
An Object-Oriented Particle System for Simulation and
Visualization

Jun Zhang

Edward Angel
Department of Computer Science and

Albuquerque High Performance Computing Center
University of New Mexico
Albuquerque, NM 87131

Paul Alsing

David Munich
Albuquerque High Performance Computing Center

University of New Mexico
Albuquerque, NM 87131

Particle systems have been used successfully in applications ranging from simulations of
physical phenomena, to creation of special effects in the movie industry, to scientific
visualization. One problem encountered in practice is that application programmers
usually derive a new code from scratch for each application even though particle systems
have a basic object-oriented flavor. In this paper, we demonstrate a simple object-
oriented particle system that has been implemented in C++ and applied to a variety of
applications including graphical special effects, Lennard-Jones fluid simulation,
isosurface extraction, and generation of streamlines from flow simulations. In each case,
the code was developed from the basic particle system in a very short time. We shall also
show comparisons with non-object-oriented codes that demonstrate that the object-
orientation has only a small performance penalty. We shall also demonstrate
parallelization of our simulations.

Keywords: particle systems, object-oriented, parallel programming, simulation,
visualization

Introduction

Particle systems have a long history. Within the simulation community, particle systems
have been used to simulate a variety of physical phenomena, providing an alternate to
traditional methods. Within the graphics community, particle systems were introduced by
Reeves[9] to model explosions. Later particle systems were used to model natural
phenomena such as fire and water, flocking of birds, and the behavior of crowds[3, 6, 10,
11, 12]. In scientific visualization, particle systems have been used to find points on
isosurfaces defined by implicit functions.

What is common in all these is the use of a system of particles whose behavior is
controlled by a set of rules. For physical simulations, the rules are the physical laws. For

isosurfaces, the rules are such that they keep particles on a surface, even if that surface
changes in time. In computer graphics, the rules are behavorial. Note that in these
examples, the behavior of the particles is independent of how they are viewed or
rendered.

It has been argued [1] that particle systems are inherently object-oriented. In object-
oriented terms, particles are objects with a set of attributes and methods. Nevertheless, in
applications of particle systems, each application usually has involved completely
independent code development. Furthermore, particle systems have many features that
make them well suited for solution on high-performance computers. For example, we can
usually allocate groups of particles to processors in a straight-forward manner. We
usually distribute the force (behavior) calculation among processors.

We decided to build a simple base particle system using the object-oriented features of
C++ and then use it to develop code for some of the standard applications that have been
used successfully with particle systems. We had two basics motivations. We wanted to
demonstrate that starting with the basic system we could develop the code for specific
applications very quickly by subclassing functions in our basic systems. Second, we
wanted to measure the performance penalties of using an object-oriented system.

This paper is organized as follows. In the next section, we shall give a brief introduction
to particle systems consisting of Newtonian particles. We shall then describe the base
classes of our software system. Then we shall describe four applications that we used to
test the system. The first applications are standard graphics applications: a simulated
waterfall and a spring-mass system. The second application is a Lennard-Jones fluid
simulation. We compare the processing time with implementations in C and C++ using a
direct conversion from the original non object-oriented code. The third application is an
implementation of Heckbert and Witkins’s isosurface sampling algorithm. This system
has much more complex dynamics and is a good test of how easy it is to use the object-
oriented system for development of new systems. Finally, we use our system for
generation of streamlines for a global ocean current visualization. In this application, we
replace differential equation solvers on a single processor by parallel solvers.

Particle Systems

A particle system is a collection of discrete entities called particles. Each particle is
described by its state and a collection of attributes that determine its appearance and other
factors such as its lifetime. In this work, we will consider only Newtonian particles, each
of whose state is entirely determined by its position and velocity. Thus, in three
dimensions, a particle has six degrees of freedom and a system of n particles has 6n
degrees of freedom. In terms of the differential equations that determine the evolution of
the particle system, particle i is has a position pi(t) and a velocity vi(t) and satisfies the
equations

() () ()
()

i i i
i

i

t d t d t
t

m dt dt
= =f v x

 v;

where mi is the mass of the particle i and fi is the total force on the particle i. The entire
complexity of the particle system resides in the force term which may include terms from
forces due to interactions with all other particles in the system.

