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Abstract 

 
 

Gene expression technology, such as high density DNA Microarray, allows us to 

monitor gene expression patterns at the genomic level. While this technology promises 

progress toward the understanding of transcriptional response and regulation, it also 

introduces the challenge of extracting relevant information from the large datasets 

generated. As a result, data mining of gene expression data has become an important area 

of research for biologists. Two classical data mining methods: data classification and 

clustering have been widely used to analyze gene expression data. These methods are 

valuable exploratory tools in data mining, but they are limited to placing genes into 

groups with others that share certain characteristics. While it is important to determine 

which genes are related, we also need to understand the mechanism of how genes relate 

and how they regulate one another. These two methods do not provide such insight. This 
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information, however, can be extracted from gene expression data with experiments that 

are well designed. In this thesis, I consider the use of association rule mining for 

discovering regulatory relationships among genes from gene expression data. Association 

rule mining, a relatively new technique in the area of data mining and knowledge 

discovery, has been the focus of much data mining research in computer science. 

Association rule mining is a process that identifies links between sets of correlated 

objects in large datasets. In this thesis, I describe the first application of association rule 

mining to gene expression data analysis.  I develop a strategy for transforming gene 

expression data to make it suitable for association rule mining, and show how the FP-

Growth algorithm for association rule mining can be adapted to apply to the transformed 

data. I implement, test and evaluate the association rule mining method using real gene 

expression data that is publicly available. I am able to validate our analysis method by 

showing that our results are consistent with published results generated by independent 

analysis methods. Furthermore, this method is able to generate previously unknown 

biological information, making it a valuable gene expression data analysis tool.
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Chapter 1: Background 

 
 

1.1 Molecular Genetics 

 
 
 Cells are universal units of life. One of the first discoveries in biology was Robert 

Hooke’s observation in 1665 that plant tissues were divided into tiny compartments, 

which he called cellulae, or cells. By 1840, Theodor Schwann proposed that all 

organisms exist as either a single cell or aggregates of cells. A century later, that 

hypothesis was confirmed. Inside the cells of organisms, chemical and biological 

processes take place as part of cell growth, differentiation, reproduction, and response to 

internal and external conditions. These chemical processes are tightly regulated to 

maintain an environment in which cells can function and thrive, called homeostasis. How 

this regulation is achieved is a fundamental question that needs to be answered in 

biological research and medicine. In this chapter, I will give a brief introduction to 

molecular biology so the readers have the necessary biology information for this thesis 

study. 
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1.1.1 Macromolecules 

 
 

A living organism can be viewed as an information system. Outside of the 

organism, it communicates information with its environment. Inside of the organism, 

information is stored and communicated inter- and intra-cellularly. In a living cell, 

information is carried by two major classes of macromolecules: nucleic acids and 

proteins.  

 

1.1.1.1 Nucleic Acids 
 
 
 

Nucleic acids are capable of storing information and directing the propagation of 

information by the synthesis of new copies of itself and proteins. Because they store the 

information that specifies the synthesis of cells’ building blocks, they are often thought of 

as template of life. DNA, or deoxyribonucleic acid, is a type of nucleic acid. DNA is the 

central storage of information in a cell. All the information needed to direct a cell’s 

activities are stored in DNA. DNA from all organisms is made up of the same chemical 

and physical components. DNA is in the form of double stranded helix, where the two 

strands are complementary of each other. Each strand is made up of repeating four bases: 

adenine (A), guanine (G), cytosine (C), and thymine (T). The complementarity of the two 

DNA strands comes from the specific pairing of A-T and G-C. This pairing property has 

been the basis of many technologies that are enhancing our understanding of genetics. 

The DNA sequence is the particular side-by-side non-random arrangement of bases along 

the DNA strand. (e.g., ATTCCGGA). The specific ordering of bases spells out the exact 
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instructions required to create a particular organism with its unique traits. There is a 

second type of nucleic acid, RNA, or ribonucleic acid. RNA shares great similarity with 

DNA in its chemical and physical properties. RNA has the same bases as DNA except 

that uracil (U) replaces thymine. RNA plays an essential role in the propagation of 

information inside of a cell.  

 

The genome is an organism’s complete set of DNA. Genomes vary widely in size, 

the smaller known genome for a free-living organism (a bacterium) contains about 

600,000 DNA base pairs, while human and mouse genomes have some 3 billion. Except 

for mature red blood cells, all human cells contain a complete human genome. Almost all 

DNA in a cell is organized into large, physically separate molecules, called 

chromosomes. In the case of prokaryote1 like E. coli, DNA is contained in a single, large 

circular DNA molecule, the prokaryotic chromosome. Genome in eukaryotes2 is divided 

into several or many chromosomes, each of which contains a single, very large, linear 

DNA molecule. Although their sizes vary greatly among organisms and even among 

different chromosomes in a give species, these DNA molecules are commonly of the 

order of 107 to 109 base pairs in length. Different eukaryotic species contain widely 

varying number of distinguishable chromosomes, from 1 in an Australian ant to 190 in a 

butterfly species. The human genome consists of 23 distinct chromosomes that range in 

length from about 50 million to 250 million base pairs. 

 

                                                 
1 Primitive single-celled organisms that are not compartmentalized by internal cellular membranes. 
2 Organisms whose cells are compartmentalized by internal cellular membranes to produce a nucleus and 
organelles. 
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Within the genome, the basic unit of hereditary information is a gene. A gene is 

made up of a specific sequence of DNA that encodes instructions on how to make 

proteins. Despite the size of the human genome, genes comprise only about 2% of the 

total DNA. The remainder consists of non-coding regions, whose functions may include 

providing structural integrity of chromosomes, and regulating where, when, and in what 

quantity proteins are made. The human genome is estimated to contain more than 30,000 

genes. 

 

1.1.1.2 Proteins 
 
 
 

Although nucleic acids are the storage of information, it’s the proteins that 

perform most life functions and even make up the majority of the cellular structures. 

They are the building blocks of organisms. Just as DNA and RNA are made up of 

sequences of repeating base monomers, proteins are large, complex molecules made up 

of sequence of subunits called amino acids. While there are 4 bases in DNA and RNA, 

chemical properties distinguish 20 different amino acids in protein. The uniqueness of 

DNA or RNA is primarily due to its sequence. Protein function is determined by the 

specific three dimensional structure caused by the folding of protein chains, in addition to 

the particular sequence of amino acids 

 

Proteins play an enormous variety of roles. Some carry out the transport and 

storage of small molecules; others make up a large part of the structural framework of 

cells and tissues. Antibodies are proteins, and so are the blood clotting factors. Perhaps 



 

5 

the most important of all proteins are enzymes and regulatory factors that control 

reactions and essential pathways inside cells. 

 

1.1.2 Information Metabolism 
 
 

As mentioned previously, nucleic acids are capable of directing the propagation of 

information by the synthesis of new copies of themselves and the synthesis of proteins. In 

this section, I will discuss the preservation, retrieval, processing and transmission of 

biological information, which we call information metabolism. 

 

Information stored in DNA can be inherited via a process called DNA replication, 

in which DNA serves as the template for its own synthesis. As mentioned before, DNA is 

stored as two complementary strands of molecules. While mechanically complex, 

conceptually the replication process is very simple. The replication process is based on 

the base pairing chemical property of DNA. The paired strands are unwound and 

separated, followed by the synthesis of two new complementary DNA strands 

simultaneously, giving rise to two daughter DNA molecules containing one strand each 

of parental and of newly synthesized material. Replication occurs at the genome level. 

Through this process, information is preserved. 

 

The first step in information transfer is transcription, in which the information 

encoded in DNA specifies the structure of an RNA product. Mechanistically, 

transcription is similar to DNA replication. There are two major differences: only one 



 

6 

DNA template strand is transcribed, and only a small fraction of the entire genetic 

potential of an organism is realized in one cell. In a differentiated3 eukaryotic cell, very 

little of the total DNA is transcribed. Even in a single-celled organism, in which virtually 

all of the DNA sequences can be transcribed, far fewer than half of all genes may be 

transcribed at any one time. Much of the concern with transcription in research involves 

the mechanisms by which particular genes and template strands for transcription are 

selected, because this selection in large part governs the metabolic capabilities of a cell. 

This process is highly specific, and often occurs as a response to particular chemical and 

physiological states in a cell. It is believed that this selection mechanism operates largely 

at the levels of initiation of transcription, through the actions of proteins that contact 

DNA in a highly site-specific manner. The product of transcription is RNA. There are 

several types of RNA. The RNA that is used as template for protein synthesis is called 

messenger RNA (mRNA). mRNA is very unstable, with a short life, and it constitutes a 

small proportion of total cellular RNA, ranging only 1% to 3% in bacteria. mRNA does 

not correspond to its DNA template exactly. It is actually a product of a post-

transcriptional modification process in which initial RNA product is spliced and 

segments are joined to form the final mRNA. 

 

Following transcription in information propagation is translation, in which 

mRNA serves as the template for synthesis of a particular protein. A sequence of mRNA 

(based on the complementary DNA template) is translated into another sequence of 

protein made up of the 20 amino acids. As mentioned before, protein function is not 

                                                 
3 Differentiation is a process that, through rapid proliferation, embryonic cells become specialized type of 
cells that make up the tissues and organs of multi-cellular animals. 
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determined solely by its sequence, but also by its three dimensional structure. Therefore, 

translation is followed by post-translational modification of the protein and a folding 

process. 

 

 

 

Figure 1.1 Flow of genetic information. 

