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Particle systems have been used successfully in applications ranging from simulations of 
physical phenomena, to creation of special effects in the movie industry, to scientific 
visualization. One problem encountered in practice is that application programmers 
usually derive a new code from scratch for each application even though particle systems 
have a basic object-oriented flavor. In this paper, we demonstrate a simple object-
oriented particle system that has been implemented in C++ and applied to a variety of 
applications including graphical special effects, Lennard-Jones fluid simulation, 
isosurface extraction, and generation of streamlines from flow simulations. In each case, 
the code was developed from the basic particle system in a very short time. We shall also 
show comparisons with non-object-oriented codes that demonstrate that the object-
orientation has only a small performance penalty. We shall also demonstrate 
parallelization of our simulations.  
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Introduction  
 
Particle systems have a long history. Within the simulation community,  particle systems 
have been used to simulate a variety of physical phenomena, providing an alternate to 
traditional methods. Within the graphics community, particle systems were introduced by 
Reeves[9] to model explosions. Later particle systems were used to model natural 
phenomena such as fire and water, flocking of birds, and the behavior of crowds[3, 6, 10, 
11, 12]. In scientific visualization, particle systems have been used to find points on 
isosurfaces defined by implicit functions. 
 
What is common in all these is the use of a system of particles whose behavior is 
controlled by a set of rules. For physical simulations, the rules are the physical laws. For 



isosurfaces, the rules are such that they keep particles on a surface, even if that surface 
changes in time. In computer graphics, the rules are behavorial. Note that in these 
examples, the behavior of the particles is independent of how they are viewed or 
rendered. 
 
It has been argued [1] that particle systems are inherently object-oriented. In object-
oriented terms, particles are objects with a set of attributes and methods. Nevertheless, in 
applications of particle systems, each application usually has involved completely 
independent code development. Furthermore, particle systems have many features that 
make them well suited for solution on high-performance computers. For example, we can 
usually allocate groups of particles to processors in a straight-forward manner. We 
usually distribute the force (behavior) calculation among processors. 
 
We decided to build a simple base particle system using the object-oriented features of 
C++ and then use it to develop code for some of the standard applications that have been 
used successfully with particle systems. We had  two basics motivations. We  wanted to 
demonstrate that starting with the basic system we could develop the code for specific 
applications very quickly by subclassing functions in our basic systems. Second, we 
wanted to measure the performance penalties of using an object-oriented system.  
 
This paper is organized as follows. In the next section, we shall give a brief introduction 
to particle systems consisting of Newtonian particles. We shall then describe the base 
classes of our software system. Then we shall describe four applications that we used to 
test the system. The first applications are standard graphics applications: a simulated 
waterfall and a spring-mass system. The second application is a Lennard-Jones fluid 
simulation. We compare the processing time with implementations in C and C++ using a 
direct conversion from the original non object-oriented code. The third application is an 
implementation of Heckbert and Witkins’s isosurface sampling algorithm. This system 
has much more complex dynamics and is a good test of how easy it is to use the object-
oriented system for development of new systems. Finally, we use our system for 
generation of streamlines for a global ocean current visualization. In this application, we 
replace differential equation solvers on a single processor by parallel solvers. 
 

Particle Systems 
 
A particle system is a collection of discrete entities called particles. Each particle is 
described by its state and a collection of attributes that determine its appearance and other 
factors such as its lifetime. In this work, we will consider only Newtonian particles, each 
of whose state is entirely determined by its position and velocity. Thus, in three 
dimensions, a particle has six degrees of freedom and a system of n particles has 6n 
degrees of freedom. In terms of the differential equations that determine the evolution of 
the particle system, particle i is has a position pi(t) and a velocity vi(t) and satisfies the 
equations 
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where mi is the mass of the particle i and fi is the total force on the particle i. The entire 
complexity of the particle system resides in the force term which may include terms from 
forces due to interactions with all other particles in the system. 
 
In an ideal Newtonian system each particle is a point mass and thus could be rendered for 
visualization purposes as a point. However, much of the flexibility of particle systems 
comes from our ability to render particles in a manner decoupled from their state. Thus, 
in an animation, the state determines the location of each particle, but we can render each  
particle as an animated character centered at that location. Thus, the attributes of the 
particle include this kind of information. 
 
