, and regular hexagons. Setting the angle input equal
to i gives a circle. Spend some time exploring POLY, examining how the
figures vary as you change the inputs. Observe that rather than drawing
each figure only once, POLY makes the turtle retrace the same path over
and over. (Later on we'll worry about how to make a version of POLY

that draws a figure once and then stops.)
Another way to explore with POLY is to modify not only the inputs,

but also the program; for example (see figure 1.9),

TO NEWPOLY SIDE ANGLE

REPEAT FOREVER

FORWARD SIDE

RIGHT ANGLE

FORWARD SIDE

RIGHT (2 * ANGLE)

(The symbol "se" denotes multiplication.) You should have no difficulty
inventing many variations along these lines, particularly if you use such
procedures as SQUARE and TRIANGLE as subprocedures to replace or
supplement FORWARD and RIGHT.
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ANGLE = 72

ANGLE = i

IAv'vr
rl

ANGLE = 135

Figure 1.8

Shapes drawn by POLY.

ANGLE 144

ANGLE = 60

ANGLE = 108

Introduction
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ANGLE = 30

ANGLE = 45

Figure 1.9
Shapes drawn by NEWPOLY.

Recursion
One particularly important way to make new procedures and vary old
ones is to employ a program control structure called recursion; that is,
to have a procedure use itself as a subprocedure, as in

TO POLY SIDE ANGLE

FORWARD SIDE

RIGHT ANGLE

POLY SIDE ANGLE

ANGLE = 144

ANGLE = 125

The final line keeps the process going over and over by including "do
POLY again" as part of the definition of POLY.
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ANGLE = 95

ANGLE = 120

Figure 1.10
Shapes drawn by POLYSPI.

One advantage of this slightly different way of representing POLY is

that it suggests some further modifications to the basic program. For
instance, when it comes time to do POLY again, call it with different
inputs:

TO POLYSPI SIDE ANGLE

FORWARD SIDE

RIGHT ANGLE

POLYSPI (SIDE + 1, ANGLE)

Figure 1.10 shows some sample POLYSPI figures. Look carefully at how
the program generates these figures: Each time the turtle goes FORWARD

it goes one unit farther than the previous time.

ANGLE = 90

ANGLE = 117

Introduction
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Figure 1.11
The vertices of a POLYSPI.

A more general form ofPOLYSPI uses a third input (INC, for increment)
to allow us to vary how quickly the sides grow:

TO PQLYSPI (SIDE, ANGLE, INC)

FORWARD SIDE

RIGHT ANGLE

POLYSPI (SIDE + INC, ANGLE, INC)

In addition to trying POLYSPI with various inputs, make up some of your
own variations. For example, subtract a bit from the side each time,
which will produce an inward spiral. Or double the side each time, or
divide it by two. Figure 1.11 illustrates a pattern made drawing only the
vertices of POLYSPI, shown at four scales of magnification (see exercise
13).

10 X blowup, i arm right natural scale, 10 arms left

reduction, 31 arms right, 41 left reduction, 72 arms straight
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ANGLE = O
INCREMENT = 7

ç_
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ANGLE = 2

INCREMENT = 20

Figure 1.12

Examples of INSPI.

ANGLE = 40

INCREMENT = 30

Another way to produce an inward spiral (curve of increasing curva-
ture) is to increment the angle each time:

TO INSPI (SIDE, ANGLE, INC)

FORWARD SIDE

RIGHT ANGLE

INSPI (SIDE, ANGLE + INC. INC)

Run INSPI and watch how it works. The turtle begins spiraling
inward as expected. But eventually the path begins to unwind as the
angle is incremented past 180°. Letting INSPI continue, we find that it
eventually produces a symmetrical closed figure which the turtle retraces
over and over as shown in figure 1.12. You should find this surprising.
Why should this succession of FORWARDs and RIGHTs bring the turtle back
precisely to its starting point, so that it will then retrace its own path?
We will see in the next section that this closing phenomenon reflects the
elegant mathematics underlying turtle geometry.

20 Introduction

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1626040/9780262362740_caa.pdf by University of New Mexico user on 18 January 2022



Turtle Graphics 21

Exercises for Section 1.1

We said in the text that when the inputs to the POLY procedure are
small, the resulting figure will be indistinguishable from a circle. Do
some experiments to see how large you can make the inputs and still
have the figure look like a circle. For example, is an angle of 200 small
enough to draw acceptable circles?

The sequence of figures POLY(2,2), POLY(1,1), POLY(.5, .5),

all with the same curvature (turning divided by distance traveled), ap-
proaches "in the limit" a true mathematical circle. What is the radius
of the circle? [HA]

[P] Write a procedure that draws circular arcs. Inputs should specify
the number of degrees in the arc as well as the size of the circle. Can
you use the result of exercise 2 so that the size input is the radius of the
circle? [A]

Although the radius of a circle is not "locally observable" to a turtle
who is drawing the circle, that length is intimately related to a local
quantity called the "radius of curvature," defined to be equal to i
curvature, or equivalently, to distance divided by angle. What is the
relation between radius and radius of curvature for a POLY with small
inputs as above? Do this when angle is measured in radians as well as
in degrees. [A]

[P] Construct some drawings using squares, rectangles, triangles,
circles, and circular arc programs.

[P] Invent your own variations on the model of POLYSPI and INSPI.

How many different 9-sided figures can POLY draw (not counting
differences in size or orientation)? What angle inputs to POLY produce
these figures? How about 10-sided figures? [A]

[PD] A rectangle is a square with two different side lengths. More
generally, what happens to a POLY that uses two different side lengths
as in the following program?

TO DOUBLEPOLY (SIDE1, SIDE2, ANGLE)

REPEAT FOREVER

POLYSTEP SIDE1 ANGLE

POLYSTEP SIDE2 ANGLE
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In particular, how does the symmetry of DOIJBLEPOLY relate to that of
POLY with the same ANGLE input? [HA]

[D] Which encloses the larger areaPOLY (5, 5) or POLY (6, 6)? [HA]

[P] Find inputs to INSPI that give a nonclosed figure. Can you give
a convincing argument that the figure is really nonclosed rather than,
say, a closed figure too big to fit on the display screen? [A]

[P] If the display system you are using allows "wraparound," you
can get some interesting effects by trying POLYs with very large sides.
Explore these figures. [H]

There are three kinds of "interchanges" we can perform on turtle
programs: interchanging RIGHT and LEFT, interchanging FORWARD and
BACK, and (for programs that terminate) reversing the sequence of in-
structions. Describe in geometric terms the effect of each of these opera-
tions, both by itself and in combination with the others. Start with the
class of programs that close (return the turtle to its initial position and
heading). [HA]

[P] The pattern made by the vertices of POLYSPI can be an interest-
ing object of study. The dots seem to group into various "arms," either
straight or curving left or right. To draw these patterns, you can use
the procedures