In an ideal Newtonian system each particle is a point mass and thus could be rendered for
visualization purposes as a point. However, much of the flexibility of particle systems
comes from our ability to render particles in a manner decoupled from their state. Thus,
in an animation, the state determines the location of each particle, but we can render each
particle as an animated character centered at that location. Thus, the attributes of the
particle include this kind of information.

We can thus implement a particle system by looping through the steps

1. Accumulate the forces on each particle
2. Step forward one time step using a standard differential equation solver
3. If desired, render the particle system using the particles’ attributes.
4. Account for any creation (birth) of new particles or deletion (death) of old

particles

The force accumulation step is the most time consuming part of the process and what
characterizes a particular application. Generally, there are three types of forces (1) unary
forces in which the force on each particle does not depend on other particles (2) k-ary
forces in which the force on a particle depends on a small set of up to k other particles,
and (3) n-ary forces where each the force on each particle can depend on all other
particles. For a system of n particles, the first two types require an O(n) force calculation
while the third is O(n2), unless we make some type of approximation.

Once we have done the force accumulation, we compute the state of all the particles at
the next time step. This is usually done by using a standard ordinary differential equation
solver. Depending on the order of the solver, multiple force accumulations may be
required for each time step.

The first two steps are routine in any simulation using models whose evolution can be
described by differential equations. The third step is key to the graphical and
visualization applications of particle systems. Here we use the state of the particle system
to determine an image. The basic graphical objects in the image need not have any
relationship to the particles other than their locations. For example, in animation of crowd
scenes the particle system governs the locations of the characters, keeping them moving
and avoiding collisions through repulsion forces. However, once the state is known at a
given time, we can place an entire character at the location in the state.

The challenge is to build a flexible software system that can support a multitude of
applications by allowing for different force accumulators, different numerical methods,
including the ability to parallelize the code, different methods of rendering, and different

birth and death rules. Heckbert and Witkin [15] suggested an object-oriented particle
system but did not implement it within an OOP framework, such as C++. We have three
basic objects in our system: particles, forces, and particle systems. We start with the base
class for a particle:

class Particle {
public:
 Particle();

 float _mas; //mass
 float _age; //age
 vector_3 _pos; //position vector
 vector_3 _vel; //velocity vector
 vector_3 _frc; //force accumulator
 vector_3 _col; //RGB color
 float _rad; //repulsive radius
};

The members mass, position, force, and velocity have obvious meaning. The age allows
us to eliminate older particles. The repulsive radius [15] allows us to speed up the
calculation by considering only forces from neighboring particles.

class Force{
public:
 Force(ParticleSystem* psys);

 virtual void applyForce() = 0;

 Force* _next;

protected:
 ParticleSystem* _my_psys;
};

The force class contains a pointer to a particle system on which it acts and a pure virtual
function that calculates the forces.

class ParticleSystem {
public:
 ParticleSystem();
 ParticleSystem(int max);
 virtual ~ParticleSystem();

 virtual void simulate() = 0;
 virtual void render() = 0;

 int numOfParticles();
 void addParticle(Particle p);
 void killParticle(int pn);
 void addForce(Force* pf);
 void computeForce();
 void EulerIntegrate(float deltatime);
 void print();

protected:
 Particle* _particles; //particle array
 int _num;
 int _max;
 Force* _forces; //force linked list

The constructor, ParticleSystem allocates memory for an array of _max
Particle structures (pointed to by Particle* _particles). The
numOfParticles function returns the number of particles in the system. Functions
addParticle and killParticle can be used to add or remove particles. The
addForce function adds forces into the system. The computeForce function sets the
forces of all particles to zero and then traverses the force linked list and applies the
forces. EulerIntegrate uses the Euler method to calculate and update position and
velocity of all particles in the system (and can be overridden by another integrator). The
print function can be used to output attributes of all particles.

Function simulate does the simulation and render draws the particle system to the screen.
As these methods are pure virtual methods, they must be implemented by derived classes.
The class hierarchy of our object-oriented particle system is shown in Figure 1.