We can thus implement a particle system by looping through the steps  
 

1. Accumulate the forces on each particle 
2. Step forward one time step using a standard differential equation solver 
3. If desired, render the particle system using the particles’  attributes. 
4. Account for any creation (birth) of new particles or deletion (death) of old 

particles 
 
 
The force accumulation step is the most time consuming part of the process and what 
characterizes a particular application. Generally, there are three types of forces (1) unary 
forces in which the force on each particle does not depend on other particles (2) k-ary 
forces in which the force on a particle depends on a small set of up to k other particles, 
and (3) n-ary forces where each the force on each particle can depend on all other 
particles. For a system of n particles, the first two types require an O(n) force calculation 
while the third is O(n2), unless we make some type of approximation. 
 
Once we have done the force accumulation, we compute the state of all the particles at 
the next time step. This is usually done by using a standard ordinary differential equation 
solver. Depending on the order of the solver, multiple force accumulations may be 
required for each time step.   
 
The first two steps are routine in any simulation using models whose evolution can be 
described by differential equations. The third step is key to the graphical and 
visualization applications of particle systems. Here we use the state of the particle system 
to determine an image. The basic graphical objects in the image need not have any 
relationship to the particles other than their locations. For example, in animation of crowd 
scenes the particle system governs the locations of the characters, keeping them moving 
and avoiding collisions through repulsion forces. However, once the state is known at a 
given time, we can place an entire character at the location in the state. 
 
The challenge is to build a flexible software system that can support a multitude of 
applications by allowing for different force accumulators, different numerical methods, 
including the ability to parallelize the code, different methods of rendering, and different 



birth and death rules. Heckbert and Witkin [15] suggested an object-oriented particle 
system but did not implement it within an OOP  framework, such as C++. We have three 
basic objects in our system: particles, forces, and particle systems. We start with the base 
class for a particle: 
 
class Particle { 
public: 
  Particle(); 
 
  float    _mas;   //mass 
  float    _age;   //age 
  vector_3 _pos;   //position vector 
  vector_3 _vel;   //velocity vector 
  vector_3 _frc;   //force accumulator 
  vector_3 _col;   //RGB color 
  float    _rad;   //repulsive radius 
}; 
 
The members mass, position, force, and velocity have obvious meaning. The age allows 
us to eliminate older particles. The repulsive radius [15] allows us to speed up the 
calculation by considering only forces from neighboring particles. 
 
class Force{ 
public: 
  Force(ParticleSystem* psys); 
 
  virtual void applyForce() = 0; 
 
  Force* _next; 
 
protected: 
  ParticleSystem* _my_psys; 
}; 
 
 
The force class contains a pointer to a particle system on which it acts and a pure virtual 
function that calculates the forces.  
 
class ParticleSystem { 
public: 
  ParticleSystem(); 
  ParticleSystem(int max); 
  virtual ~ParticleSystem(); 
 
  virtual void simulate() = 0; 
  virtual void render() = 0; 
 



  int  numOfParticles(); 
  void addParticle(Particle p); 
  void killParticle(int pn); 
  void addForce(Force* pf); 
  void computeForce(); 
  void EulerIntegrate(float deltatime); 
  void print(); 
 
protected: 
  Particle* _particles;  //particle array 
  int       _num; 
  int       _max; 
  Force*    _forces;     //force linked list 
 
The constructor, ParticleSystem allocates memory for an array of _max 
Particle structures (pointed to by Particle* _particles). The 
numOfParticles function returns the number of particles in the system. Functions 
addParticle and killParticle can be used to add or remove particles. The 
addForce function adds forces into the system. The computeForce function sets the 
forces of all particles to zero and then traverses the force linked list and applies the 
forces. EulerIntegrate uses the Euler method to calculate and update position and 
velocity of all particles in the system (and can be overridden by another integrator). The 
print function can be used to output attributes of all particles. 
 
Function simulate does the simulation and render draws the particle system to the screen. 
As these methods are pure virtual methods, they must be implemented by derived classes. 
The class hierarchy of our object-oriented particle system is shown in Figure 1. 
 
 

 
 
 
 
Figure 1. Particle System Class Diagram 
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int _num;
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void killParticle(int);
void addForce(Force*);
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Two Simple Examples 
 
Our base implementation contains an Euler integrator and does not make any attempt to 
increase efficiency by keeping track of the neighbors of each particle. However, for 
simple examples we can create particle systems with very small user programs. 
 
Figure 2 shows one time step of waterfall simulation. The only force here is gravity so 
there is no interaction among the particles. Each particle is rendered as a small dot. 
Figure 3 shows one frame of a spring mass system of two particles. In the rendering, a 
line is drawn connecting the particles. 