 

 

Figure 1.1 illustrates the flow of genetic information in a typical cell. It is the 

central dogma of molecular genetics. The transcription-translation process is also often 

called gene expression. Gene expression is a complex process that regulates other 

reactions and pathways inside a cell, which in turn is regulated itself. 

 

1.1.3 Gene Expression and Microarray Technology 

 

As discussed in the previous section, genomic data consists of DNA sequences 

made up of the same 4 bases (G, A, C, T) repeated non-randomly in strings of up to 

several million at a time. Despite the diversity observed within a species, the genome of a 

single species is nearly invariant. The human genome contains three billion bases in its 
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23 chromosomes, and is 99.99% invariant between individuals [14]. So what makes us 

different? We know that in a cell, not all genetic material is expressed at one time. While 

genetic variation exists, much of the diversity is accounted by the differential expression 

of the genetic information. So the selection of information to be processed has received 

great interest. Many technologies have been developed to study gene expression. Here, 

we will focus on a relatively new technology called DNA Microarray. 

 

1.1.3.3 DNA Microarray 

 

Traditional experimental methods in molecular biology are limited to studying 

only a few genes in one experiment. But genes and their products usually function in an 

orchestrated way. With the traditional methods, it is difficult to capture the entirety of 

what is going on inside a cell. In the last few years, a new technique called DNA 

Microarray promised the ability to monitor thousands of genes, even the entire genome, 

simultaneously. 

 

Because gene expression starts with transcription, DNA Microarray technology 

focuses on the regulation at this step. The technology is based on existing, well-used 

molecular biology methods, Southern blotting4 and Northern blotting5. Conceptually, 

DNA Microarray is very simple. It takes advantage of the specific pairing property of 

                                                 
4 A technique for detecting the presence of a specific DNA sequence in a genome: The DNA is extracted, 
cleaved into fragments, separated by gel electrophoresis, denatured, and blotted onto a nitrocellulose filter. 
There it is incubated under annealing (pairing) conditions with a radio-labeled probe for the sequence in 
question, and hetero-duplexes of the probe with genomic DNA are detected by radioautography. 
5 A technique similar to Southern Blotting for detecting the presence and the size of specific RNA 
sequences in a cell. 
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nucleic acids (A-T, G-C). Arrays of thousands of discrete DNA fragments which are 

complementary of RNA of interest are printed onto a surface, for example, glass 

microscope slides. The sample spot sizes in Microarray are typically less than 200 

microns in diameter and these arrays usually contain thousands of spots. RNA collected 

from cells that has undergone different experimental conditions are collected and 

incubated with DNA fragments on the glass slides to allow complementary pairs to bind. 

The incoming RNA from the experiments is usually labeled with easily detectable 

substance, such as radioactive material or fluorescent dyes. The quantity of RNA 

corresponds to the quantity of the labels that are measured at each spot where the 

complementary DNA sequence is printed.  

 

There are two variants of DNA Microarray technology. With the first method, 

often referred to as the “traditional” DNA Microarray developed at Stanford University, 

probe cDNA (500~5,000 bases long) is immobilized to a solid surface such as glass using 

robot spotting and exposed to a set of targets either separately or in a mixture. In an 

experiment, a sample is taken from a normal condition to be used as control and the 

experimental result is usually in the form of relative abundance (in the form of a ratio) of 

each of these gene sequences in the two RNA samples (experimental vs. control). The 

experimental sample and the control samples are first labeled using different fluorescent 

dyes, usually a red dye and a green dye. They are then mixed and hybridized with the 

arrayed DNA spots. After hybridization, fluorescence measurements of each color are 

made. The measured intensities are used to calculate a ratio, representing the relative 

abundance of sequence of each specific gene in the two mRNA sample, with respect to 
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the “normal” expression quantity. This is also often called the two color array system. A 

second method, “historically” called DNA Chips, is developed by Affymetrix, Inc. With 

this method, an array of oligonucleotide (20~80-mer oligos) or peptide nucleic acid (PNA) 

probes is synthesized either in situ (on-chip) or by conventional synthesis followed by 

on-chip immobilization. The array is exposed to labeled sample DNA, hybridized, and 

the identity and the abundance of complementary sequences are determined. The 

measurement and calculation of abundance of each DNA is usually proprietary. 

 

New and better techniques of DNA Microarray are allowing simultaneous 

measurements of more RNA by allowing more DNA sequences to be printed onto the 

same surface. The completion of the genome sequence of model organisms, such as 

Saccharomyces cerevisiae and Caenorhabditis elegans, and dozens of bacterial species 

provides us with more complete genomes [16] to conduct Microarray experiments with. 

Currently we are able to monitor gene expression profiles of organisms such as S. 

cerevisiae, with approximately 6300 genes. Soon we will be able to monitor the 

approximately 30,000 genes in the human genome all at the same time.  

 

While the technology is promising, we are now faced with a new challenge of 

extracting relevant information from the data DNA Microarray technology generates. 

With tens of thousands of genes monitored simultaneously and hundreds of experimental 

conditions and measurements, a single experiment can yield tens of millions of data 

points. As a result of this large amount of data, data mining and data analysis have 

received great interest in recent years in the area of gene expression. DNA Microarray 
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experiments are exploratory in nature. The technology is used for observing, describing 

and mapping undiscovered territory, rather than testing theories or models [15]. 

Therefore, the data analysis tools are developed and used for the purpose of exploration. 

The two popular types of data mining techniques in the area of gene expression are 

clustering and classification. In the next section, these techniques will be described in 

more detail. 

  

1.2 Data Mining 

 

 Data mining has been an area of research in Computer Science for decades now. 

The emergence of advanced technology and data gathering devices such as point-of-sale 

or remote sensing devices has lead to an explosion of data stored in electronic format. 

This accumulation of data occurs in every area from marketing to molecular biology at an 

exponential rate. With computing power and storage media becoming available at low 

cost, we can accommodate the storage of such large amount of data. The challenge we 

are facing now is to be able to derive meaning from the data we now have. As a result, 

data mining has attracted increasing amount of attention in the past years. In this section, 

I will give an overview of general concepts and steps of data mining, discuss several data 

mining techniques, and eventually focus on association rule mining as a means of 

extracting information.  
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1.2.1 Data Mining Overview 

 

 Data mining, also known as Knowledge Discovery in Databases – KDD, has been 

defined as "the nontrivial extraction of implicit, previously unknown, and potentially 

useful information from data. This encompasses a number of different technical 

approaches, such as clustering, data summarization, learning classification rules, finding 

dependency networks, analyzing changes, and detecting anomalies"[6] It uses machine 

learning, statistical and visualization techniques to discover and present knowledge in a 

form which is easily comprehensible to humans. For example, data from business 

transactions gathered from point-of-sales systems can be used to extract the spending 

patterns of customers in a certain region. This data can be used to determine what goods 

should be promoted to these customers to benefit businesses. Data mining has application 

in areas from business to medical diagnostics. Several techniques have been developed 

for data mining. 

 

1.2.2 Data Mining Techniques 

 

1.2.2.1 Steps Involved 

 

The general strategy for data mining involves several steps: data selection, data 

preprocessing, data transformation, data mining and interpretation and evaluation [30].  
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1. Data selection is a process for selecting the data according to some criteria. 

The criteria are usually determined based on the specific domain of 

application. In addition, the data should be relevant to the question that is 

asked. This step is usually carried out under the guidance and the 

knowledge of a domain expert. For example, data collected from point-of-

sale systems may contain different information. Information such as 

pricing is not relevant to identifying the associations between sales of 

individual merchandise. Such information must be first removed. 

 

2. Data preprocessing is the data cleansing step in which unnecessary 

information is removed from the selected data, often referred to as 

“scrubbing the data.” This step is also needed when data from different 

sources are integrated to ensure that all data will have the same format. 

One example would be normalizing data so that data comparison is more 

relevant. 

 

3. Data transformation is the preparation step to make data of one 

representation into another optimal representation or structure usable by 

the target technique and algorithm. This step is needed because data 

collected often is not usable in its original format. For example, in market 

basket data analysis, the data collected from point-of-sales system may 

contain quantities of items for each sale. A particular analysis technique 
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may only be concerned with whether an item is present in the transaction. 

So the data represented by quantity may need to be transformed into a 

Boolean representation of the presence or absence of each item in the 

transaction so that the data mining technique can be applied. 

 

4. Data mining is the actual analysis step using specific techniques and 

algorithms. In this step, prepared data is further compressed or 

transformed so that one can easily identify any latent valuable nuggets of 

information. 

 

5. Data interpretation and evaluation is the final step. After analysis results 

are generated by the data mining algorithms, they are used to see if 

additional domain knowledge is discovered and to determine the relative 

importance of the facts generated. Sometimes, they are also interpreted as 

knowledge which can then be used to support human decision-making. 

The results from this step often provide feedback for additional iterations 

of the data mining process. 
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1.2.2.2 Data Mining Techniques 

 
 
 

There are several widely used data mining techniques. Traditionally, these 

techniques are carried out independently. These techniques include: classification, 

clustering, and association rule mining. 