Figure 1. Particle System Class Diagram

ParticleSystem

Particle* _particles;
int _num;
int _max;
Force* _forces;

virtual void simulate() = 0;
virtual void simulate() = 0;
int numOfParticles();
void addParticle(Particle);
void killParticle(int);
void addForce(Force*);
void computeForce();
void EulerIntegrate(float);
void print();

Force

ParticleSystem* _my_psys;
Force* _next

virtual void applyForce() = 0;

Particle

float _mas;
float _age;
vector_3 _pos;
vector_3 _vel;
vector_3 _frc;
vector_3 _col;
float _rad;

Two Simple Examples

Our base implementation contains an Euler integrator and does not make any attempt to
increase efficiency by keeping track of the neighbors of each particle. However, for
simple examples we can create particle systems with very small user programs.

Figure 2 shows one time step of waterfall simulation. The only force here is gravity so
there is no interaction among the particles. Each particle is rendered as a small dot.
Figure 3 shows one frame of a spring mass system of two particles. In the rendering, a
line is drawn connecting the particles.

Figure 2. Particle Waterfall Figure3. Spring-Mass System

Although these examples are almost trivial, note that the dynamics and rendering are
completely different. Each requires only about 30 lines of user code with our system.

Lennard-Jones Particle System

Our next example is the Lennard-Jones fluid simulation [5, 14]. Here the force between
atoms is given by

ij
ijijij

ij rrr
rf






















−










=

126

2

24 σσε

where fij is the force on particle i due to particle j separated by distance rij, and � and �
are constants. The interparticle force consists of both an long range attractive and a short
range repulsive term, both of which decrease rapidly with the distance between particles.
The usual way of working with this system is to solve for particles within a three-
dimensional box and assume periodicity to obtain terms when needed from neighboring
boxes.

We solved this problem initially in three ways. First, we used Plimton’s F77 code [8]. We
then converted this code to C code so that we could check for performance differences
due to the language change. We then reimplemented the code with our particle system.
We had to add class members for pressure and energy and implement the forces, all of
which were relatively straightforward tasks. We also changed the differential equation
solver to use the velocity-Verlet method[13]. The time results in Table 1 show a small
performance penalty for the object-oriented particle system.

Data Fortran77 code C code C++ code

Total time (secs) 3002.58 3570.61 3837.36

Force time (secs) 2940.09 3486.62 3722.10

Temperature 0.58583 0.58656 0.58674

Pressure -0.49264 -0.49933 -0.49837

Potential energy -5.08588 -5.08692 -5.08710

Total energy -4.20714 -4.20708 -4.20700

Table 1: Timing comparison and simulation results for 3375 atoms and 5000 time steps.

For large numbers of particles, the O(n2) force calculation dominates. Although we do
not perform the force calculations for particles separated by more than a cutoff distance,
the computation is still O(n2) if we have to compute the radius for all pairs of particles.
As an alternative we used a link-cell method [5]. Here particles are placed in cells of a
physical dimension such that a particle can only interact with particles its own or
neighboring cells. At the cost of maintaining cell lists, the O(n2) force calculation is
reduced to O(n m) where m = n ncells ρ. Here ncells is the number of neighboring cells

searched (27 in 3D, reduced to 13 if Newton’s third law is incoporated into the force
computation) and ρ is the ratio of a single cell volume to the total computational volume,
with ncells ρ << 1. This change required only about 100 lines of code being added to the
basic particle system code. Further reduction in the time to calculate interparticle forces
could be obtained if one additionally incorporated the use of nearest-neighbor lists [5] for
each particles. Though such structures could easily be added to objected-oriented code,
nearest-neighbor list were not utilized in this present work. Table 2 summarizes the
results.

Number of atoms 512 1000 3375

Number of cells 3 3 4 5 6

Total time (secs) 110.56 396.00 184.07 1059.43 694.24

Force time (secs) 102.92 376.62 164.32 926.39 561.94

Temperature 0.58612 0.58574 0.58673 0.58612 0.58651

Pressure -0.50665 -0.50305 -0.49832 -0.49368 -0.49358

Potential energy -5.08634 -5.08595 -5.08730 -5.08626 -5.08690

Total energy -4.20716 -4.20733 -4.20721 -4.20708 -4.20713

Table 2: Timing and simulation results for Lennard-Jones system with link-cell structure
for 5000 time steps.