TO SPIDOT ANGLE

SUBSPIDOT O ANGLE

TO SUBSPIDOT SIDE ANGLE

FORWARD SIDE

DOT

RIGHT ANGLE

SUESPIDOT (SIDE + 1, ANGLE)

TO DOT

PENDOWN

FORWARD i

BACK i
PENUP

For example, predict what you will see between SPIDOT 90, which has
four arms, and SPIDOT 120, which has three. Can you explain the
sequence of figures you actually do see? Figure 1.11 shows how the figure
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drawn by the same SPIDOT program seems to have different numbers
of spiral arms when viewed at different scales of magnification, which
can be accomplished by changing the increment to SIDE in SUBSPIDOT.
Study this phenomenon. [H]

[P] Suppose we have a function called RANDOM that outputs a random
digit (O through 9). Play around with the procedure

TO RANDPOLY SIDE ANGLE

REPEAT FOREVER

IF RANDOM = O THEN PENDOWN

ELSE PENUP

FORWARD SIDE

RIGHT ANGLE

Use this program as the basis for some psychology experiments. For
instance, what is the average number of sides that must be drawn before
people can recognize which POLY it is?

[D] Find some local and intrinsic way to describe an ellipse. Write
a program that makes the turtle draw ellipses, where the inputs specify
the size and eccentricity of the ellipse. [A]

1.2 POLYs and Other Closed Paths

This section develops some general theorems about turtle programs by
studying one of the simplest of them, POLYwhich, when it closes,
exhibits clearly some properties shared by all closed paths, no matter
how complicated. Even when POLY doesn't close, it can serve as a model
that clarifies symmetry and other important properties of a very general
class of programs. Careful and patient study of such a simple program
will be richly rewarded.

1.2.1 The Closed-Path Theorem and the Simple-Closed-Path Theorem

You have probably already noticed that POLY with an angle input of
360/n draws a regular n-sided polygon. But it is not always true that
(number of sides) X (angle) = 360. If you try running POLY with an angle
of 144 you will see that it draws a five-pointed star, and 5 X 144 = 720,
not 360. Noticing that 720 is exactly twice 360 might lead us to guess
the following formula:

(number of sides) X (angle) 360 X (an integer).
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It's not hard to see why this formula is true. The number of sides
times the angle is precisely the total turning done by the turtle in
walking once around the figurethe net change in heading. If the
path is to close legitimately, and not just cross itself, then the turtle
must end its trip with the same heading it started out with. Thus,
the total turning must be some multiple of 3600.

Total turning is the central concept here. It certainly need not be
restricted to POLY. One can imagine any turtle program keeping a
running count of its turning, adding in RIGHTs and subtracting LEFTs.

Because only RIGHTs and LEFTs change heading, this total turning is
always exactly the total change in heading. In particular, if the path is a
closed path (one which restores the turtle's initial position and heading),
we can be confident that the net turning (= change of heading) is a
multiple of 3600. This gives us our first turtle-geometric theorem:

Closed-Path Theorem The total turning along any closed path is an
integer multiple of 360°.

Total turning is an intrinsic property of a path. It does not depend on
where the path starts, or how it is oriented with respect to "vertical."
The total turning of a closed path is frequently summarized simply by
the particular integer that multiplies 360. That integer is called the
rotation number of the path. As an exercise, follow the turtle around
the sample paths in figure 1.13 and compute the rotation numbers.

Does your experience with POLY suggest an improvement to the closed-
path theorem? A little experimentation should convince you that there
are two essentially different classes of POLY paths: simple polygons (such
as squares, triangles, and hexagons); and star polygons (such as five-
pointed stars), which are characterized by the fact that the paths cross
themselves. The simple polygons always appear to have total turning
equal to +360° or 360°, depending upon the direction in which the
turtle traverses the path. The star polygons, however, always have total
turning different from +360°.

One wonders if this experimental correlation has general significance.
It is -not hard to prove its validity for POLYs (see exercise 11 below). But
the more important conjecture involves generalizing from POLYs to any
simple closed path (a closed path that does not cross itself):

Simple-Closed-Path Theorem The total turning in a simple closed path
is 360° (to the right or to the left). That is to say, the rotation number
of any simple closed path is + 1.
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Figure 1.13
Rotation numbers of closed paths.

and thus

rotation number 1

Take a look at some examples of simple closed paths to convince
yourself of the plausibility of this theorem, which is difficult to prove
rigorously. We will return to it later, in chapter 4. For now you should
note that this theorem says that there is a relation between two very
different aspects of a closed paththe turning and the crossing points.
That makes it considerably less obvious than the closed-path theorem,
but also much more powerful. We give one example of the power here
and several more in the exercises.

The simple-closed-path theorem says that the sum of the exterior
angles of any simple polygon is 360°. For triangles, we can rewrite this
in terms of the three interior angles A, B, and C to get

(180 - A) + (180 - B) + (180 - C) = 360,

POLYs and Other Closed Paths 25

rotation number O rotation number 2
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(A + B + C) = the sum of interior angles = 3 X 180 - 360 = 180.

So, as a corollary of the simple-closed-path theorem, we have derived the
familiar result that the interior angles of a triangle must sum to 1800.
(Exercises 6-9 detail some other applications of the simple-closed-path
theorem.)

1.2.2 The POLY Closing Theorem

The POLY procedures we've written so far, iterative and recursive, have
one fault: They never stop. That makes it generally impossible to
use them as subprocedures in more complicated programs. Moreover,
the "inefficiency" of a drawing program that doesn't know when it is
done may simply offend one's sensibilities. The problem of making a
POLY program that stops is a mathematical one with two fundamentally
different approaches.

The global approach is as follows: Sit back and look ahead. Given an
ANGLE input, compute how many times the turtle must run the basic
POLY step, FORWARD SIDE, RIGHT ANGLE, before the path closes and
starts again. Then you need only repeat the POLY step that many times.
The local approach revolves around questions like the following: How can
the turtle know, as it is walking along, when it is done? What clue can
the turtle be watching for? We will take the second approach here, as it
turns out to be simpler. The first approach, however, is mathematically
rich and is pursued in section 1.4.

Consider: How could a turtle, while walking along drawing a POLY,

know when the figure has been completed? (A computer turtle cannot
see the lines it is drawing.) Thinking locally, the turtle knows only
two things, position and heading. Neither of these is truly local, for to
measure them usually involves a coordinate system. But the one locally
computable quantity we know abouttotal turningcan do the trick.
The closed-path theorem says that if the path closes, then total turning
must be a multiple of 360°. How about the converse: If the total turning
reaches a multiple of 360°, will the path be closed? This is not true for
turtle paths in general, but it is true for POLY:

POLY Closing Theorem A path drawn by the POLY procedure will close
precisely when the total turning reaches a multiple of 360°.