 

Classification is a process in which common characteristics among objects are 

identified. Objects in turn are classified into different classes. Classification usually 

requires a training set with labels. The training set is used to develop an accurate model 

to characterize each class. Once the model has been developed, incoming data is fitted 

into this model and classified with other objects sharing similar characteristics. The 

classification technique is a supervised learning technique. One example of classification 

would be Support Vector Machines. Support Vector Machines are a method for creating 

functions from a set of labeled training data. The function can be a classification function 

(the output is binary: is the input in a category) or the function can be a general 

regression function. For classification, SVMs operate by finding a hyper-surface in the 

space of possible inputs. This hyper-surface will attempt to split the positive examples 

from the negative examples. The split will be chosen to have the largest distance from the 

hyper-surface to the nearest of the positive and negative examples, such that the margins 

are maximized. Intuitively, this makes the classification correct for testing data that is 

near, but not identical to the training data. In order to successfully construct a 

classification model, there must exist a set of class identities or labels. This method of 
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analysis is useful in applications such as customer profiling, credit rating, medical 

diagnostics, and chemical classification. This method is not particularly useful when no 

pre-existing identity or labels are available. 

 

 Clustering is a process of partitioning a collection of objects into groups or 

clusters whose members share a common set of characteristics. It is similar to 

classification except that no labels are used, and it is an unsupervised method. Clustering 

is typically used to explain the characteristics of a data distribution. One example of 

clustering is: with a list of customers and various characteristics regarding these 

customers, a company can identify several market segments (types of customers the 

company has) and descriptions of these segments, including similarities among customers 

within a segment as well as distinguishing characteristics between segments. There are 

three common approaches to clustering: k-means (or partitioning) clustering, self-

organizing maps, and hierarchical clustering [3, 4, 5]. K-means clustering is a very 

simple form of analysis that assigns each object from a collection to exactly one group. 

The technique begins with k cluster centers, where k is specified when the technique is 

applied. For each object, the cluster center that’s nearest to it is found. The object then is 

placed in the cluster represented by this cluster center. As objects are added to and 

removed from each cluster, the cluster centers are recomputed. The second step is 

repeated to reassign objects to its nearest cluster center. The cluster centers are 

recomputed. This iteration is repeated. The algorithm terminates when no more clusters 

are altered. Hierarchical clustering also generates groups of objects. But each resulting 

group of size greater than one is in turn composed of smaller groups. There are two 
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approaches: bottom-up and top-down. The bottom-up approach involves several steps. 

We first start with n clusters given n objects, each containing one object. Then the two 

most similar clusters are merged into one cluster and the previous step is repeated until 

there is only one cluster. The top-down approach is the reverse of the bottom-up 

approach. The technique of Self-Organizing Maps is somewhat related to k-means 

clustering. It is based on neural networks. This method produces ordered low-

dimensional representations of an input data space. Typically, such input data is complex 

and high-dimensional with data elements being related to each other in a nonlinear 

fashion. The basis of the method derives from biophysical studies of the brain and brain 

maps which form internal representations of external stimuli in a spatial manner. The 

mechanism of the technique is somewhat complex and will not be discussed here. 

Clustering is useful as a stand-alone tool for data analysis. It can provide useful insight in 

the data exploratory process. Clustering can also be used as a preprocessing step for data 

mining as seen in our study. 

 

 Association rule mining from large datasets has received much attention in 

recent data mining research. Association rule mining is a process that identifies links 

between sets of correlated objects in transactional databases where each transaction 

contains a list of items. If we are given a set of items I = {i1, i2, …, in}, a transaction T 

where T is a subset of I, T ⊆ I (T needs not to be in the same sequence as I), an 

association rule is of the form X=>Y, where X ⊂ I, Y ⊂  I, and X ∩ Y = Ø. A typical 

application of association rules, identified by IBM, is Market Basket Analysis. For 

example, a grocery retailer runs an association operator over the point of sales transaction 
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log, which contains transaction identifiers, which in turn contain product identifiers. The 

output of the analysis is a list of product affinities such as "20% of the times when 

customers buy Wonder wheat bread, they also buy 2% milk." This produces information 

at a level higher than simply assigning objects into groups. The association relationship 

or implication among objects can be explored. The objective for association rule mining 

is to find rules with high support and confidence, which are measures of the likeliness of 

the rules. The details of association rule mining mechanisms will be discussed in the next 

section. 

 

1.2.3 Mining Association Rules 

 

1.2.3.1 Definition 

 

 Association rule mining was first introduced in 1993 [7]. The formal statement of 

the problem is as follows. Let I = {i1, i2, …, in} be a set of literals, called items. Let D be 

a set of transactions, where each transaction T is a set of items such that a transaction 

T ⊆ I and T∈D. We say that a transaction T contains X, a set of items in I, if X ⊆ T. An 

association rule, as mentioned previously, is an implication of the form X=>Y, where 

X ⊂ I, Y ⊂  I, and X ∩ Y = Ø. The rule X=> Y holds in the transaction set D with 

confidence c if c% of the transactions in D that contain X also contain Y. The rule X=>Y 

has support s in the transaction set D if s% of transactions in D contain X ∪ Y. 
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 The support of X is the fraction of transactions T supporting the itemset X with 

respect to database D, supp(X) = |{T∈D|X ⊆ T}| / |D|. We often see in literatures that the 

count of an item in a given database instead of the fraction is used as the support. Here in 

this thesis, we also use count and support interchangeably. The support of a rule X=>Y is 

defined as supp(X=>Y) = supp(X ∪ Y). An itemset X is called large or frequent if its 

support exceeds a given threshold, ξ. All others are called small or infrequent itemsets. 

The confidence of the rule X=>Y is defined as the percentage of transactions containing 

Y in addition to X with regard to the overall number of transactions containing X, 

conf(X=>Y) = supp(X ∪ Y)/supp(X). For the association rule X=>Y to be significant, 

X ∪ Y must be large and the confidence of the rule must exceed a given confidence 

threshold, γ. This can be thought of in probability terms as P({X ∪ Y}) > σ  and P(Y|X) > γ, 

where P(Y|X) = P(XY) / P(X) [8, 9, 10]. 

 

1.2.3.2 Search Space Traversal 

 

 As described in the definition section, in order to generate association rules, we 

must find all itemsets that satisfy the minimum support. Examining all subsets of I is 

impractical due to the large search space. A linearly growing number of items imply an 

exponential growth of itemsets to be considered. Fortunately there is a general strategy 

we can employ while considering itemsets based on the downward closure property of 

itemsets. For example, we consider the case I = {A, B, C, D}. We can represent the 

search space or all possible itemsets with the following conceptual structure. 
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Figure 1.2 The construction of all itemsets for I = {A, B, C, D}. The rectangle grouping 

indicates the itemsets in each class (level) that share the same prefix. 

 

 

If the support of itemset {C, D} does not satisfy the threshold (infrequent itemset), then 

we have a dashed line that separates the frequent itemsets (upper) and the infrequent 

itemsets (lower). The existence of such a border is guaranteed by the downward closure 

property of itemset support, that if a parent itemset does not satisfy the minimum support, 

neither will its child itemset. In this case, if {C, D} does not satisfy the minimum support 

threshold, we do not need to consider itemsets that contain {B, C, D}. The basic principle 

of the common algorithm is to employ this border to efficiently prune the search space. 

When we encounter an itemset that is not frequent, then the subsequent itemsets need not 

be considered. It is also implied that if the parent class E’ of E does not contain at least 

two frequent itemsets, then, E must not contain any frequent itemset either. Once we 

{} 

{A}   {B}   {C}   {D} 

{A, B}   {A, C}   {A, D} {B, C}    {B, D} {C, D}

{A, B, C}    {A, B, D} {A, C, D} {B, C, D} 

{A, B, C, D} 
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encounter such a class E’ on our way down the tree, we have reached the border 

separating the infrequent and the frequent itemsets, and we do not need to go beyond this 

border. An itemset that is potentially frequent and for which we decide to determine its 

support during lattice traversal is called a candidate. 

 

1.2.3.3 Existing Algorithms 

 

 One of the problems with mining association rules is the algorithm complexity. 

The number of rules generally grows exponentially with the number of items. Naturally, 

optimization has focused on efficiently pruning the search space, and a number of 

algorithms have been developed. An algorithm is characterized by a) its search space 

traversal strategy (BFS or DFS), and b) by its strategy to determine the support values of 

the itemsets (counting and intersecting). I will discuss several popular algorithms here.  

 

 Before discussing the algorithms, we need to first discuss the strategies to 

determine the support value of an itemset. There are two common approaches: counting 

occurrences and TID-list intersections [8, 10]. When determine the support values by 

counting occurrences, the counter for each itemset investigated is initialized and set to 0. 

All transactions are scanned and whenever a candidate is recognized as a subset of a 

transaction, its counter is incremented. Typically subset generation and candidate lookup 

are integrated and implemented with a hashtree or a similar data structure. The second 

common approach to determine the support values is by TID-list intersections. A TID is a 

unique transaction identifier. For a single item the TID-list is the set of identifiers that 
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correspond to the transactions containing the item. For every itemset X there is also a 

TID-list, denoted by X.TID-list. The TID-list of X = A ∪ B is obtained by X.TID-list = 

A.TID-list ∩ B.TID-list. TID-lists are usually sorted in an ascending order to allow 

efficient intersections. The actual support value of a candidate X is |X.TID-list|. 

 

 Apriori [8] is a popular breadth first search and occurrence counting algorithm. 

The heart of this algorithm is making use of the downward closure property of itemsets 

by pruning the candidates that have infrequent subsets before counting their supports. 

This optimization becomes possible because BFS ensures that the support values of all 

subsets of a candidate are known in advance. For example, if supp({A,B}) < min. support,  

{A,B,C,D} will not be considered. Apriori counts all candidates of a cardinality k 

together in one scan over the database. A hashtree structure is used for the purpose of 

looking up the candidates in each of the transaction.  The items in each transaction are 

used to descend in the hashtree. Whenever we reach one of its leaves, we find a set of 

candidates having a common prefix that is contained in the transaction. 

