GUI Environments for Functional Languages

Daniel J. Pless & George F. Luger
University of New Mexico, Computer Science
Ferris Engineering Center
Albuquerque, NM 87131
(505) 277-9424

{dpless,luger}@cs.unm.edu
Submitted to the Onward track of OOPSLA-03

ABSTRACT

We describe an Integrated Development Environment (IDE) for
purely functional programming languages. This environment
leverages the properties of such languages to provide software
development productivity features that would be difficult or
impossible to provide for a language with state. We show how
such an environment can enable the construction of regression
tests and improve documentation. We also show how other
standard tools such as debuggers and profilers can leverage these
capabilities.

Keywords

GUI Environments, Functional Programming

1. INTRODUCTION

1.1 Motivation for Functional Languages

There has been extensive research in pure functional
programming languages [2,4,6-8]. These languages are
characterized by the property that there is no “state” in the
language. That is, no variable changes its value after its initial
assignment. Functions always return the same value given the
same input, with no side effects. The advantage of a stateless
language is that functions are completely characterized by their
input/output behavior.

An important result of a purely functional language is its support
for lazy evaluation, which greatly simplifies the specification of
control. This allows the principled construction and manipulation
of large or countably infinite structures. Hughes [4] points out that
lazy evaluation is a powerful tool for modularity. In addition,
these functional languages allow automatic analysis of code
including a powerful polymorphic type system and the possibility
of automating parallelization. In this paper, we argue that purely
functional languages also can support useful software engineering
features in a GUI environment.

1.2 Aim of This Paper

A standard method to improve programmer productivity is to
design an Integrated Development Environment for a language. In
some cases, such as Smalltalk, the environment is designed
specifically for the language. In Smalltalk, each object maps to a
window in the environment. The environment takes advantage of
the structure of the language to effectively present an interface for
the developer.

A more mainstream approach to IDE design is to see the
development environment as a programmer-centric tool,
independent of the features of a particular language. An advantage

of this approach is that the environment can be generic and
applied to different languages. Microsoft’s Visual Studio is built
around this premise, with the same development environment for
many different languages. We believe that the properties specific
to purely functional languages demand designing a GUI
environment to take advantage of these characteristics. We
believe that such an environment will enhance the popularity of
functional languages and in turn greatly improve programmer
productivity.

In this paper, we propose the design of a visual development tool
that takes advantage of the structure of purely functional
programming languages. We have chosen to focus on Haskell [5]
because it is one of the most widely known purely functional
programming languages. Most of the ideas in this paper can be
applied to other purely functional languages such as Miranda [8],
Clean [2], or Mercury [7]. To keep the exposition simple and
coherent, we focus only on Haskell.

There already exists an IDE for one functional language, namely
Clean. The CleanIDE implements many features that exist in
other development environments. However, with the exception of
a theorem prover, it does not include features specifically tailored
to purely functional languages. Our aim in this paper is to
describe what these features should be.

1.3 Outline of This Paper

This paper continues as follows: Section 2 presents an overview
of our proposed Integrated Development Environment. Section 3
describes in more detail the various components of the system that
support writing code. Section 4 describes how other tools such as
a Graphical User Interface (GUI) builder or code versioning can
be integrated into the system. Finally, Section 5 gives some
concluding thoughts.

2. OVERVIEW OF ARCHITECTURE

The system will consist of a GUI environment with a number of
classes of windows similar to other development systems. Figure
1 shows the different classes of windows and how they relate.
Arrows in the figure indicate which windows can invoke or
change other windows. The windows grouped together in the bold
rectangle represent the core of the system for writing code, which
is described in Section 3. Outside this rectangle are peripheral
tools for software engineering as described in Section 4.

The user will work with editor windows containing source code
from different files. Interpreter windows associated with the editor
windows provide the means for the developer to quickly test
functions. The interpreter will also capture information useful for

constructing regression tests and for documentation, as is
explained below.

The user can open debugger windows on any expression
evaluated in the interpreter windows. The debugger will show
current evaluation location in the editor. The user can open object
viewer windows to explore large structures from either the
debugger or editor windows. The developer will also have tools
for code versioning, profiling, GUI building and a theorem
prover.