Figure 2. Particle Waterfall                                Figure3. Spring-Mass System 
 
Although these examples are almost trivial, note that the dynamics and rendering are 
completely different. Each requires only about 30 lines of user code with our system. 
 

Lennard-Jones Particle System 
 
Our next example is the Lennard-Jones fluid simulation [5, 14]. Here the force between 
atoms is given by 
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where fij is the force on particle i due to particle j separated by distance rij, and �  and �  
are constants. The interparticle force consists of both an long range attractive and a short 
range repulsive term, both of which decrease rapidly with the distance between particles. 
The usual way of working with this system is to solve for particles within a three-
dimensional box and assume  periodicity to obtain terms when needed from neighboring 
boxes. 
 
We solved this problem initially in three ways. First, we used Plimton’s F77 code [8]. We 
then converted this code to C code so that we could check for performance differences 
due to the language change. We then reimplemented the code with our particle system. 
We had to add class members for pressure and energy and implement the forces, all of 
which were relatively straightforward tasks. We also changed the differential equation 
solver to use the velocity-Verlet method[13]. The time results in Table 1 show a small 
performance penalty for the object-oriented particle system. 

 

Data Fortran77 code C code C++ code 

Total time (secs) 3002.58 3570.61 3837.36 

Force time (secs) 2940.09 3486.62 3722.10 

Temperature 0.58583 0.58656 0.58674 

Pressure -0.49264 -0.49933 -0.49837 

Potential energy -5.08588 -5.08692 -5.08710 

Total energy -4.20714 -4.20708 -4.20700 

 
Table 1: Timing comparison and simulation results for 3375 atoms and 5000 time steps. 

For large numbers of particles, the O(n2) force calculation dominates. Although we do 
not perform the force calculations for particles separated by more than a cutoff distance, 
the computation is still O(n2) if we have to compute the radius for all pairs of particles. 
As an alternative we used a link-cell method [5]. Here particles are placed in cells of a 
physical dimension such that a particle can only interact with particles its own or 
neighboring cells. At the cost of maintaining cell lists, the O(n2) force calculation is 
reduced to O(n m) where m = n ncells ρ. Here ncells is the number of neighboring cells 



searched (27 in 3D, reduced to 13 if Newton’s third law is incoporated into the force 
computation) and ρ is the ratio of a single cell volume to the total computational volume, 
with ncells ρ << 1. This change required only about 100 lines of code being added to the 
basic particle system code. Further reduction in the time to calculate interparticle forces 
could be obtained if one additionally incorporated the use of nearest-neighbor lists [5] for 
each particles. Though such structures could easily be added to objected-oriented code, 
nearest-neighbor list were not utilized in this present work. Table 2 summarizes the 
results. 

 

Number of atoms 512 1000 3375 

Number of cells 3 3 4 5 6 

Total time (secs) 110.56 396.00 184.07 1059.43 694.24 

Force time (secs) 102.92 376.62 164.32 926.39 561.94 

Temperature 0.58612 0.58574 0.58673 0.58612 0.58651 

Pressure -0.50665 -0.50305 -0.49832 -0.49368 -0.49358 

Potential energy -5.08634 -5.08595 -5.08730 -5.08626 -5.08690 

Total energy -4.20716 -4.20733 -4.20721 -4.20708 -4.20713 

 
Table 2: Timing and simulation results for Lennard-Jones system with link-cell structure 
for 5000 time steps. 
 

Sampling Implicit Surfaces 
 
Our next example is an implementation of Witkin and Heckbert’s particle system [15] for 
sampling implicit surfaces of the form 
 

F(x,y,z,t) = 0, 
 
where the function F is known analytically. Note that the surface may be changing in 
time. What is desired is a system that will place particles on the surface and keep them 
there as the surface changes in time. In addition, the particles should spread them 
themselves uniformly over the surface so that their locations can be used to determine a 
triangular mesh that approximates the surface. 
 
In this system there are two types of forces. One keeps a particle that is known to be on 
the surface initially on the surface as the surface moves. The second force is a repulsive 



force among particles that distributes the particles over the surface. The first force can be 
expressed in terms of F and its partial derivatives. The second is based on Gaussian 
repulsive force whose width is based on a radius of repulsion. In Witkin and Hekbert’s 
scheme each particle can have its own radius of repulsion which aids in convergence and 
in the birth-death process which creates new particles in regions where they are 
underpopulated and removes particles in regions of high particle density. With these 
adjustments, the particle system can start with a single particle on the isosurface and 
converge with a user determined density of particles uniformly distributed over the 
surface. Figure 3 shows a sequence of images of particles populating a sphere. The size 
of the particles in the rendering is proportional to their radii of convergence. Figure 4 
shows a blobby sphere determined by 500 particles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 3. Particles populating surface of sphere 
 
 
 

 
Figure 4. Blobby sphere rendered with 500 particles. 
 