 

 Partition [11] is an Apriori-like algorithm that uses BFS and TID-list intersection. 

As described above, Apriori determines the support values of all candidates of cardinality 

k-1 before counting the candidates of cardinality k. Instead of counting, Partition uses the 

TID-list of the frequent (k-1)-itemsets to generate the TID-lists of the k-candidates by 

appending single additional item to the frequent (k-1)-itemsets. One of the problems with 

Partition is that when generating TID-lists of k-candidates, the size of intermediate results 

easily grows beyond the physical memory limitations of common machines. Partition 
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overcomes this by splitting the database into several chunks that are treated 

independently. In the end, an extra scan is required to ensure that locally frequent 

itemsets are also globally frequent.  

 

Eclat [11] is introduced that combines depth first search with TID-list intersection 

to address the memory problem. When using DFS, it suffices to keep the TID-list on the 

path from the root down to the node itemset currently investigates (see the previous 

subsection).  Splitting the database done by Partition is no longer needed. Eclat employs 

an optimization called “fast intersection,” in that whenever two TID-lists are intersected, 

we only consider the resulting TID-list if its cardinality reaches min support. In other 

words, each intersection is eliminated as soon as it does not meet the minimum support. 

 

 FP-growth [12] is a recently introduced approach using DFS and counting 

occurrences. Generally, using a DFS approach to scan every node in the search space 

results in tremendous overhead. The simple combination of DFS with counting 

occurrences is of no practical relevance [13]. But FP-Growth is considered a 

fundamentally new approach. The heart of this algorithm is a pre-processing step in 

which FP-growth derives a highly condensed representation of the transaction data, a FP-

tree. In a second step, FP-growth uses the FP-tree to derive the support values of all 

frequent itemsets. This algorithm will be discussed in detail in the next chapter. 
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1.3 Motivation and Research Goal 

 

With the promise of DNA Microarray technology also comes the challenge of 

disseminating the vast amount of data we have collected. Numerous data mining tools 

have been developed and adapted for gene expression data analysis. Most of the methods 

used are based on the classification or the clustering techniques of data mining [21, 31, 

32, 33]. Little work has been done using association rule mining. These methods 

(supervised and unsupervised) are useful for grouping genes, and identify genes of 

unknown functions by their resembling characteristics to other genes of known functions. 

While the existing tools are useful for determining membership of genes by homology, 

they do not identify the regulatory relationships among genes that are found in the same 

class of molecular actions. For example, using clustering tools, we can say that gene A, B, 

and C are closely related in their expression pattern. But we cannot say anything about 

the relationship among A, B, and C. With association rule mining, we can take a step 

further and may be able to discover relationships such as A=>{B, C}, that when gene A 

is expressed a certain way, B and C are also expressed a certain way with a confidence c. 

The reverse isn’t necessarily true. Intuitively, this is very similar to what we consider as 

regulatory network for gene expression. By discovering relationships such as A-up=> {B-

up, C-up}, we might be able to also construct a regulatory network by combining the 

association rules to describe a regulatory process. Because of the exploratory nature of 

DNA Microarray technology, we believe that association rule mining may be a useful 

tool for discovery regulatory relationships among genes from gene expression data. 
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Chapter 2: Association Rule Mining Using FP-growth  

 
 

2.1 Introduction 

 

Association rule mining is a two step process. The first step is to find frequent 

patterns to serve as candidates for association rules. This step requires finding the support 

for itemsets that satisfy a specified minimum value. The second step is to generate 

association rules using the itemsets found during the first step. This step involves 

calculating the confidence of potential rules and selecting those with confidence that, 

again, meet a minimum threshold. As we have discussed in the previous chapter, the first 

step is computationally intensive. The number of itemsets to be considered grows 

exponentially with linear growth of the number of items. Therefore, most of the research 

and algorithms developed have been addressing the first step of the process. In 2000, Han 

et al. [12] introduced the FP-Growth algorithm for discovering frequent patterns. We will 

discuss this algorithm in detail in this chapter. 
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2.2 FP-Tree for Pattern Generation 

 

Conceptually, the FP-Growth algorithm uses a Depth First Search, a recursive 

process to “grow” frequent patterns from pattern fragments. The algorithm achieves 

efficient data mining with three techniques: 1. the large database is compressed into a 

highly condensed data structure which avoids costly, repeated database scans, 2. a pattern 

fragment growth method is used to avoid the costly generation of a large number of 

candidate sets, and 3. partitioning based on a divide-and-conquer method is used to 

decompose the problem into smaller tasks, which dramatically reduces the search space.  

 

The data structure used by this algorithm is a Frequent Pattern tree or FP-Tree. 

The algorithm generates the FP-Tree from the transaction database based on the support 

of items in the transactions in the database. Using each item as the suffix pattern (of 

length 1), a conditional database is generated (a sub-database that consists of all 

transactions containing the suffix pattern). From the conditional database, a conditional 

FP-Tree is generated. The two steps are repeated recursively. The conditional databases 

and the conditional FP-trees from the recursive process will decrease in size with each 

iteration. Pattern growth is achieved by concatenating the suffix patterns resulting from 

each recursive step.  
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2.2.1 Frequent Pattern Tree 

 

Frequent Pattern Tree, or FP-Tree, is an extended prefix-tree structure for storing 

quantitative information about frequent patterns. The use of the prefix-tree is to compact 

the representation and storage of most frequent, or commonly shared patterns.  

  

Consider the following example transaction database represented by the following table. 

We can make the following observations:  

 

 

 

Transaction Items 

1 f, a, c, d, g, i, m, p

2 a, b, c, f, l, m, o 

3 b, f, h, j, o 

4 b, c, k, s, p 

5 a, f, c, e, l, p, m, n

 

Table 2.1 An example transaction database 
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1. Since we need to consider only the frequent items, it is sufficient to scan the 

database to identify the set of frequent items by counting frequency. 

 

2. If the set of frequent items of each transaction is stored in some compact structure, 

we can avoid repeated scans of the database. 

 

3. If multiple transactions share identical frequent items, they can be merged into 

one with the number of occurrences registered as a count. This check can be done 

easily if the items in all of the transactions are sorted according to a fixed order. 

 

4. If two transactions share a common prefix according the sorted order of items, the 

shared parts can be merged using one prefix structure as long as the count is 

registered properly. If a descending order is used to sort the frequency of items, 

there is a better chance that more prefixes can be shared. 

 

 

With these observations in mind, we can define our compact data structure, FP-Tree 

as follows: 

 

1. FP-Tree consists of one root labeled as null, a set of item prefix sub-trees, and a 

sorted frequent item header table. 
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2. Each node in the item prefix sub-tree consists of three fields: item-name, count, 

node-link, and parent. Item-name registers the item this node represents. Count 

registers the number of transactions represented by the portion of the path in the 

prefix tree from the root reaching this node. Node-link links to the next node in 

the FP-Tree carrying the same item-name. When there is none, node-link links to 

null. This results in a linked-list structure for nodes with the same item-name. 

Parent points to the parent node in the prefix tree. 

 

3. Each entry in the frequent item header table consists of two fields, item-name, 

which registers the item represented, and head of node-link which points to the 

first node in the FP-Tree carrying the same item-name. 

 

 

Based on the definition, the FP-Tree Construction Algorithm is: 
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Input: A transaction database D and a minimum support threshold ξ. 

Output: Its frequent pattern tree, FP-Tree. 

Method: The FP-Tree is constructed in the following steps. 

1. Scan the transaction database D once. Collect the set of frequent items F and their 

respective support values. Sort F in descending order as L, the list of ordered 

frequent items that satisfy the minimum support threshold ξ. 

2. Create the root of an FP-Tree, T, and label it as null. For each transaction, Trans, 

in D do the following. 

• Select and sort the frequent items in Trans according to the order of L. Let 

the sorted frequent item list in Trans be [p|P], where p is the first element 

and P is the remaining list. Call insert_tree([p|P], T). 

• The function insert_tree([p|P], T) is performed as follows. If T has a child 

N such that N.item-name = p.item-name, then increment N.count; else 

create a new node N and set N.item-name = p.item-name, and set N.count 

= 1, its parent link be linked to T and its node-link be linked to the nodes 

with the same item-name via the node-link structure. If P is nonempty, call 

insert_tree(P, N) recursively. 

 

 

Given the definition and the construction algorithm, we construct a FP-Tree in the 

following example. Given a minimum support ξ = 3 and a transaction database shown in 

Table 2.2, we have a list of frequent items from a database scan {(f:4), (c:4), (a:3), (b:3),  
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Transaction Ordered Frequent Items

1 f, c, a, m, p 

2 f, c, a, b, m 

3 f, b 

4 c, b, p 

5 f, c, a, m, p 

 

Table 2.2 Frequent items in each transaction sorted in descending order of frequency 

 

 

(m:3), (p:3)} with descending order. We sort the frequent items in each transaction as 

shown in Table 2.2. From the frequent items, we now construct the FP-Tree. We create 

the root of the tree, labeled with null. Transaction 1 (f, c, a, m, p) leads to the construction 

of the first branch, with count of each node equals to 1. Transaction 2 (f, c, a, b, m) shares 

a common prefix (f, c, a) with the existing path (f, c, a, m, p), so the count of each node 

along the prefix is incremented by 1. A new node (b:1) is created and its parent points to 

(a:2) and another new node (m:1) is created and is linked as the child of (b:1). 