Generally IDEs include project management and automatic build
tools as well. We will not describe any in this paper, as such tools
will not be very different for functional languages than they are
for any other type of language.

Code Profil
Versioning rotrier
/
Editor < > Interpreter
T L Theorem
Debugger P Object Prover
A Viewer
GUI
Builder

Figure 1. A diagram of components of the system.
The components in the bold rectangle represent the
core of the system as explained in Section 3.

3. MAJOR COMPONENTS

Following up on the architectural description of the previous
section, we now describe the major components of the system.
These include the editor, interpreter, debugger, and object viewer.
In Section 4, we will survey other features that could enhance the
IDE.

3.1 Editor

The editor window will have context-sensitive syntax coloring.
The user can instruct the editor to add or display type information
that the compiler inferred about top level declarations. Even
thought many Haskell programmers explicitly use type signatures,
this editor will automatically generate them when possible. The
user may wish to display them for annotating functions, or hide
them to increase visible code density.

When the user compiles, the system will try to help correct errors.
On a compile time error, the expression containing the error will
be highlighted in the editor window. A dialog box will pop up
with an error message. The box will also contain suggestions for
fixing the error, similar to a spelling or grammar checker in a

word processor. A standard spell-checking algorithm will be used
to suggest corrections for an undefined identifier. The identifiers
that are visible in scope will be used for the “dictionary” for
correcting this type of error. For other errors, a variety of
heuristics will be used. If changing the order of arguments repairs
a type mismatch error, that will be a suggestion. For mismatched
parentheses, the system might search for an insertion or deletion
of a parenthesis that is type-correct. The system will not be able to
suggest correction in all situations, just as in the word processing
case. It may also make erroneous suggestions.

3.2 Interpreter

It is quite common for a development environment to provide an
interpreter for testing out code. Such an interpreter can be used to
quickly test bits of code to see if they work. However, there is
other information that can be captured from such work that other
interpreters will fail to capture. The expressions that the user types
for newly written code can be reused for documentation and
regression testing purposes as described later in this section.

Our interpreter does not contain an ordered sequence of command
lines as a normal interpreter would. Instead, it contains a set of
expression cells, similar to Mathematica or Maple. Each cell will
contain an expression queried by the user and the resulting
evaluation (with type information). Such cells will be editable and
movable. This is possible for Haskell because the language is
purely functional; evaluating an expression can produce no side
effects on the system. Thus, the user can reorder the expression
cells without changing the correctness of what is displayed. If the
user edits the expression, the results would be similarly updated.

The expression cells will be displayed as a scrollable list
separated by thin or dotted lines. The user can click on a cell to
select or edit. There will always be a blank cell at the end of the
list for the user to create new expressions. If there is an error in
the expression that the user types, the same correction suggestion
algorithm used for helping correct compiling errors will be run.
Thus, the user will see a dialog box explaining the error with
clickable suggestions for fixing it. If a runtime error occurs, the
user will have the option of opening a debugger window.

The expression cells will be selectable for drag and drop moving
as well as for deleting. It will also be possible for the user to pop-
up a menu for any cell. This menu will contain a number of cell
maintenance functions. One function will find and highlight the
source code for the function called in the cell. Another will start a
debugger window on the exact expression being evaluated (the
debugger is described in Section 3.3).

There will also be menu items for sorting the cells in various
ways. There will be a function for sorting the cells by the
lexicographical order of the expressions. It will also be possible to
sort by the order in which the cells were first typed. It is also
useful to sort based on the computation time for evaluation.
Finally, the user will be able to partition the list based on whether
the cell is part of a regression test (described next).

An important pop-up menu function is the ability to lock the result
of a cell’s evaluation into a regression test. The user will do this
when a function is producing the correct result on some input, and
the user wishes to ensure that it remains correct. If, because of
changes in the code, the value in some regression tested cell
changes, the system will flag this as an error. A message box will
appear giving the user the options of running the expression in the

debugger, updating the regression test to indicate that the new
value is now correct, or disabling or deleting the test. A value
must be a member of Haskell class EQ to be made into a
regression test. This is necessary in order that the Haskell system
can test whether the value has changed. Requiring regression test
values be members of class EQ isn’t a major restriction as almost
all values that a user wishes to inspect are members of that class.