There is one bug in this theorem, one exceptional case: If the angle of
the POLY is equal to O then the turtle just walks off along a straight
line. The path never closes, even though at every point the total
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Figure 1.14
POLY lays down a sequence of equal chords.

turning is 0, a perfectly good multiple of 360. But this exceptional case,
FORWARD SIDE, RIGHT 0, is transparent enough so that we can just leave
it out of consideration in most instances. Any multiple of 3600 will, of
course, have the same effect as a turn of 0.

We'll outline two different proofs of the POLY closing theorem.

Sketch of' Proof i Have you noticed the important fact that the vertices
of POLY lie on a circle? (Everything about POLY seems to be circular!)
We leave the proof of this geometric fact to you in exercise 2. Using
this fact, one can redescribe POLY as the sequential laying down of fixed-
length chords on a fixed circle as shown in figure 1.14. The point is that
there is only one chord of the required length that can be produced by
the turtle starting at any given heading. (Actually there are two, but
one of them has the wrong sensethe turtle would turn off the circle
after traversing the chord.) Thus, whenever the turtle returns to its
initial heading (total turning = any multiple of 360°) it will be about to
retrace the first chord and so should stop. Notice how this proof breaks
down for the exceptional case FORWARD SIDE, RIGHT 0. The turtle must
do some turning or else the vertices will lie on a straight line rather than
on a circle.

An alternative proof is inspired less by geometry and more by ideas
from the theory of computation. It proceeds as follows.

Sketch of Proof 2 Assume that we have a turtle following a POLY pro-
cedure, and that at some time the turtle returns to its initial heading
(heading change = a multiple of 360°) but not to its initial position. We
will show that this assumption leads to a contradiction. (The trick of
the proof is to show that the turtle must walk off to infinity in some
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PO

(e)

Figure 1.15
The POLY closing theorem. (a) Suppose the turtle returns to his initial heading, but
not his initial position. (b) n more steps must do the same thing again. (c) From a
new heading (after one POLY step), chunks of n steps carry the turtle away on a new
line.

direction. Then, by regrouping the sequence of commands, we'll show
that the turtle runs off to infinity in a different direction.)

By assumption, the turtle returns to its initial heading after some
number (say, n) repetitions of the POLY step. (Notice that n cannot
be i if we neglect the exceptional case ANGLE = o.) Draw a dotted
line connecting the turtle's initial position Po to its position p after n
repetitions. This line makes some angle O with the turtle's initial heading
(figure l.15a).

Now let the turtle continue for n more repetitions of the POLY step.
Since the turtle starts out from p with the same heading it had when
it started at po, the effect of n more POLY steps will be to do the same

Pa

(a) (b)

-
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thing again, moving the turtle farther out along the same line, and again
bring it back to the initial heading (figure 1.15b). Continuing with n
more repetitions, and n more, and so on, we see that the turtle must
run off infinitely far in the direction of the dotted line. Moreover, at no
point can the turtle's path stray very far from the line, since the turtle
must get back to it at the end of every n POLY steps.

Now let's return the turtle to the initial state and run the POLY step
for one iteration. We will now see the turtle at a new position pi with a
different heading. If we continue with n repetitions from here, the turtle
will end up on a new dotted line that lies at angle O to this new heading.
(figure 1.15c).

But the problem is obvious now. Running another sequence of n,
then another and another, forces the turtle off infinitely far along this
new line. But the turtle cannot remain close to both dotted lines as it
marches off to infinity. This contradiction means that our assumption
that the turtle does not come back to the initial position must have been
wrong. This completes the proof.

This second proof demonstrates an important computational strategy:
Divide a process into meaningful chunks (for example, the parts of
the POLY between equal headings), then pay close attention to the net
action of the chunks. Structuring a complex program as a group of
subprocedures illustrates the same strategy.

Here finally is our POLY with stop rule:

TO POLYSTOP SIDE ANGLE

TURN i- O

REPEAT

FORWARD SIDE

RIGHT ANGLE

TURN - (TURN + ANGLE)

UNTIL REMAINDER (TURN, 360) = O

Note the use of the new symbol +, which means "assign to the variable
on the left the value given on the right." The procedure REMAINDER is

a function that computes the value of its first input modulo its second
input. The program also makes use of the iteration construct "REPEAT

UNTIL (some condition)", which keeps repeating the indented portion
until the condition is true (and always does the indented part at least
once).
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Figure 1.16
Examples of POLYROLL.

This program allows us to use POLYs as building blocks in more com-
plex figures; for example (see figure 1.16),

TO POLYROLL SIDE ANGLE1 ANGLE2

REPEAT FOREVER

POLYSTOP SIDE ANGLE1

RIGHT ANGLE2

Exercises for Section 1.2

1. The simple-closed-path theorem has a serious bug as it stands. It pur-
ports to give the precise multiple of 360 that describes the total turning
for a set of paths. Unfortunately, one can insert a step, RIGHT 360,

that does not change the path at all, yet changes the multiple of 360
given by total turning. These gratuitous 360s must be pruned from
the program before the theorem can hold. However, the pruning can
be somewhat complicated if the gratuitous 360s are hiddenas, for ex-
ample, LEFT 160 followed by RIGHT 360 being written as RIGHT 200.

Give general rules for pruning. (Think of writing a procedure that takes
the text of a turtle procedure as input and returns the pruned version.)
Try your method on the following program:

TO PRUNE.ME

FORWARD S

RIGHT 360

FORWARD S

LEFT 240

POLYROLL 100 60 45

30 Introduction
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Figure 1.17
Relate the angles A and B to the total turning over the arc.

FORWARD 10

LEFT 120

FORWARD O

LEFT 120

FORWARD 10

RIGHT 120

Can you give some motivation for pruning other than that it makes the
simple-closed-path theorem true? [A]

Fill in the details in the first proof of the POLY closing theorem (see
"sketch of proof 1"), including a proof that the vertices of POLY lie on a
circle. [H]

Prove that if the angle input to POLY is an irrational number, the
turtle never returns to its initial position, and yet always remains within
a finite distance from it. [A]

[P] Invent some variations on the POLYROLL program, perhaps modeled
after POLYSPI and INSPI.