Transaction 3 (f, b) only shares prefix (f) with the existing paths. Node f’s count is 

incremented to 3 and a new node (b:1) is created and linked as a child of (f:3). Since we 

already have a node (b:1), the node link of this node will point to the newly created (b:1) 

to create a linked list. Transaction 4 (c, b, p) does not share a prefix with the existing 

paths in the tree, therefore leading to the creation of the second branch of the tree, <(c:1), 
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(b:1), (p:1)>. Node (c:2) will have its node link point to the newly created node (c:1). The 

last node, (b:1), in the linked list for item b will have its node link point to the newly 

created (b:1). Transaction 5 (f, c, a, m, p) is identical to transaction 1, the path is shared 

and the count of each node along the path is incremented by 1. We then have the 

following FP-Tree: 

 

 

 

Figure 2.1 The FP-Tree constructed from the example transaction database 

 

 

Based on the construction algorithm, we see that two scans of the transaction 

database are required: first to collect the set of frequent items, and the second to construct 

the FP-Tree. Inserting a transaction into the FP-Tree is Θ(|T|), where |T| is the number of 

frequent items in a transaction. 
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2.2.3 Pattern Generation Using FP-tree. 

 

 Mining with a compact data structure such as FP-Tree does not automatically 

guarantee that it will be highly efficient. One may still encounter the combinatorial 

problem of candidate generation if we simply use this FP-tree to generate and check all 

the candidate patterns. [12] In this section, we will discuss in detail the algorithm used to 

mine frequent patterns using the FP-Tree, described by Han et al.  

 

In order to facilitate the frequent pattern mining process, there are several 

properties of the FP-Tree structure we should consider. 

 

Property 2.2.3-1 (Node-link property) For any frequent item ai, all the possible 

frequent patterns that contain ai can be obtained by following ai’s node-links, starting 

from ai’s head in the FP-Tree header. 

 

Property 2.2.3-2 (Prefix path property) To calculate the frequent patterns for a node ai 

on a path P, only the prefix sub path of node ai in P needs to be accumulated, and the 

frequency count of every node in the prefix path should carry the same count as node ai. 

 

Rationale The count of nodes in this prefix path can be greater than the count of ai. But 

the instances of these nodes in the frequent patterns containing ai will have the count set 

to the count of ai. 
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Lemma 2.2.3-1 (Fragment growth) Let α be an itemset in D, B be α’s conditional 

pattern base (a sub-database that consists of all transactions containing the suffix pattern 

α), and β be an itemset in B. Then the support of α∪ β in D is equivalent to the support of 

β in B if support is the count of the item. 

 

Rationale According to the definition of conditional pattern base, each (sub) transaction 

in B occurs under the condition of the occurrence of α in the original transaction database 

D. If an itemset β appears in B ψ times, it appears with α in D ψ times as well. Since all 

such items are collected in the conditional pattern base of α, α∪ β occurs exactly ψ times 

in D as well.  

 

Corollary 2.2.3-1 (Pattern growth) Let α be a frequent itemset in D, B be α’s 

conditional pattern base, and β be an itemset in B. Then α∪ β is frequent in D if and only 

if β is frequent in B. 

 

This corollary is the case when α is a frequent itemset in D, and when the support of β in 

α’s conditional pattern base B is no less than ξ, the minimum support threshold. 

 

Lemma 2.2.3-2 (Single FP-Tree path pattern generation) Suppose an FP-Tree T has a 

single path P. The complete set of the frequent patterns of T can be generated by the 

enumeration of all the combinations of the subpaths of P, with the support being the 

minimum support of the items contained in the subpath. 
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 Based on the above properties and lemmas, we have the following algorithm for 

mining frequent patterns using FP-Tree. 

 

Input: FP-Tree, minimum support threshold ξ 

Output: The complete set of frequent patterns. 

Method: Call FP-Growth(FP-Tree, null) 

Procedure FP-Growth(Tree, α) //α is the suffix of the current FP-Tree 
{ 

if Tree contains a single path P 
then for each combination (denoted as β) of the nodes in the path P do 
   generate pattern β∪ α with support = minimum support of nodes in β 
else for each ai in the header of Tree do { 
   generate pattern β = ai ∪ α with support = ai.support; 
   construct β’s conditional pattern base and then β’s conditional FP-Tree Treeβ; 
   if Treeβ ≠ Ø 
   then call FP-Growth(Treeβ, β) 
} 

} 
 

 
 

Let’s consider the example from the previous section and the FP-Tree in Figure 

2.2.1-1, where the minimum support threshold ξ=3. For node p, we have a frequent 

pattern (p:3) and two paths in the FP-Tree: <(f:4), (c:3), (a:3), (m:2), (p:2)> and <(c:1), 

(b:1), (p:1)>. Although item (f) appears 4 times, and (c, a) 3 times, they only appear twice 

together with p. We only consider p’s prefix path <(f:2), (c:2), (a:2), (m:2)>. Similarly, 

the second prefix path for p is <(c:1), (b:1)>. These two prefix paths form p’s conditional 

pattern base. Construction of an FP-Tree on this conditional pattern base, p’s conditional 

FP-Tree, leads to only one branch (c:3). Hence only one frequent pattern (cp:3) is derived.  
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Item Conditional pattern base Conditional FP-Tree 

p { (f:2, c:2, a:2, m:2), (c:1, b:1)} {(c:3)}|p 
m {(f:4, c:3, a:3, m:2), 

(f:4, c:3, a:3, b:1, m:1)} 
{(f:3, c:3, a:3)} | m 

b {(f:4, c:3, a:3, b:1), (f:4, b:1), 
(c:1, b:1)} 

Ø 

a {(f:3, c:3)} {(f:3, c:3)}|a 
c {(f:3)} {(f:3)}|c 
f Ø Ø 

 

Table 2.3 Conditional pattern bases and FP-Trees 

 
 
 
The search for frequent patterns associated with p terminates. Similarly, conditional 

pattern bases and the conditional FP-Trees can be generated as shown in Table 2.3. 

 
 

2.3 Discovering Rules 

  

Association rule generation from frequent patterns is the second step of the 

mining process. The association rules that we consider are more general than described 

by Agrawal et al. [7] in that we allow a consequent to have more than one item. Because 

gene regulation is not necessarily a one-to-one relationship, we need to allow the ability 

to generate regulations that involve multiple genes that appear on either side of the rules. 

  

A straightforward process for generating rules is as follows. Given a minimum 

confidence c, for every large itemset L, of size greater than 1, we find all non-empty 

subsets of L. For every such subset a, we output a rule of the form a=>(L-a) if the 
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confidence of this rule, that is, the ratio of supp(L) to supp(a), satisfies c. We consider all 

subsets of L to generate rules with multiple consequents. Large itemsets are stored in a 

hash table, the support counts for the subset itemsets can be found efficiently. This 

procedure can be improved by generating the subsets of a large itemset in a recursive 

depth first fashion. So if a subset S of a large itemset L does not generate a rule, the 

subsets of S do not need to be considered for generating rules using L. For example, 

given an itemset ABCD, we first consider the subset ABC, then AB, etc. If ABC=>D 

does not have enough confidence, we do not need to check if AB=>CD holds. This 

observation can be generalized as if a=>(L-a) does not hold, neither does c=>(L-c) for 

any c ⊂ a.  
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Chapter 3: Methods 

 
 

3.1 Implementation of FP-Growth Algorithm 

 

 The FP-Growth algorithm is implemented in Java for our study. The following 

UML diagram shows the design of the program in the form of a class interaction diagram. 

Implementation of both FP-Tree and the association rule mining algorithm follows the 

details discusses in chapter 2. 
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Figure 3.1 Class interaction diagram of the program that implements FP-Growth 

algorithm 
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3.2 Data Selection  

 

The objective of this research is to use an association rule mining method to 

discover regulatory relationships among genes. The rules generated can further be 

combined to generate regulatory networks. Due to the fact that association rule mining is 

based on a probabilistic model, there are several features in the data we are looking for: 

large sample size, correlation in experimental design and annotation that allows us to go 

back and verify the results. 

 

The target species for this study is Saccharomyces cerevisiae, or budding yeast. 

Yeast is considered the model organism for genetic research of eukaryotes. It shares great 

similar molecular functions with other higher eukaryotic organisms. At the same time, 

being a microorganism, yeast shares many of the technical advantages that permitted 

rapid progress in the molecular genetics of prokaryotes and their viruses. Some of the 

properties that make yeast particularly suitable for biological studies include rapid growth, 

dispersed cells, the ease of replica plating and mutant isolation, a well-defined genetic 

system, and most important, a highly versatile DNA transformation system. Being 

nonpathogenic, yeast can be handled with little precautions. Large quantities of normal 

bakers’ yeast are commercially available and can provide a cheap source for biochemical 

studies. These properties of yeast allowed it to be used as the primary research system for 

many molecular biologists in the last several decades. A large percentage of the 

molecular functions in yeast have been well characterized. More significantly, the 

complete yeast genome has been sequenced since 1996 [18, 19] and many genes have 
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been identified. This makes it relatively easy to validate results from our association rule 

mining method using known biological functions of genes studied. With the availability 

of Microarray technology, there also have been a great number of systematic 

investigations of all genes in the yeast genome. There is an abundant source of yeast gene 

expression data available to us. Of the publicly available experimental data, we selected 

two relatively large datasets that were published in recent studies to be used in our 

research. 

 

The first dataset was published by T.R. Hughes, et al. [20]. This study constructed 

a reference database or “compendium” of full genome expression profiles of yeast 

corresponding to 300 diverse mutations and chemical treatments in yeast. DNA mutations 

and chemical treatments were introduced to trigger DNA damage responses in yeast cells. 