The objective of constructing regression tests this way is to
change the process by which they are built. Instead of building the
test entirely after building a large chunk of code such as a module,
one builds regression tests incrementally. Write a little piece of
code, test it, and lock in the results. As one builds up the code, the
earlier tests can help prevent errors from creeping in later.
Building these tests requires little additional effort by the
programmer, as they come from the work in the interpreter that
she is already doing.

An interpreter window will also contain a small scrollable list of
open modules. The purpose of this is to allow the user to define
test code and test objects in a file other than the source code. One
does not open modules through a command in an interpreter cell,
as this would destroy the state-free semantics of the interpreter.

All of the information in an interpreter window will be saved to a
file. The file will have the same name as the source file with
which it is associated, but will have a different extension. The
idea is that the information in the interpreter should be captured,
not lost at the end of a session. One purpose of this capture is for
regression testing as indicated above.

However, the information captured can also be a form of
documentation. Often, the best explanation of the purpose and
usage of a function is examples. However, it requires effort to
construct such examples and it is difficult to know if these
examples are up to date and reflect the current operation of the
code. Our system will automatically capture such information
from the users natural testing and debugging cycle, and will
update such cells on each compile. The sorting and delete options
described above will aid the programmer in managing and
reviewing these examples.

3.3 Debugger

The debugger is usually started by the user invoking a pop-up
menu on an interpreter cell. There are three reasons for designing
the interface to the debugger this way, rather than having the user
first “turn on” debugging and then type an expression to be
debugged. First, this design makes the interface less modal.
Instead of being in a whole new state when debugging, the
debugger simply is another window with which the user can work.
Therefore, the user will be able to open multiple debugger
windows on different expressions. These debuggers will not
interfere with each other, as a Haskell function cannot produce
side effects.

The second reason for debugging already existing and evaluated
expressions is that it supports a natural workflow. One does not
start up a debugger to see if something goes wrong. One normally
will try something in the interpreter, see that the resulting answer
is incorrect, and then start the debugger. Our system directly
supports this more natural order of actions.

The third reason for directly debugging evaluated expressions is
to support interpreter cells as a form of documentation. As we

noted in Section 3.2, it is useful to see examples of using some
function. However, by stepping through an example in the
debugger, the user can also see how the function works. In most
systems, it is too much trouble to set up an example in the
debugger to be worth doing. But in a system where getting an
example started was extremely quick, the user would get a good
idea of how some code works by stepping through it on a few
examples.

When the debugger is started on an expression, it presents the user
with a debugger window stopped at initiation of evaluation. If the
debugger was started as the result of a runtime error, it will be
stopped at the point of the error. The user will then have the
standard functions available for debugging. The debugger will
highlight in the editor window the next expression to evaluate.
The user will be able to step into the next function call, step over
it, or step out of the current function call altogether. The debugger
will display the current call stack and the values in the currently
displayed scope. The user will be able to move to any level in the
call stack, as well as step over or out of the evaluation at any
level. The debugger will display the value bindings for the local
scope in the call stack at any level.

3.4 Object Viewer

Usually, values are simply printed when needed in the debugger
or interpreter. There are times when values are too complex to be
displayed, either by the debugger or the interpreter. A common
way to handle this problem is to display as much of the object as
is feasible, using an ellipsis to indicate fields that cannot be
displayed in a small space. Our system will allow the user to click
on such an ellipsis to view the field in another window. This
window will show a breakdown of the object and will allow one
to burrow into complex structures, similar to other IDEs.

One big difference in our object viewer is that since all values are
immutable, the user will not be able to edit them. In general,
values displayed from the debugger will not change as one steps
through the code. The exception to this is values that contain
unevaluated parts (thunks) as a result of lazy evaluation. As these
unevaluated pieces are partially or fully evaluated, the window
will be updated.