Rewrite the POLYSTOP program recursively, so that it doesn't use the
REPEAT command. [A]

What is the sum of the interior angles of an n-gon? What is the
interior angle of a regular n-gon? Show how these formulas can be easily
derived by using the simple-closed-path theorem. [HA]

Suppose we have a simple arc (an arc that does not cross itself) and
that we join the endpoints of the arc by a straight line. Suppose further
that the line and the arc do not intersect except at the endpoints (figure
1.17). Use the simple-closed-path theorem to give a formula relating the
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Figure 1.18
Solve for A in terms of G.

total turning over the arc to the (interior) angles that the arc makes with
the line. [HA]

Apply the result of the previous exercise to find the angle between a
chord of a circle and the arc that it subtends (figure 1.18a). [Al

Use the previous exercise to compute the arc of a circle subtended by
an inscribed angle (figure l.18b). [HAI

Proof i of the POLY closing theorem was based on the fact that the
vertices of a POLY all lie on a circle. Use the simple-closed-path theorem
to show that the amount of arc on the circumscribed POLY circle from
one vertex to the next is just the angle input to the POLY procedure. IHI

We said that we would delay giving a proof of the simple-closed-path
theorem until chapter 4. Give a proof of the theorem in the special case
where the simple closed path is a POLY figure. [Hl

If you take a bicycle and lock the front wheel at angle O from straight
ahead (where O is rather small), the bicycle will turn in a circle. What
is the radius of the circle, given that the length between wheel centers
of the bicycle is D? [HA]

1.3 Looping Programs

We said that the turtle approach allows us to take concepts that are
useful in thinking about computation and apply them to the study of

32 Introduction
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geometry. One such concept is that of state. Of course the idea of state
is not unique to computer science. It is important in physics, chemistry,
and any other field involving configurations that are subject to change.
But we do not generally look upon geometry in this way; geometric
figures are usually regarded as static objects. Turtle geometry provides
a more dynamic perspectivethe geometry is tied to movements.

The state of the turtle is given by specifying its position and its
heading. From the state point of view, the basic turtle commands-
FORWARD, BACK, LEFT, and RIGHTare state-change operators: They
cause the turtle to change state. In this section we will look at a sequence
of turtle commands purely in terms of its net effect in changing the initial
state to the final state, ignoring what comes between. Thus, a sequence
of turtle commands can be summarized as a single state-change operator.
At this level of abstraction all programs that generate a closed path are
the samethey are all state-change-equivalent. They correspond to the
simplest of all state-change operators, the one that does nothing and
leaves the initial state invariant.

1.3.1 The Looping Lemma

There is something striking about the paths drawn by the modifications
to POLY discussed at the end of section 1.1. It is as if their descent
from POLY cannot be suppressed! You should have noticed the same
phenomenon in many of your own programs. Figure 1.19 shows a POLY
skeleton in dotted lines underlying the elaborate surface structures of
NEWPOLY and INSPI. Can we understand this phenomenon?

The key observation is this: Between successive vertices of the POLY
skeleton, the program does the same thing. We might say that the
program is just a decorated version of the underlying POLY. That the
paths of NEWPOLY and INSPI consist of a collection of identical pieces
is evident from the pictures they draw. In the case of NEWPOLY the
repetitive or looping behavior is clear in the program structure. INSPI 's
program structure will require a second look. For now we proceed on
the basis of the visual evidence of the paths and consider the class
of programs that do the same thing over and over, regardless of the
complexity of the basic loop (the thing that is repeated).

We can peel away the decoration by focusing on the net result of the
basic ioop. What is the difference between the initial state and the final
state of the turtle? By the nature of the turtle oniy two things can
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90 72

135 180

60 144

Figure 1.19
NEWPOLYs and INSPIs with "POLY skeletons" indicated by dashed lines. (Numbers are
skeleton angles.)
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Figure 1.20
(a) The net result (state change) of some basic ioop. (b) Repeating the net result
lays down the POLY skeleton.

happen: a net change of position and a net change of heading. Figure
1.20a shows the general case. Notice that we cannot assume that the
change of position is in the same direction as the turtle's original heading;
hence, we must include an angle i between the initial heading and the
change-of-position line.

When the basic ioop is repeated, the same change of state must occur,
but now relative to the new heading and hence rotated by the heading
change which the turtle underwent in the first loop. We will call this
change of heading T (for total turn). The next loop must follow the same
pattern, and so on. Figure 1.20b shows the repeated process laying down
the skeleton POLY. The angle i is irrelevant to the intrinsic properties of
the underlying POLY---it just determines the relative orientation of the
POLY with respect to the initial heading of the turtle. The important
quantity is the heading change from beginning to end of the basic loop,
the total turning T in the basic loop. This is the angle of turning from
one segment of the POLY to the next, and it determines the figure's
properties. We can state this result more formally:

Looping Lemma Any program that is just a repetition of some basic
loop of turtle instructions has precisely the structure of POLY with an
angle input equal to T, the total turning in the loop.

You should be able to say what "has the structure of POLY" means in
detail. It includes such things as repeatedly touching base with a circle
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if total turning is not equal to a multiple of 3600, and touching base
with a line if it is. It also includes the fact that the symmetry type of
the figure is the same as that of the underlying POLY. For instance, if
the total turning of the basic loop is 90°, the repeated loop will have the
fourfold symmetry of a square, necessarily closing in four iterations of
the ioop.

1.3.2 Examples of Looping Programs

Let's analyze some simple looping programs. In NEWPOLY the total
turning is 3 X ANGLE. If ANGLE is 144, then T = 3 X 144 = 432, which is
equivalent to 72 = 360/5. Hence, the five-pointed star NEWPOLY actually
has the structure of a pentagon (not a POLY with ANGLE 144)something
that might not have been apparent froni just looking at the path. (The
fact that the path is simple is a clue. Also, observe that the program
visits the vertices of the underlying pentagon in sequence, as does POLY
with an ANGLE of 72, rather than skipping between vertices, as does POLY
with ANGLE 144.)

Let's take a look at INSPIin particular INSPI with ANGLE equal to
2 and INCREMENT equal to 20, which draws the decorated five-pointed
star shown in figure 1.12. The program simply alternates FORWARD SIDE
with turning RIGHT an ever-increasing angle which is tabulated in the
following:

RIGHT 2
RIGHT 2 + 20
RIGHT 2 + 2*20
RIGHT 2 + 3*20

RIGHT 2 + 17*20
RIGHT 2 + 18*20 = 2 + 360

The last command has the same effect as the first, and the one to follow,
RIGHT 2 + 19 )< 20 = RIGHT 2 + 20 + 360, is the same as the
second. The program is clearly staging a repeat performance of the first
18 steps. Computing the total turning, we find

2+(2+20)+(2+2 X 20)+...+(2+17 X 20)
= 18 X 2+(1 +2++11) X 20 = 3,096,

which is equal to 216, or 144, modulo 360. (When computing the
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ANGLE = 90 ANGLE = 144 ANGLE = 60
MAX 10 MAX = 8 MAX = 10

Figure 1.21
Spirolaterals.

heading change, we need only consider the turning modulo 3600.) We
now see the origin of the five-pointed star POLY skeleton. INSPI is typical
of the way in which, because of the modulo-360 effect, many seemingly
ever-changing programs actually form repeating loops.

Another interesting repeating-loop program draws the family of figures
called spirolaterals shown in figure 1.21:

TO SPIRO (SIDE, ANGLE, MAX)

REPEAT FOREVER

SUBSPIRO (SIDE, ANGLE, MAX)

TO SUBSPIRO (SIDE, ANGLE, MAX)

COUNT + i

REPEAT

FORWARD (SIDE * COUNT)

RIGHT ANGLE

COUNT ' (COUNT + 1)

UNTIL COUNT > MAX

If you study this procedure you will see that it amounts to having the
turtle draw an initial chunk of a POLYSPI (in fact, the first MAX lines of
a POLYSPI) and repeat this over and over. It is easy to see that the basic
loop in SPIRO has total turning ANGLE X MAX.