The original experiments were designed to capture the gene expression profile as a 

response to these damages and to identify genes that play a role in DNA damage repair. 

This experiment was particularly good for our research, because DNA damage repair is a 

highly regulated process that involves several identified key players. The ability to 

identify genes that are involved in the regulation of the repair response can be used to 

validate our association rule mining method. The resulting dataset, including 300 

compendium experiments and 63 control experiments, was obtained as supplemental data 

from the Rosetta Inpharmatics website: http://www.rii.com/publications/cell_hughes.htm.  

 

The second dataset is a smaller dataset generated by Eisen et al. [21] from a 

genome wide expression study of yeast during its cell growth/reproduction cycle. This 

http://www.rii.com/publications/cell_hughes.htm
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dataset consists of combined 127 measurements. The experiments were designed to 

capture the yeast gene expression profiles during normal cell growth and proliferation, as 

well as under several artificial treatments. This is a good dataset for discovering gene 

regulations that occur during a cell’s life cycle. 

 

3.3 Data Preprocessing 
 

 

The traditional input for association rule mining, such as market basket data, has 

some significant differences from gene expression data. The first difference is that market 

basket data contains a large number of transactions (instances of subsets of items): e.g. in 

the thousands, and the number of total items in the transaction database is relatively 

smaller: e.g. in the hundreds. An instance of an item in a specific transaction is usually 

represented with a Boolean value, present or not present. It is also the case that not all 

items are represented in all transactions. The absent items in a given transaction are 

ignored, therefore, the size of the resulting FP-tree is relatively smaller. On the other 

hand, gene expression data usually contains a large number of items (in our case, genes 

that represent the entire genome), in the range of thousands to tens of thousands. In the 

case of yeast experiments, there are a little over 6300 genes. The number of 

measurements, which is equivalent to transactions from market basket data, is much 

smaller, often in the range of hundreds per experiment (with improvements of DNA 

Microarray technology and decrease in cost, larger experiments with thousands of 

measurements are becoming common practice). Also, in most cases all genes (items) are 
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represented in every measurement (transaction). As stated in the following lemma, since 

the size of the FP-Tree is determined by the number of items in the transactions, and the 

ability to compact transactions into prefixes, it is expected that gene expression data will 

produce larger FP-Trees. 

 

Lemma 4.1-1 Without considering the (null) root, the size of an FP-tree is bounded by 

the overall occurrences of the frequent items in the database, and the height of the tree is 

bounded by the maximal number of frequent items in any transaction in the database.   

 

Rationale Based on the FP-tree construction process, for any transaction T in database D, 

there exists a path in the FP-tree starting from the corresponding item prefix sub-tree so 

that the set of nodes in the path is exactly the same set of frequent items in T. Since no 

frequent item in any transaction can create more than one node in the tree, the root is the 

only extra node not created by frequent item insertion, and each node contains one node-

link and one count information, we have the bound of the size of the tree stated in the 

Lemma. The height of any p-prefix sub-tree is the maximum number of frequent items in 

any transaction with p appearing at the head of its frequent item list. Therefore, the height 

of the tree is bounded by the maximal number of frequent items in any transaction in the 

database, if we do not consider the additional level added by the root. ٱ 

 

Because the height of the FP-Tree determines the depth of the recursive step in 

the algorithm given in section 2.23, pattern generation from FP-Tree constructed from 

gene expression data will use more computation. In order to address this issue, we need 
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to find a way to reduce the number of items to be considered in our transaction database. 

Because we are looking for correlation between genes from gene expression data, we can 

select a subset of genes that seem related by preprocessing the raw data using a clustering 

method to organize correlated genes into clusters. Once the groups are obtained, we 

perform our association rule mining on genes that are in the same cluster as well as genes 

in several clusters. This step not only will reduce the depth of the recursion in the 

algorithm, but also serve as a pre-process step that help us select the genes that are related. 

 

There are several types of clustering method as described in Chapter 1. Here we 

use K-means clustering methods to simply place genes into related groups. K-means 

clustering is a nonhierarchical method that initially takes the number of components of 

the population equal to the final required number of clusters. In this step the final clusters 

is chosen as an input for the algorithm and the initial points are chosen such that the 

points are mutually farthest apart. Next, each component in the dataset is examined and 

assigned to one of the clusters to produce a minimum distance to the cluster center. Each 

cluster center is recalculated every time a component is added to the cluster and this 

continues until all the components are grouped into the final required number of clusters. 

Because clustering is not our focus of study, we used Cluster software written by Eisen to 

perform the k-means clustering. 

 

In this study, because we are evaluating association rule mining as a tool to 

analyze gene expression data by recovering known gene regulations, we selected the 

clusters that contained genes we are interested in. 
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3.4 Data Transformation 
 

 

 Another key difference between gene expression data and market basket data is 

that an instance of an item in a transaction is represented as a Boolean value, present or 

not present. A frequent item is an item with number of occurrences greater than the 

minimum support. But the instance of a gene in a measurement is represented as a real 

numerical value, usually the ratio of the measured value at that particular point and a 

reference value6. Since all genes are present in each measurement, there isn’t a simple 

notion of a frequent gene. A sample of Microarray fluorescent ratio data is shown in the 

following table. One can consider an ORF (Open Reading Frame), representing a gene, as 

an item, and each time point as the transaction. 

 

 

 

 

 

 

 

 

                                                 
6 In the case of data from Affymetric technology, the data is already normalized, and represented as a log 
ratio using undisclosed calculation. 
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ORF Time 1 

Ratio 

Time 2 

Ratio 

Time 3 

Ratio 

Time 4 

Ratio 

Time5 

Ratio 

Time 6 

Ratio 

Time 7 

Ratio 

YHR007C 1.12 1.19 1.32 0.88 0.84 0.38 0.43 

YBR218C 1.18 1.23 0.77 0.75 0.79 0.71 2.7 

YAL051W 0.97 1.32 1.33 1.18 1.12 0.88 0.93 

YAL053W 1.15 1.33 1.18 1 0.81 0.7 0.96 

YAL054C 0.63 0.88 1 0.88 0.81 2.78 12.5 

YAL055W 0.68 1 0.92 0.96 0.81 1.28 1.85 

YAL056W 1.01 1.56 1.19 1 0.94 1.09 1.41 

 

Table 3.1 A sample listing of two dye DNA Microarray data output 

 

 

The question is how we can transform this kind of data into a traditional input for 

association rule mining. Our answer to this question is to represent each gene as three 

items. Because ratios already convey a relative expression level of a gene at a given point 

with respect to a reference point, we can generalize this ratio r into 3 discrete values 

representing an increase (r > 1), a decrease (r<1), and unchanged (r=1) expression level 

relative to the reference (control) expression level. Each gene g can then be represented 

as 3 items in the transaction database: g-up, g-down, g-unchanged. For a given gene, at a 

single measurement, the three new items are exclusive. Exactly one of the three items is 

present in each transaction. Therefore, even though we increase the total number of items 

by three fold, the number of items in any transaction remains unchanged. Based on 
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Lemma 4.1-1, the size of the FP-tree will not increase because the size of the FP-Tree 

depends on the number of items in a transaction. 

 

 We considered two approaches to transforming gene expression data into the 

above format we discussed. 

 

The first approach was to use measurement-pair-wise comparison, which 

represents the transition from one experimental condition to another. We take series-

based gene expression data, for each gene, compare the ratio value of two adjacent 

measurements. The adjacent measurements usually represent two consecutive 

experimental treatments such as increase in the concentration of a substrate or increase in 

an unit of incubation time. This method allows us to detect the change in the data during 

such transition, whether the expression level of a gene has increased or decreased or 

unchanged. After this transformation, each transaction now is not a measurement at an 

experimental instance, but a transition from measurement n-1 to measurement n. If we 

observe an increase in the expression level of g, we then represent g-up in this transaction 

as “present” or 1, and g-down and g-unchanged will have the value of “absent” or 0. This 

transformation worked well with series-based data where consecutive data measurements 

are related in the experimental design. For example, in time-series experiments, the 

transition from measurement n to measurement n+1 actually represents the increase in 

time from t to t + τ, where τ is an increment in time. In the case of quantity-series data, 

the transition represents an increase in the concentration of a substrate or a chemical.  
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While the above method is a simple transformation, not all experiments are series-

based. Adjacent measurements don’t necessarily relate to each other. For example, an 

experiment can consist of measurements representing mutations that don’t relate to one 

another. The Hughes, et al. data is one example. Each measurement represents distinct 

mutations and is not related. It is irrelevant to look at how data changes from one 

measurement to another. 

 

 The second approach is to transform the measurements in-place. Since at each 

point, the expression level is already represented as the level relative to the reference 

expression level. We already have a sense of change. If the ratio is greater than 1, we 

know that the expression level has increased. If the ratio is between 0 and 1, then we 

know that the expression level has decreased. A ratio of 1 means no change in expression. 

If a gene has a ratio greater than 1 in a transaction, we set the value of item g-up = 1 in 

the transaction, and set g-down and g-unchanged = 0. If a gene has a ratio less than 1, we 

set the value of item g-down = 1 in the transaction, and set g-up and g-unchanged = 0. If 

a gene has a ratio equal to 1, we set the value of item g-unchanged=1, and set g-up and g-

down = 0 in the transaction. 
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Chapter 4: Results and Discussion 

 

 

We applied our association rule mining algorithm to the DNA Microarray data we 

have selected, preprocessed, and transformed. The number of rules generated is still large 

due to the large number of genes that we are considering. In order to validate our method 

of analysis, we compare the association rules we have generated, as predictions, with 

known gene regulations that have been identified from experimental research. We used 

two methods to validate the results from our association rule mining analysis.  