Sampling Implicit Surfaces

Our next example is an implementation of Witkin and Heckbert’s particle system [15] for
sampling implicit surfaces of the form

F(x,y,z,t) = 0,

where the function F is known analytically. Note that the surface may be changing in
time. What is desired is a system that will place particles on the surface and keep them
there as the surface changes in time. In addition, the particles should spread them
themselves uniformly over the surface so that their locations can be used to determine a
triangular mesh that approximates the surface.

In this system there are two types of forces. One keeps a particle that is known to be on
the surface initially on the surface as the surface moves. The second force is a repulsive

force among particles that distributes the particles over the surface. The first force can be
expressed in terms of F and its partial derivatives. The second is based on Gaussian
repulsive force whose width is based on a radius of repulsion. In Witkin and Hekbert’s
scheme each particle can have its own radius of repulsion which aids in convergence and
in the birth-death process which creates new particles in regions where they are
underpopulated and removes particles in regions of high particle density. With these
adjustments, the particle system can start with a single particle on the isosurface and
converge with a user determined density of particles uniformly distributed over the
surface. Figure 3 shows a sequence of images of particles populating a sphere. The size
of the particles in the rendering is proportional to their radii of convergence. Figure 4
shows a blobby sphere determined by 500 particles.

Figure 3. Particles populating surface of sphere

Figure 4. Blobby sphere rendered with 500 particles.

Although this example required extensive changes to the basic code, all the changes were
in subclasses. More impressive was the fact that the entire system was created in a few
days.

Flow Visualization

The final example is flow visualization using streamlines. Flow visualization uses
weightless particles whose evolution is determined by the values of the velocity given in
the data set. Thus, although there are no forces in the sense of our previous examples, we
can use the object-oriented particles system by a simple modification of the differential
equation solver. Each streamline is the trace of a particle. Particles are created where we
want to start a streamline and terminated (killed) when the velocity goes below a
threshold or some other criteria is met. For example, Figure 5 shows streamlines from a
global ocean current simulation. In this visualization, we are interested in finding eddies
in the flow. We do so by counting sign reversals in the cross product of flow vectors as
we move along the streamlines.

Figure 5. Eddies in ocean current simulation.

Parallelization

We have implemented a preliminary parallel version of the Lennard-Jones system
without link-cell structure. We parallelized the force computation using the atom-
decomposition algorithm [7]. In this algorithm, each of the P processors is assigned a
group of N/P atoms at the beginning of the simulation. Atoms in a group need not have
any spatial relationship to each other. A processor computes forces on only its N/P atoms
and will update their positions and velocities. This algorithm requires all-to-all
communication so that each processor knows about the positions of all the atoms in the
system. We implemented this algorithm using MPI library. Table 3 shows the timing
results on up to 10 processors.

Number of Processors 2 4 5 10

Total Time (s) 345.06 180.34 139.30 80.87

Force Time(s) 331.52 166.63 126.45 67.14

Communication Time (s) 2.36 3.6 3.14 4.55

Table 3: Timing results for the parallel Lennard-Jones System for 1000 particles.

Atom-decoposition or replicated data is the simplest, yet crudest form of molecular
dynamics parallelization. As a measure of scalability, a parallel algorithm is said to be
isoefficiently scalable [7] if one can increase the number of processors P and retain its
parallel efficiency by increasing the size of the problem (i.e. larger problems can utilize
larger number of processors). The appropriate metric for isoefficienctly scalability (IP) is
the ratio of communication costs to computations costs, which one desires to keep near
unity. The atom-decomposition algortithm has an IP metric of P. In this sense, the atom-
decomposition is not a scalable algorithm since its IP-value increases with the number of
processors. Other competing algortihms [7] such as force-decomposition and spatial
decomposition have IP metrics of √P and 1 respectively, but involve a substantial
overhead in coding. We chose the atom-decomposition algorithm for this work for its
ease of coding and independence of geometry. The other algorithms could be straight-
forwardly incoporated into our objected-orient code, and will be investigated in the
future.

Conclusions

We set out to test the proposition that an object-oriented particle system can be used for
both simulation and visualization purposes. The test of success of such a system rests on
both the effort required for code development and the performance of the resulting code.
We believe we have been successful on both counts. We developed code for five very
different applications, all in a very short time, once we had the basic system working.
Timing tests show a very small performance penalty compared with code developed
specifically for one application. Most of the performance difference appears to be due to
the conversion from F77 to C/C++ rather than to the imposition of the object-oriented
system. We were also successful in parallelizing the system.