We will refer to the figures drawn by SPIRO as simple spirolaterals. A
more general kind of spirolateral (shown in figure 1.22) maintains a basic
loop in which each vertex has the same amount of turning, but allows the
turtle to turn left rather than right at some of the vertices. To specify
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ANGLE = 45 ANGLE = 120 ANGLE = 90
MAX = 11 MAX = 6 MAX 11
LIST = [8 9] LIST = [1 3] LIST = [3 4 5]

Figure 1.22
Generalized spirolaterals.

these figures we need to indicate the direction of the turtle's turning
at each vertex. The corresponding GSPIRO procedure takes four inputs:
a side length (the length of the shortest side in the figure), an angle
through which the turtle turns left or right at each vertex, a number
MAX telling how many steps are in the basic loop, and a list of numbers
specifying the vertices at which the turtle should turn left. If the vertex
number is a member of the list, then the turtle turns left at the vertex;
otherwise the turtle turns right. (The MEMBER command is used to tell
whether or not something is a member of a list.) Thus, the GSPIRO

procedure is

TO GSPIRO (SIDE, ANGLE, MAX, LIST)

REPEAT FOREVER

SUBGSPIRO (SIDE, ANGLE, MAX, LIST)

TO SUBGSPIRO (SIDE, ANGLE, MAX, LIST)

COUNT - i

REPEAT

FORWARD SIDE * COUNT

IF MEMBER (COUNT, LIST)

THEN LEFT ANGLE

ELSE RIGHT ANGLE

COUNT - COUNT + i

UNTIL COUNT > MAX
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ANGLE = 90
MAX = 8
LIST = [4 8]

Figure 123
Unexpectedly closed spirolaterals.

ANGLE 120
MAX = 11
LIST = [3 4 6 7]

The basic loop SUBGSPIRO makes MAX - L right turns and L left turns
where L is the number of elements in LIST, making a total turning of

(MAX - L) X ANGLE - L X ANGLE = (MAX - 2L) X ANGLE.

One intriguing property of spirolaterals is that they may be closed even
when the heading change is a multiple of 3600. Total turning a multiple
of 3600 would lead you to expect a POLY substrate that would march
off on a straight line to infinity. But, by a remarkable coincidence, the
sidelength of the underlying POLY (which we did not bother to compute
for any of these other programs) might turn out to be 0 as well! This
corresponds to having a looping program in which the basic loop closes
all by itself. This phenomenon deserves a name: unexpectedly closed.
Figure 1.23 gives some examples of unexpectedly closed spirolaterals.

1.3.3 More on the Looping Lemma

We end the body of this section with two remarks about the looping
lemmaone about its implications beyond predicting the symmetry of
looping programs, the other about increasing the strength of the lemma.

First, the looping lemma constrains the behavior of any looping pro-
gram. Under many circumstances, it may be possible to exclude simple
looping as a way of generating a class of paths. For example, any infinite
spiral neither touches base on a fixed circle nor marches off to infinity
around a line as POLY does, so it cannot be drawn by any looping pro-
gram.
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Second, it can be very valuable to know how to identify which pro-
grams are looping programs without a detailed look at each particular
case. We can give a purely program-structural criterion that serves to
identify such programs: A program must loop (or terminate) if it consists
of any combination of

fixed and finite sequences of turtle commands FORWARD, BACK, LEFT,

and RIGHT with specified numeric inputs (these are called fixed instruc-
tion sequences),

repeats, and

calls to programs that satisfy these properties.

Notice that this criterion is recursive in form.

1.3.4 Technical Summary

The following is a technical recap of results stated or implied in this
section. The detailed proofs of these facts are left as exercises.

The Canonical Form of a Turtle State-Change Operator
Any fixed instruction sequence of turtle commands is state-change-equi-
valent to a POLY step sandwiched between a RIGHT I and LEFT I for
some angle I:

RIGHT I

FORWARD D

RIGHT T

LEFT I

The angle T is precisely the total turning of the fixed instruction se-
quence.

Looping Lemma and Classification of Looping Programs
Any program that repeats a fixed instruction sequence (or the equivalent,
as in INSPI) has the behavior of a POLY with angle T and side D in the
following senses (the angle T may be simply determined as the total
turning in the basic loop):

Boundedness If T O then the figure drawn by the program will lie
within a fixed distance from some circle, and hence will be bounded. In
the exceptional case, T = 0, the figure will lie within a fixed distance
from some line (figure 1.24).
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TO T=O

Figure 1.24
Any looping program is confined to a region (a) near a circle (T O) or (b) in the
exceptional case (T O) near a line.

Closing If T is a rational multiple of 3600, the program will always
draw a closed path, with the usual exception, T = 0, which causes the
program to walk off to infinity. The exception to the exception is when
D is also zero, the equivalent of POLY 0 0, in which case the program is
"unexpectedly" closed. If T is irrational the program will never close.

Symmetry The program must have the same rotational symmetry as
POLY D T. In particular, if T = 360s/r where s/r is a fraction in lowest
terms, then the program will have r-fold symmetry. (We have not yet
discussed symmetry in detail. This topic will form the basis of section
1.4.)

1.3.5 Nontechnical Summary
Doing the same thing over and over is either circular, straight-linish, or
very dull.

Exercises for Section 1.3

[P] Draw at least three distinct (ignoring size) INSPI figures with
sixfold symmetry.

Give a proof of the looping lemma and the classification of looping
programs given in the technical summary. This may be done using the
form of a general state-change operator (given above) or by modifying
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Proof 2 of the POLY closing theorem of subsection 1.2.2. Give bounds
for the "fixed distances" specified in the boundedness part in terms of
the instructions in the basic ioop.

[P] Figure 1.23 shows some unexpectedly closed spirolaterals. Find
some more.

What is the heading change for INSPI with an ANGLE of A and an
INCREMENT of 10? [A]

[D] What is the heading change for INSPI with an ANGLE of A and
an INCREMENT of 360/n, where n is an integer? [HA]

[DF] Compute the total turning, T, of the basic loop in the following
looping program in terms of the angle inputs BOTTOM and TOP. Use
your formula to draw at least three different (ignoring size) figures with
threefold symmetry; fourfold, fivefold. [HA]

TO POLYARC (SIDE, BOTTOM, TOP)

REPEAT FOREVER

INSPI.STOP (SIDE, BOTTOM, TOP, 1)

INSPI.STOP (SIDE, TOP, BOTTOM, -1)

TO INSPI.STOP (SIDE, START.ANG, END.ANG, INC)

REPEAT

FORWARD SIDE

LEFT START.ANG

START.ANG - START.ANG + INC

UNTIL START.ANG = END.ANG

[P] Make "even more general" spirolaterals by allowing the turtle to
move BACK at certain of the vertices. Analyze this program. Find some
unexpectedly closed figures.