 

First, we summarized the association rules we generated. Genes that have high 

occurrence on the left-hand side of the rules are identified. Because we are relating 

association rules to gene regulation, an association rule A-up =>B-up predicts that when 

gene A’s expression increases gene B’s expression also increases, therefore gene A may 

play a role as a positive regulator of gene B. Similarly, an association rule A-up => B-

down predicts that gene A is a negative regulator of gene B and it suppresses gene B’s 

expression. Genes that appear on the left hand side of the association rules are therefore 

predicted as genes that may be regulators that determine the expression of genes that 

appear on the right hand side of the rules. The genes are regulatory components. These 
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genes that are predicted as regulators are compared with their respective biological 

function.  

 

Second, we select genes that have been identified to have regulatory functions, 

and select association rules from our results from association rule mining that contain 

these genes. We then determine if the association rules containing these genes have 

corresponding gene regulations involving the same genes that have been identified by 

experimental research. We also extend this method to characterize more complete 

regulatory processes. We use our association rules generated that contain genes that have 

been characterized in literature, and combine the associations to form a network. This 

network will show a sequence of regulations among the genes we have selected. Such 

regulatory network can be used to describe more complex processes involving multiple 

genes that take place in a yeast cell. We verify that the resulting networks we predict are 

consistent with what have been characterized in yeast cells. 

 

Although the yeast genome has been completely sequenced, not all genes have 

been identified. In fact, a large percentage of the open reading frames or ORFs, that 

potentially represent genes, have not yet been identified. Because the functions of these 

ORFs are unknown, they are not particularly useful in validating our predictions. But we 

can use our analysis to predict possible functions that the genes represented by the ORFs 

have. In order to simplify the validation process, we performed our analysis with only the 

genes that have been identified so that the association rules discovered contain only genes 

with known functions. 
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4.1 Identify Genes as Regulators 

 

 Because the goal for this analysis is to identify the genes that are most likely to 

play regulator roles, we included all the genes for our association rule mining. We predict 

that genes appearing on the left hand side of the rules frequently may have regulating 

roles. We summarized the association rules generated from our analysis and obtained a 

list of top ranking genes with the highest frequency of appearance on the left hand side of 

the rules. For validation, we identified the ones with known biological functions from the 

list of top ranking genes and compared them with the biological processes they are 

involved in, and respective molecular functions. In the following table, the top forty 

genes that are found most frequently on the left hand side of the rules generated from the 

cell cycle data are listed. Most of these genes have catalytic functions. From the list, a 

large number of genes are involved in protein synthesis, which is a highly regulated 

process. Protein synthesis is probably one of the most active processes taking place in a 

cell. Proteins are needed for virtually all types of cellular functions, from energy 

metabolism, to transport, to DNA replication. It can be expected that genes that are 

involved in protein biosynthesis occur frequently as regulators. Other types of genes are 

also found in the list, such as HPR5, a helicase. Helicases are enzymes that catalyze the 

unwinding of double stranded DNA to make replication and transcription possible. They 

regulate gene expression by making transcription physically possible. Among the high 

frequency genes, we have also found transcription factors (not listed). Transcription 

factors are the elements that regulate the initiation of the gene expression process 
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(transcription). Because transcription factors are found in virtually all transcription 

processes, we can expect to see a high frequency of them being on the left side of the 

rules. Among the high frequency genes, we also found genes that have regulation 

functions in cell wall biogenesis, and electron transport. These are also highly regulated 

biological processes and are essential to cell growth and proliferation. These findings are 

consistent with what we would expect from a cell cycle experiment. 
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ORF 
Gene 
Name Biological Function Molecular Function 

YJL001W PRE3 ubiquitin-dependent protein degradation multicatalytic endopeptidase  
YIL123W SIM1 cell cycle molecular_function unknown  
YLR075W RPL10 protein biosynthesis structural protein of ribosome  
YGL031C RPL24A protein biosynthesis structural protein of ribosome 
YLR216C CPR6 protein folding peptidylprolyl isomerase  
YLR325C RPL38 protein biosynthesis structural protein of ribosome  
YGR148C RPL24B protein biosynthesis structural protein of ribosome 
YER102W RPS8B protein biosynthesis structural protein of ribosome  
YJR099W YUH1 Deubiquitylation ubiquitin-specific protease  
YLR167W RPS31 protein biosynthesis structural protein of ribosome  
YGR244C LSC2 Tricarboxylic acid cycle succinate--CoA ligase (ADP-forming)  
YFR052W RPN12 ubiquitin-dependent protein degradation molecular_function unknown  
YHL015W RPS20 protein biosynthesis structural protein of ribosome  
YKL145W RPT1 ubiquitin-dependent protein degradation adenosinetriphosphatase 
YOR157C PUP1 ubiquitin-dependent protein degradation multicatalytic endopeptidase  
YCR034W FEN1 fatty acid biosynthesis molecular_function unknown  

YBR243C ALG7 N-linked glycosylation 
UDP-N-acetylglucosamine--dolichyl-phosphate 
N-acetylglucosamine-1-phosphate transferase  

YER074W RPS24A protein biosynthesis structural protein of ribosome  
YHR006W STP2 tRNA splicing molecular_function unknown  
YKL003C MRP17 protein biosynthesis structural protein of ribosome  
YGL103W RPL28 protein biosynthesis structural protein of ribosome 
YGL048C RPT6 ubiquitin-dependent protein degradation adenosinetriphosphatase 
YOL139C CDC33 protein synthesis initiation translation initiation factor  
YML063W RPS1B protein biosynthesis structural protein of ribosome  
YNL315C ATP11 protein complex assembly chaperone  
YJL092W HPR5 DNA repair A helicase  
YIL062C ARC15 cell growth and/or maintenance structural protein  
YKR094C RPL40B protein biosynthesis structural protein of ribosome  
YLL009C COX17 Cytochrome c oxidase biogenesis intracellular copper delivery  
YGR085C RPL11B protein biosynthesis structural protein of ribosome  
YGL048C RPT6 ubiquitin-dependent protein degradation adenosinetriphosphatase 

YLR084C RAX2 
maintenance of cell polarity (sensu 
Saccharomyces) not yet annotated  

YJL009W  biological_process unknown molecular_function unknown  
YHR010W RPL27A protein biosynthesis structural protein of ribosome  

YML057W CMP2 ion homeostasis 
calcium-dependent protein  
serine/threonine phosphatase  

YLR249W YEF3 protein synthesis elongation translation elongation factor  
YKL117W SBA1 protein folding not yet annotated  
YOR157C PUP1 ubiquitin-dependent protein degradation multicatalytic endopeptidase  
YLR333C RPS25B protein biosynthesis structural protein of ribosome  
YER103W SSA4 stress response chaperone 
 

Table 4.1 Genes predicted as regulators and their known biological functions 
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Among the high frequency genes, we also found genes that are not yet annotated 

and ORFs that are not yet identified as genes. Because the genes with known functions in 

this list do show regulatory roles, we predict that these unidentified ORFs may have 

regulatory functions. These genes may be worth further investigation by experimental 

research. In order to predict the biological processes that these ORFs and genes are likely 

to participate in, clustering analysis can be performed to see which other genes these are 

closely associated with. It is possible that these unidentified ORFs and genes can be 

found in the same biological processes. Here we list the top 20 genes and ORFs with 

molecular function unknown. 

 

 

ORF 
Gene 
Name 

YKL195W  
YDR041W RSM10 
YLR217W  
YIL131C FKH1 
YGL097W SRM1 
YLR083C EMP70 
YOR246C  
YMR215W  
YJL183W MNN11 
YGL139W  
YKL169C  
YLL032C  
YMR311C GLC8 
YPR100W  
YBR086C IST2 
YLL044W  
YKL151C  
YJL009W  
YNL087W  
YHR097C  

 

Table 4.2 Gene with unknown biological functions that are predicted as regulators 



 

55 

4.2 Identify Regulations Using Association Rules 
 
  

We believe that association rules obtained from gene expression data can be used 

to predict gene regulations. A rule A-up=>B-up, with the absence of rule B-up=>A-up, 

may indicate that gene A is a positive regulator of gene B where increase in A’s 

expression level leads to increase in B’s expression level. Similarly, a rule A-up=>B-

down may indicate that gene A is a repressor of B such that increase in A’s expression 

level actually causes B’s expression level to decrease. To verify that our predictions have 

corresponding real gene regulations, we examined the association rules containing a 

small set of genes. As mentioned before, genes with unknown functions cannot be used 

for validation purpose. We only used genes that have been characterized. Association 

rules from the cell cycle data are used. Because the frequent patterns only contain known 

genes, the rules also contain only genes with known functions.  For this analysis, we 

decided to look at gene regulations that are found in the yeast respiration process. 

  

We selected association rules that contain the following genes that are known to 

participate in the yeast respiration process: HAP1, CYB2, CYC7, and CYC1 [23, 24]. 

Based on the association rules we generated, we find that lowered expression level of 

HAP1 gene implies the increase in expression level of CYC7 and CYC1 (HAP1-down => 

CYC7-up, CYC1-up). Therefore, we make a prediction that HAP1 is a negative regulator 

of CYC7 and CYC1 genes under the experimental conditions for our dataset. When 

HAP1 is suppressed, CYC7 and CYC1 increase in their expression level. It is known that 

transcription factor HAP1 has a role in the repression of the nuclear encoding cytochrome 
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genes CYC7, and CYC1 under anaerobic growth [23, 24], which is found in the original 

experiment. The prediction by this association rule is consistent with experimental results. 