Although this example required extensive changes to the basic code, all the changes were 
in subclasses. More impressive was the fact that the entire system was created in a few 
days. 
 

Flow Visualization 
 
The final example is flow visualization using streamlines. Flow visualization uses 
weightless particles whose evolution is determined by the values of the velocity given in 
the data set. Thus, although there are no forces in the sense of our previous examples, we 
can use the object-oriented particles system by a simple modification of the differential 
equation solver. Each streamline is the trace of a particle. Particles are created where we 
want to start a streamline and terminated (killed) when the velocity goes below a 
threshold or some other criteria is met. For example, Figure 5 shows streamlines from a 
global ocean current simulation. In this visualization, we are interested in finding eddies 
in the flow. We do so by counting sign reversals in the cross product of flow vectors as 
we move along the streamlines. 

 
 



 
 
 

Figure 5. Eddies in ocean current simulation. 
 
 

Parallelization 
 
We have implemented a preliminary parallel version of the Lennard-Jones system 
without link-cell structure. We parallelized the force computation using the atom-
decomposition algorithm [7]. In this algorithm, each of the P processors is assigned a 
group of N/P atoms at the beginning of the simulation. Atoms in a group need not have 
any spatial relationship to each other. A processor computes forces on only its N/P atoms 
and will update their positions and velocities. This algorithm requires all-to-all 
communication so that each processor knows about the positions of all the atoms in the 
system. We implemented this algorithm using MPI library. Table 3 shows the timing 
results on up to 10 processors. 
 
Number of Processors 2 4 5 10 

Total Time (s) 345.06 180.34 139.30 80.87 

Force Time(s) 331.52 166.63 126.45 67.14 

Communication Time (s) 2.36 3.6 3.14 4.55 

 
Table 3: Timing results for the parallel Lennard-Jones System for 1000 particles. 



Atom-decoposition or replicated data is the simplest, yet crudest form of molecular 
dynamics parallelization. As a measure of scalability, a parallel algorithm is said to be 
isoefficiently scalable [7] if one can increase the number of processors P and retain its 
parallel efficiency by increasing the size of the problem (i.e. larger problems can utilize 
larger number of processors). The appropriate metric for isoefficienctly scalability (IP) is 
the ratio of communication costs to computations costs, which one desires to keep near 
unity. The atom-decomposition algortithm  has an IP metric of  P. In this sense, the atom-
decomposition is not a scalable algorithm since its IP-value increases with the number of 
processors.  Other competing algortihms [7] such as force-decomposition and spatial 
decomposition have IP metrics of √P and 1 respectively, but involve a substantial 
overhead in coding. We chose the atom-decomposition algorithm for this work for its 
ease of coding and independence of geometry. The other algorithms could be straight-
forwardly incoporated into our objected-orient code, and will be investigated in the 
future. 

Conclusions 
 
We set out to test the proposition that an object-oriented particle system can be used for 
both simulation and visualization purposes. The test of success of such a system rests on 
both the effort required for code development and the performance of the resulting code. 
We believe we have been successful on both counts. We developed code for five very 
different applications, all in a very short time, once we had the basic system working. 
Timing tests show a very small performance penalty compared with code developed  
specifically for one application. Most of the performance difference appears to be due to 
the conversion from F77 to C/C++ rather than to the imposition of the object-oriented 
system. We were also successful in parallelizing the system. 
 
There is still much work to be done. First, we want to run our system with some much 
larger particle systems, systems with at least O(104) particles. One possibility is to use 
our previous use of particle systems for isosurface extraction from scalar fields [2]. We  
would also like to run applications on systems with hundreds or thousands of processors. 
This would most likely entail using either a parallel spatial decomposition or force-
decomposition algorithm. The former takes advantage of  the decreasing surface to 
volume ratio of the spatial domains a processor is responsible for relative to the number 
of particles that need to be passed amongst neighboring processors, and is valid in the 
regime of 106-108 particles. The latter maintains the geometry indepence of the atom-
decomposition method, but entails a much more efficient algorithm for computing 
interparticle forces without the use of an all-to-all communication, and is more efficient 
than spatial decomposition in the range of 103-105 particles. We would also like to 
implement other strategies to reduce the complexity of force calculations, epsecially 
serial and/or parallel fast-multipole methods. 
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