[DD} Show that a simple spirolateral can never be unexpectedly
closed. [Hl

[DD] Can INSPI produce unexpectedly closed figures?

[P] Invent some disguised looping programs like INSPI. Give a
formula for the total turning of the basic loop in terms of the inputs
to the procedure. Find inputs that draw figures with simple symmetry.
Find inputs that draw unbounded figures. Determine whether any of
these figures are unexpectedly closed.
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When we summarize turtle paths as state-change operators, the
closed paths are precisely those operators that leave the turtle's state
unchanged. This suggests the generalization of studying operators that,
when run twice (or three times, and so on), leave the state unchanged.
Describe the paths corresponding to these operators. [A]

[P] Can you characterize "looping programs" in terms of the com-
mands used in writing them? In particular, consider the following pro-
gram structures, where X and Y are variables and n is some fixed number:

do loops

goto statements

assignment statements of the form x i- n

assignments of the form X - Y + n

conditional statements of the form IF X = n

For each kind of structure, say whether a program that repeats a block
of instructions consisting of basic turtle commands together with that
particular structure must necessarily be equivalent to a program which
repeats a fixed instruction sequence. Are there bad combinations, in the
sense that two structures which separately lead to looping may not loop
when combined in a single program?

1.4 Symmetry of Looping Programs

Section 1.3 showed how the symmetry of any looping program is deter-
mined by the symmetry of an underlying POLY skeleton. But what deter-
mines the symmetry of the POLY? To begin with, it is clear that the SIDE

input in POLY SIDE ANGLE does not affect the shape of the figure at all
but only determines the size. The real question is: How does the ANGLE

input affect the symmetry of POLY? To be more precise, we can break
this question into two questions:

For a given ANGLE input, how many vertices will the resulting POLY have?

Conversely, if we want to produce a POLY with a specified number of
vertices, what number(s) can we use for the ANGLE input?
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The purpose of this section is to answer these questions, and in doing so
to provide a taste of the mathematics of number theory.

1.4.1 The Symmetry of POLY

We want to relate the number of vertices, n, to the input ANGLE, which
we'll call A for short. The POLY closing theorem of 1.2.2 gives us a very
good start. It says POLY is done when the turtle has turned a multiple
of 3600, that is, when n turns of A each is some multiple of 360:

nA=360R.

We've given the multiple the name R for a good reason: It is the rotation
number of the figure, as defined in subsection 1.2.1.

But the above equation, which defines a common multiple of A and
360, doesn't tell the whole story. R and n aren't just any integers
satisfying the equation; they are the smallest (positive) that do so,
corresponding to the first time headirg change reaches a multiple of 360.
That is why the number nA = 360R is called the least common multiple
of A and 360, denoted LCM(A, 360). The answer to our first question is:

For an ANGLE input of A, the number of vertices of the resulting POLY is
n = LCM(A, 360)/A and the rotation number is R LCM(A, 360)/360.

What we've done so far is little more than giving the answer a name.
How does one go about computing the least common multiple? One way,
which assumes that A is an integer, is to express A and 360 as products
of primes. Then each of the expressions nA and 360R will give a partial
view of the factorization of LCM(A, 360). For example, if A = 144 then
we have A = 2 X 32, 360 = 2 X 32 X 5. Using this decomposition, we
can deduce that

LCM(144, 360) = n X 2 X 32 = R X 2 X 32 x 5
2 X 32 X 5 = 720,

for it is easy to see that the LCM must contain at least four factors
of 2 (from A), one factor of 5 (from 360), and two factors of 3 (from
either A or 360), and from this we derive that n = 5 and R 2.

So POLY loo 144 has fivefold symmetry (it consists of n = 5 identical
pieces identically hooked together) and rotation number 2.

Another way to compute the least common multiple is to solve the
equation nA = 360R exactly as the procedure POLY solves it: by running
until it closes! Make a list of n X A for n = 1, 2, 3,... and see
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when n X A is a multiple of 360. Applying this method to our example
A= 144 gives

n nA multiple of 360?

1 144 no
2 288 no
3 432 no
4 576 no
5 720 yes

We can formulate this method as a procedure for computing the least
common multiple:

TO LCM A B

Ni-O
REPEAT

N-N+ j
MULTIPLE - N * A

UNTIL REMAINDER (MULTIPLE, B) = O
RETURN MULTIPLE

Such "brute force" methods of computation can be very useful. We will
see in the next subsection the utility of a simple modification of this
process, called Euclid's algorithm. The LCM procedure uses RETURNa
command we haven't seen before. Since the procedure is supposed to
be computing some value, we need to have some method for "getting
the value out of the procedure." This is what RETURN does. In practice
the returned value will be used as an input to another operation, for
example, PRINT LCM(144,360).

Let's turn to our second question about the symmetry of POLY figures.
Suppose we want to produce figures of a given symmetry; what ANGLE
can we use? To answer this question, let's start again with the basic
symmetry equation nA = 360R. Since we want to find values for A that
will produce a given value for n, we should be able to use any A that
satisfies A = 360R/n. The question is: What value(s) can we choose
for R? For instance, we can take R = 1, A = 360/n, which always
worksit makes a regular n-sided polygon. But R = 2, A = 2 X 360/n
may not work. Here's an example: Suppose we want tenfold symmetry,
n = 10. If we take R = 2, then A will be 72. This makes a pentagon,
not a figure with tenfold symmetry.

We've been fooled. A = 360R/n doesn't always give n-fold symmetry.
Let's look more carefully at the above guess, R = 2, n = 10.
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Not only does the resulting pentagon not have tenfold symmetry, but it
has rotation number 1, not 2. We clearly are not justified in naming our
guesses 10 by n and 2 by R, so let's give them new names, n' and R'.
How do these relate to the real n and R?

Let's compute the real n and R that correspond to A = 360R'/n'. We
want the smallest positive integers n and R that satisfy nA = 360R. But
this equation is satisfied by all pairs of integers R and n with the property
that R/n = R'/n'. Since we want R and n to be the smallest pair with
this property, we should take them to be the numerator and denominator
of the fraction R'/n' reduced to lowest terms. In our example we had
R'/n' = 2/lo = 1/5, so n = 5 and R = 1. To put this another way,
A = 360R'/n' will give n'-fold symmetry only when R'/n' cannot be
reduced, that is to say, when R' and n' have no factors in common.
Thus, the answer to the second question above is the following:

To generate a PULY with n-fold symmetry, take the ANGLE input to be
A 360R/n, where R is any positive integer that has no factors in
common with n.