There is still much work to be done. First, we want to run our system with some much
larger particle systems, systems with at least O(104) particles. One possibility is to use
our previous use of particle systems for isosurface extraction from scalar fields [2]. We
would also like to run applications on systems with hundreds or thousands of processors.
This would most likely entail using either a parallel spatial decomposition or force-
decomposition algorithm. The former takes advantage of the decreasing surface to
volume ratio of the spatial domains a processor is responsible for relative to the number
of particles that need to be passed amongst neighboring processors, and is valid in the
regime of 106-108 particles. The latter maintains the geometry indepence of the atom-
decomposition method, but entails a much more efficient algorithm for computing
interparticle forces without the use of an all-to-all communication, and is more efficient
than spatial decomposition in the range of 103-105 particles. We would also like to
implement other strategies to reduce the complexity of force calculations, epsecially
serial and/or parallel fast-multipole methods.

Acknowledgements

The work was supported in part by the Albuquerque High Performance Computing
Center and by Sandia National Laboratories. The global climate data were provided by
the Advanced Computing Laboratory, Los Alamos National Laboratory.

References

[1] Baraff, D. and Witkin A. (1997), “Physically Based Modeling: Principles and
Practice” , SIGGRAHP’97 Course Notes.

[2] Crossno, P. J. (1997), “ Isosurface Extraction Using Particle Systems”, IEEE
Visualization, 1997.

[3] Fournier, A. and Reeves W. T. (1986), “A Simple Model of Ocean Waves” Computer
Graphics (Proceedings of SIGGRAPH ’86) 20(4): 75-84.

[4] Heckbert, P. S. (1997), “Note from Course 14: New Frontiers in Modeling and
Texturing” SIGGRAPH ’97, Los Angeles, California.

[5] Hockney, R. W. and Eastwood, J. W. (1988), “Computer Simulation using Particles”
McGraw-Hill Inc., New York; Allen, M.P. and Tildesly, D.J. (1987), “Computer
Simulations of Liquids,” Oxford Science Publications, New York.

[6] Peachey, D. R. (1986), “Modeling Waves and Surf” Computer Graphics
(Proceedings of SIGGRAPH ’86) 20(4): 65-74.

[7] Plimpton, S. (1995), “Fast Parallel Algorithms for Short-range Molecular Dynamics”
Journal of Computational Physics 117: 1-19.

[8] Plimpton, S (2000), “Home Page for Steve Plimpton,”
http://www.cs.sandai.gov/~sjplimp/main.html.

[9] Reeves, W. T. (1983), "Particle Systems- A Technique for Modeling a Class of Fuzzy
Objects" ACM Transactions on Graphics 2(2): 91-108.

[10] Reeves, W. T. and Blau, R. (1985), "Approximate and Probabilistic Algorithms for
Shading and Rendering Structured Particle Systems" Computer Graphics (Proceedings of
SIGGRAPH ’85) 19(3): 313-322.

[11] Reynolds, C. W. (1987), “Flocks, Herds, and Schools: A Distributed Behavioral
Model” Computer Graphics (Proceedings of SIGGRAPH ’87) 21: 25-34.

[12] Sims, K. (1990), “Particle Animation and Rendering Using Data Parallel
Computation” Computer Graphics (Proceedings of SIGGRAPH ’90) 24(4): 405-413.

[13] Swope, W.C., Anderson, H.C., Berens P.H., Wilson, K.R. (1982), “A Computer-
Simulation Method for the Calculation of Equilibrium-Constants for the Formation of
Physical Clusters of Molecules: Application to Small Water Clusters” , J. Chem. Phys.
76:637-649

[14] Verlet, L. (1967), “Computer experiments on classical fluids: I. Thermodynamical
properties of Lennard-Jones molecules” Phys. Rev. 159: 98-103

[15] Witkin, A. P. and Heckbert, P. S. (1994), “Using Particles to Sample and Control
Implicit Surfaces” Computer Graphics Proceedings, Annual Conference Series, 1994:
269-277.