Another association rule (CYB2 up => CYC7 up, CYC1 up) indicates that increase in 

gene CYB2’s expression leads to the increase in expression level of CYC7 and CYC1 

genes. We predict that CYB2 gene is a positive regulator of CYC7 and CYC1 genes. 

CYB2, also known as L-(+)-lactate cytochrome C oxidoreductase, is a soluble protein 

form the inter-membrane of the mitochondrial. The protein product of this gene transfers 

electrons form L-(+)-lactate to cytochrome C and is upstream of cytochrome C in the 

electron transport chain. Experimental findings, characterized by Ouspenski et al., show 

that CYB2 exhibits preferential interaction with CYC7 during the electron transfer 

process. [25] Again, the prediction of a positive regulation is consistent with 

experimental results. 

  

 Because of the large number of genes, there is a large number of resulting 

association rules. The results are available for download upon request. 

 

4.3 Regulatory Networks 
  

 

 In most cases, a single regulation only describes a step of a process. The analysis 

becomes more useful when we can describe a biological process as a whole. We extend 

the analysis performed in the previous section and combine the association rules to form 

a regulatory network that may be used to describe a sequence of regulations in a 
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biological pathway. In this analysis, we also looked at the association rules generated 

from the “compendium” data which deals with DNA damage response. In this 

experiment, DNA damage is simulated by introducing mutations in the DNA of yeast 

cells and chemical treatments in the cell growth medium. The experiment was intended to 

trigger the DNA damage repair mechanisms in yeast cells in order to identify the genes 

that are involved in this process. As a result, we can expect to find gene regulations that 

are found in the DNA damage repair pathways.  

 

First we repeat the analysis described in the previous section. Genes that are 

known to participate in DNA damage repair response are identified. Here in particular, 

we focus on the following genes: RAD9, RAD17, RAD23, RAD53, POL2, DUN1, CRT1, 

TUP1, RNR2, RNR3, and RNR4. From all of the association rules using the 

“compendium” gene expression data, we selected the ones containing the genes listed 

above. Gene RAD53 is one of the key regulators that triggers the DNA repair process as 

described by Allen et al. [28, 29]. We use this gene as our starting point and look for 

association rules where this gene is found. We found the following association rules that 

contain RAD53 where this gene is both regulated as well as being a regulator: 

RAD9up=>RAD53up, RAD24up=>RAD53up, RAD17up=>RAD53up, 

RAD53up=>DUN1up, and RAD53up=>RNR2up. We then followed these associations 

and selected the rules that, in turn, contain RAD9, RAD24, RAD17, DUN1, and RNR2. 

By following the associations and linking the association rules, we are able to form a 

regulatory network involving these genes. 
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Figure 4.1 Predicted regulatory network that describes DNA damage response 

 

 

The triggering of DNA repair process is highly regulated, and a result of a cascade of 

events. Results from laboratory experiments have shown that RNR2, RNR3, and RNR4 

are genes that provide the precursor necessary for DNA synthesis and repair [25, 26, 27]. 

They are the trigger to initiate the DNA repair process. The expression of these genes is 

repressed under normal conditions. As a response to DNA damage, these genes are 

activated. It has also been shown that RAD53, and DUN1 have regulatory roles in 

inducing the expression of these three genes as a response to DNA damage [28, 29]. 

These two genes provide the signal for the activation of RNR2, RNR3, and RNR4. The 

mechanism by which this regulation is achieved is still unclear. Our prediction shown by 

the regulatory network indicates that RAD53 and DUN1 up-regulates the three genes by 

first suppressing the expression of CRT1, which, in turn, negatively regulates and causes 

an increase in expression of TUP1. TUP1 is a positive regulator of RNR2, RNR3, RNR4. 

As a result, these three genes are up-regulated and increase in expression level. The 

overall outcome of our prediction pathway is consistent with results observed from 
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experimental research: that RAD53 and DUN1 are positive regulators of the three RNR 

genes. In addition, our predicted network also describes the mechanism by which this 

regulation is achieved. How the expression of RAD53 is triggered is unclear. It has been 

proposed that RAD9, RAD17, RAD24, and POL2 are involved in the regulation of 

RAD53 based on experimental observations [29]. Our association rules also show that 

RAD53 is regulated by RAD9, RAD17, RAD24, and POL2 in response to DNA damage. 

From the regulatory network, POL2 seems to regulate RAD53 by increasing the 

expression level of RAD17 and RAD24, which are positive regulators of RAD53 

themselves.  

 

 By combining our association rules, we are able to form a regulatory network that 

describes the mechanism of regulations of genes as a response to DNA damage. Not only 

are the predicted regulations consistent with known pathways, we are also able to predict 

the sequence of events by which the regulations are achieved. 
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Chapter 5: Summary and Conclusion 

 
 
 
 In our study, we considered the problem of discovering regulatory relationship 

among genes from DNA Microarray data using association rule mining. We adapted the 

FP-Growth algorithm for our data mining analysis. Microarray data was preprocessed and 

transformed so that it is suitable to be used with our algorithm. 

 

 Yeast is the organism under investigation. We chose two distinct types of 

experiments. The first one is a dataset from a cell cycle study done by Spellman, et al. 

The experiment was designed to find genes that participate in various processes during 

the cell cycle. The second dataset is obtained from an experiment done by Hughes, et al 

to discover genes that are involved in DNA damage response and repair. From the two 

datasets we were able to identify genes that are likely to have regulation roles and 

regulatory relationships among individual genes. We further combined these associations 

and constructed regulatory networks to describe the mechanisms by which genes are 

regulated as a response to an experimental condition. The findings are consistent with 

what can be found from experimental research. 

 



 

61 

We believe that association rule mining using DNA Microarray data is a valid 

analysis method for discovering gene regulation. This method can also be used to 

construct regulatory networks to describe the mechanism of how genes interact with and 

regulate one another. As DNA Microarray experiments are designed as exploratory types 

of experiments, we believe that association rule mining can be used as an exploratory tool 

for identifying interesting possible gene functions, relationships, and biological pathways 

that can be further studied by designing experiments targeting these genes. 
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Chapter 6: Future Work 

 

We have shown some promising results using association rule mining. There are 

still several issues that need to be addressed.  

 

1. The analysis is yielding a large number of rules. It has been shown that for yeast, 

there are several hundred genes that exhibit high variation in expression profile 

even under normal conditions. The expression profile of these genes should be 

considered as background and subtracted from the original dataset for analysis 

that is trying to discover gene regulations that are specific to the particular 

experiment. A possible improvement for the association rule mining method is to 

remove these genes from the original data during the data preprocessing step. 

 

2. We consider the transformation method we used to represent each gene with three 

items based on ratio values at each measurement. The change in expression level 

captured by ratio value is not represented symmetrically. Consider an experiment 

where we are interested in the gene expression over time. The results (ratios) are 

relative to expression level at time 0, which is the reference expression level. For 

example, at time point 1, the expression level is unchanged; at time point 2, the 

expression level is increased 2-fold; and at time point 3, the expression level is 
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decreased by 2-fold. So we have the ratio representation of three time points as 

1.0, 2.0, and 0.5. When we consider the ratios and their magnitude, the 2-fold up 

change is twice as significant as the 2-fold down change. In our example, a 2-fold 

increase (ratio = 2.0) has a change in magnitude of 1.0 (2.0-1.0). A 2-fold 

decrease (ratio = 0.5) has a change in magnitude of -0.5 (0.5 – 1.0). Even though 

both ratios represent the change of 2-fold, 1.0 is twice the magnitude as -0.5. In 

our application, we would like to treat the two changes with the same magnitude, 

but in opposite directions. This can be accomplished using a log-transformation. 

In log space, base 2 for example, the data points 1, 2.0, 0.5 become 0, 1.0, and -

1.0. The up and down changes are symmetric about 0 (unchanged) with the same 

magnitude. So the ratio values of greater than 1 will be positive, values between 0 

and 1 will be negative, and value of 1 will be 0. In our study, the transformation 

of each gene into three items is a special case of this approach where all log 

values are symmetrically, that is, all positive transformed values are represented 

as 1 or g-up; all negative transformed values are represented as 1 for g-down; and 

0 is represented as g-unchanged. We may consider the possibility of representing 

each gene as more than 3 items. For example, we can use 7 items to represent 

each gene with different magnitude of change. This transformation will provide a 

stronger sense of level of regulations of genes rather than a simple up or down. 

 

3. In order to discover generic gene regulations that are not experiment specific, data 

from multiple DNA Microarray experiments should be considered. Due to the 

compact nature of FP-Tree, and the fact that the size of an FP-Tree is determined 
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by the number of items in the transactions, the algorithm should be able to handle 

a large number of transactions (measurements) without significant increase in 

resources required. By combining multiple experiment data, we should be able to 

discover regulations that are independent of experimental condition more easily, 

thereby yielding higher level biological knowledge. 

 

4. In our study, we applied association rule mining to data collected at the same 

measurement points, in that a measurement at a time point is considered as a 

transaction. This may only capture gene regulation at particular time point but not 

regulations that might occur over time. Because regulatory response often 

requires time to develop, the gene expression level will change as the response to 

an experimental condition develops. We may want to generalize our analysis 

method to discover how the change of expression level of a particular gene over 

time may regulate another gene. To do this, one possible approach is to first 

generate an expression motif of a particular gene over all the time or quantity 

points. Such motifs can be collected from different experiments. The motifs 

together with data characterizing the experimental conditions can be used in 

association rule mining to determine the effects of particular motif on other genes. 
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