1.4.2 Common Divisors

We've answered our questions about the symmetry of POLY in terms of
such concepts as common multiples and common factors. Let's take a
detour from turtle geometry and turn this process around to see what
knowing about POLY can tell us about these number-theoretic concepts.

To begin with, the previous subsection led us to consider pairs of
integers n and R that have no common factors. Such pairs are called
relatively prime. We saw that A = 360R/n draws an n-sided POLY
precisely when R is relatively prime to n. We'll reinterpret this fact in
terms of a new way of looking at the POLY process.

Think of the n vertices of POLY lying on a circle and numbered from O
through n - 1. To construct the various n-sided POLYs we can connect
the vertices in sequence using the following sorts of rules: (1) Connect
each vertex to the very next one; (2) connect the vertices, skipping one
in between; (3) connect the vertices, skipping 2 in between; and so on.
Figire 1.25 illustrates the various patterns for n 8. There are n - 1
possibilities, which correspond to R = 1, 2,.. . , n - i in the formula
A = 360R/n. For any choice of R, if we start at the vertex numbered
O, then that is connected to the vertex numbered R, which is connected
to the vertex numbered 2R, and so on. Since we're counting these ver-
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0, 4, 8, 12, ... (mod 8)

0,6, 12,18,... (mod 8)

Figure 1.25
Patterns of connecting eight points, n = 8.

0,5, 10, 15,. . . (mod 8)

0,7, 14,21,. .. (mod 8)
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0,1,2,3,... (mod 8) 0,2,4,6,... (mod 8) 0,3,6,9,... (mod 8)
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tices modulo n, we see that the sequence of vertices hit are precisely the
multiples 0, R, 2R,.. . , (n - 1)R taken modulo n.

Now we saw in the previous subsection that, if R and n are relatively
prime, then the resulting POLY figure will have n vertices. In terms of the
circle picture this means that all vertices on the circle 0, 1, 2,.. . , n - i
are reached. Consequently, if R and n are relatively prime, then the
multiples of R taken modulo n must include all the numbers between O
and n - 1. In other words, if s is any integer between O and n - 1, then
there is some multiple of R, say pR, with pR = s (mod n). Moreover, if
R and n are not relatively prime, then at least one of the n vertices will
not be touched by the POLY process, and so there will be some number
s which is not equal to pR (mod n) for any p. Restating the equality
modulo n in terms of precise equality, we have the following:

Two integers R and n are relatively prime if and only if, for any integer
s, we can find integers p and q such that pR - qn = s.

This condition can be written in an equivalent form (exercise 10) that
reflects the fact that, if the vertex labeled i is hit, then all vertices must
be:

Two integers R and n are relatively prime if and only if there exist
integers p and q such that pR + qs 1.

In summary We have shown how to translate a condition about the
relative primality of two integers into a rather different condition which
has to do with representing integers as sums.

What exactly happens when R and n are not relatively prime? Figure
1.25 includes some examples: Taking n = 8 and R = 2 hits all the
even vertices (the multiples of 2); n = 8 and R 4 hits only O and
4 (multiples of 4); n = 8 and R = 6 hits all the multiples of 2. In
general, the vertices which are hitnumbered 0, R, 2R,. . . , (n - 1)R,
taken modulo ngive precisely the multiples of some integer d. This
integer d is called the greatest common divisor of n and R, and it can be
defined by stating that d = GCD(n, R) is the largest integer that divides
both n and R. The fact that the vertices which are hit are precisely the
multiples of 1 follows from the fact that GCD(n, R) can alternatively
be defined as the smallest positive integer that can be represented as
pR + qn, where p and q also integers. We leave it to you (exercise 11)
to verify these claims. You can see that the GCD of n and R is an
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important quantity. When it is 1, n and R are relatively prime and
the POLY has n-fold symmetry. When the GCD is not 1, it gives d, the
integer whose multiples are the vertices actually hit.

Neither definition of GCDas the largest common divisor, or as the
smallest positive pR + qnseems very helpful in actually computing
the GCD of two given integers. One method for doing so is Euclid's
algorithm. The idea of the algorithm is very simple: The common factors
of n and R are the same as the common factors of n - R and R. (Prove
this.) And so the problem of finding the GCD of n and R can be reduced
to finding the GCD of n - R and R:

Euclid's Algorithm Start with two numbers. (1) If the two numbers are
equal, then stop; the GCD is their common value. (2) Subtract the
smaller number from the larger and throw away the larger. (3) Repeat
the entire process using, as the two numbers, the smaller number and
the difference computed in step 2.

The process produces ever smaller numbers and stops with two equal
numbers. Take as an example 360 and 144. The sequence of pairs
generated is

(360, 144) -+ (216, 144) - (72, 144) -+ (72, 72) - done: GCD = 72

Finding the GCD of 360 and 144 can be interpreted as follows: Any POLY
with an integer angle will touch some subset of the vertices of a regular
360-gon. If the angle is 144, the vertices touched will be the multiples
of 72.

We can translate Euclid's algorithm into a recursive computer proce-
dure:

TO EUCLID (N, R)

IF N = R THEN RETURN N

IF N > R THEN RETURN EUCLID (N - R, R)

IF N < R THEN RETURN EUCLID (N, R - N)

There's an obvious way to speed up the algorithm: Subtract multiple
copies of the smaller number from the larger in a single step. Even better,
we can divide the smaller number into the larger, taking the smaller
number and the remainder to start the next step. This has an additional
advantagewe will know automatically that the remainder is smaller
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than the original smaller number, so it will not be necessary to test to
see which of the two inputs is smaller:

TO FAST.EUCLID (N, R)

IF N = R THEN RETURN N

ELSE RETURN FAST.EUCLID (R, REMAINDER (N, R))

Note that Euclid's algorithm is very nearly the reverse of the "brute
force" method for finding the least common multiple given in subsection
1.4.1. In fact the algorithm gives us a new way of computing the LCM
of two numbers because of the formula

LCM(p, q) X GCD(p, q) = p X q,

which is true for any integers p and q. (See exercise 16.)
As a final remark we point out that, whereas the REMAINDER function

used in FAST . EUCLID is defined only for integers, the operations in the
original EUCLID procedure make sense for any numbers. So we can define
the GCD for any two numbers (not just integers) to be the value returned
by the EUCLID procedure. (Exercises 15-17 invite you to investigate the
properties of this generalized GCD.) We see here how the procedural
formulation of a concept can suggest new insights and directions for
exploring. Further explorations suggested by the EUCLID procedure are
illustrated in exercises 18-25.

Exercises for Section 1.4

Determine the symmetry of POLY with A = 350, 35, 37, 12h, 26. For
each value of A, find p and q such that A = 360p/q where p/q is a
fraction reduced to lowest terms. [A]

Using only integer angles, what are all the possible values of n for
which POLY can draw an n-sided figure? [HA]

[D] Show that the POLY symmetry determined by ANGLE = 360 - A
is the same as the symmetry of ANGLE = A. What about the symmetry
of ANGLE= 180A? [HA]

Consider the process of finding the least common multiple of A and
B. Show that the "brute force" method will find the same minimal
number n such that nA = RB as it will for n(Ax) = R(Bx) where x is
any number, and hence that LCM(Ax, Bx) = x X LCM(A, B). Use this
idea to show how to compute least common multiples of (noninteger)
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rational numbers. If A = p/q and B = ris, both fractions in lowest
terms, show how to pick x so that one can use the prime factorization
method to compute LCM(A, B). {AJ

We saw that A = 360R/n will produce an n-pointed figure for any
integer R relatively prime to n. But how many of these Rs actually
produce POLYs that look different? How many different POLYs are there
with n = 10, 36,37? How many in general? [A]

In solving the previous problem you may want to make use of the
Euler function, which is defined for positive integers n to be the number
of integers less than n and relatively prime to it. Euler gave a formula
for (n), which works as follows: Suppose that Pi, P2,... are the distinct
prime factors of n, that is n = (For example, 3960 = 2 X
32 5 X 11.) Then

(n) = n(1 i_)( 1)

Use this formula to compute «i, 000, 000). [AI

[D Use the fact that, for R relatively prime to n, the multiples of R
include all the integers 1,2, . . . , n - i (mod n) to prove Fermat's Little
Theorem: If p is a prime and R is any positive integer less than p, then

= i (mod p). [HA]

[P] Fermat's Little Theorem lies behind a recently discovered way to
test by computer whether large numbers are prime. The idea is to start
with a number p, pick a random number a less than p, and compute
a1 (mod p). If the answer is not 1, then p is not prime. Conversely,
it is known that, in general, if p is not prime, then most of the numbers
a less than p will not satisfy a' = i (mod p). So if we test, say, 10
different choices for a and they all satisfy Fermat's equation, then we
can be virtually certain that p is prime. Implement this method in a
computer program and use it to find, say, the ten largest primes less
than one billion. (There are choices for p, called "Carmichael numbers,"
that will fool this test. They are nonprime, and yet satisfy the condition
a1 = i (mod p) for every a. But they are few and far between.)

[PI Write a procedure that, given a number n, returns a list of all the
primes dividing n. Use this together with Euler's formula of exercise 6
to produce a procedure that calculates the Euler function.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1626040/9780262362740_caa.pdf by University of New Mexico user on 18 January 2022



52 Introduction

10. Given integers R and n, show that there exist integers p and q such
that pR + qn i if and only if, for any integer s, there exist integers
p5 and q such that p5R - q5n = s. [A]

li. [D] Prove that if we define the greatest common divisor d =
GCD(n, R) as the largest integer that divides both n and R, then d is the
smallest positive integer that can be expressed as (integer)R+(integer)n.
Show also that the multiples of R taken modulo n are precisely the
multiples of d. [H]

[D] Show that the EUCLID procedure works when its inputs are
positive integers. That is, show that it will always terminate and that
what it returns is in fact the GCD of its inputs.

[P] In subsection 1.2.2 we discussed the problem of writing a POLY

procedure that draws the figure once and then stops. We implemented
POLYSTOP using the "local" strategy of having the turtle count total
turning. Write a version of POLYSTOP which uses the "global" strategy
of taking the ANGLE input and computing in advance how many times
to run the basic loop. Can you design the program so that it works not
only for integer angles but for (noninteger) rational angles as well?

Show directly that if Euclid's algorithm returns d given R and n as
inputs, then there exist integers p and q such that pR + qn = d. [H]

[D] Show that the EUCLID procedure terminates whenever its inputs
are positive rational numbers, and thus allows us to extend the definition
of greatest common divisor to all positive rational numbers. What is the
"GCD" of and ? of a/b and c/d where a, b, c and d are integers?
What can you say about the behavior of the algorithm when the inputs
are not both rational? [A]

[D] Prove for integers p and q that GCD(p, q) X LCM(p, q) = p X q.
Does this formula hold as well for rational numbers (with GCD defined
as the result of the EUCLID procedure and LCM defined as indicated in
exercise 4)?

[DI What can you say about the (integer)R + (integer)n definition
of GCD as it relates to the GCD for rational numbers (defined as the
result of the EUCLID procedure)?

[D] Modify the EUCLID procedure to define a procedure DIO which
not only computes cl = GCD(n, R) but also returns integers p and q

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/1626040/9780262362740_caa.pdf by University of New Mexico user on 18 January 2022



Symmetry of Looping Programs 53

such that pR + qn = d. The DIO procedure should take two inputs and
return a list of three numbers p, q, d. [HA]

[D] Show how to speed up the DIO procedure by using the, reduc-
tion method of the FAST .EUCLID procedure. Write the corresponding
FAST . DIO program. [HA]

The name DIO comes from "Diophantine equations." These are
equations which are to be solved for integer values of the unknowns. Use
your DIO or FAST . DIO procedures to find integers x and y which satisfy
the equation 17x + lily = 1; the equation 123456Tx + 765432ly = 1.
[A]

Let T denote the transformation (n, r) -# (r, n - r) which is used
by the EUCLID program. Show that the transformation S defined by
(x, y) - (x + y, x) is inverse to T in the sense that, for any pair (a, b),
T(S(a, b)) = S(T(a, b)) = (a, b). If we start with the pair (1, 0) and
repeatedly apply S we obtain

(1,0) 4(1,1) - (2,1) -+ (3,2) - (5,3) -# (8,5) -# (13,8)

The sequence of numbers formed by this operation is called the Fibonacci
numbers; that is,

F(0) = 0,F(1) = 1,F(2) = 1,F(3) = 2,F(4) = 3,F(5) = 5,F(6) = 8,

and so on. Use the fact that S and T are inverse to show that for any
integer n, F(n) and F(n - 1) are relatively prime. [A]

[P] Show that F(n) = F(n - 1) + F(n - 2) and hence that the
Fibonacci numbers can be generated by the procedure

TO FIB N

IF N = O RETURN i

IF N = i RETURN i

RETURN FIB (N-i) + FIB (N-2)

Why does this procedure run so slowly? Can you find a faster method
of computing the Fibonacci numbers? [A]

[DD[ Expanding on the result of exercise 21, investigate the greatest
common divisor of F(n) and F(n + k). State and prove a theorem about
GCD(F(a), F(b)). [HA]
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[D} Use the DIO or FAST. DIO procedures (exercises 18,19) to solve
Diophantine equations of the form xF(n) + yF(n - 1) = i for integers
x and y. What is the solution in general? [HAI

[P] For any pair of numbers p, q we can define a new sequence of
numbers F(p, q; n) by applying the transformation S of exercise 21 begin-
ning with (p, q) rather than (1, 0). Write a program to generate these
sequences and investigate their properties. Can you express F(p, q; n) in
terms of the usual Fibonacci numbers? [A]
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