4. OTHER POSSIBLE FEATURES

One can imagine other tools for this system; we give four
possibilities in this section. The common thread among these
suggestions is that they all take advantage of the state-free nature
of functional programming or build on features that do.

4.1 GUI Builder

The tool described so far is useful for developing the logic of an
application. However, it doesn’t provide much support for quickly
developing the advanced interfaces that users demand. We
propose that a full-fledged GUI builder is needed for handling
this. The builder will allow developers to layout windows and
dialog boxes with a palette of controls. This can be similar to
other GUI builders for languages such as Java or Visual Basic.
The difficult issue for a purely functional language based GUI
builder is how to deal with event functions.

In a GUI builder for a language with state, the system responds to
events by employing user-defined callbacks, known as event
handlers. These functions generally work by performing side
effects. For example, a callback function might change a value in

a field of some form. In our system, the user will instead specify
what “state” is to change and the function call to determine the
new “state”. This information will be wrapped in a monad
indicating what monadic binding is to be invoked. The basic idea
in our approach is to have the application framework handle the
“mutable” data. That is, it will be in charge of sequencing the
monads; the user‘s task will be to write functions that describe the
transformation of state. The system then becomes the repository
of mutable data, and the programming remains purely functional.

One advantage of this system is that the programmer can generate
regression tests for event handlers. This is difficult for other
systems except as part of a larger system test. In our system one
can set a breakpoint on an event function and use the debugger to
capture the input to the handler for a regression test. This way,
correct behavior for something as small as an event function can
be locked in.

4.2 Profiler

The system will support code profiling as well. In particular, it
will allow the user to profile all the runs in a project’s regression
test. This could be used by the user to see performance
bottlenecks; it also could be used to check code coverage of the
regression test. This information could also be provided to the
compiler to do more intelligent optimization [3]. The advantage
that functional programming provides in this situation is that it is
easy to construct the regression test and thus one always has a
number of cases for use by the profiler and optimizer.

4.3 Code Versioning System

A code versioning system will be coupled with the environment.
If a change in a function caused a regression test to fail, the code
trace could be compared with the code trace of the previous
version. In a purely functional language, it should be possible in
principle to automatically track down which changed function
caused the regression test failure. The versioning system might be
used by multiple developers on a large project. It can be quite
difficult to discover responsibility for a system test failure, say on
a nightly build. Having a tool to compare version traces and
automatically locate the function or module where changes cause
the error will be quite useful.

4.4 Theorem Prover

The language Clean now comes with the theorem prover
“Sparkle” [5]. Purely functional languages, by their nature, are
extremely well suited for the automated manipulation that is
required for proving properties of code. A theorem prover could
be added to the regression testing system. The user would then
assert properties for the prover to attempt to verify. A simple
example is asserting that a function that reverses a list is its own
inverse. That is, reversing a list twice returns the original. Once
such an assertion is proven, the proof could be added to the
regression test. If changing the code results in breaking some
expected property, the user would be warned. In some sense, the
regression tests that can be captured by the interpreter are a
special case of the general properties that can be specified to a
prover.

5. FINAL COMMENTS

5.1 Outstanding issues

We have presented an architecture for Integrated Development
Environments for purely functional languages. There are a
number of issues that remain to be considered. One possible
problem is that regression testing may slow the compile cycle too
much. In the worst case, a regression test may simply fail to halt.
There are two means of handling this issue. First, the user will be
able to indicate that certain tests are to be run only when a full
regression test is explicitly requested. The second method is to
implement a user adjustable computation threshold that will halt
long computations. Regression tests that exceed the computation
thresholds could be reported as errors or warnings.

Another issue is how to handle the I/O monad in regression
testing. The problem is that the results of such code can depend on
the state of the world. The easiest way to handle this is to not
allow the direct use of the /O monad in the interpreter window.
Testing such code will require running the entire program.

As noted in Section 3.3, the functional properties of Haskell allow
multiple debugging in parallel. Multiple debugger windows
cannot interfere with each other except in their effect on the editor
window. That is, each one will want to select a different range of
text in the editor window. This is not a major problem if each time
a debugger stops, it changes the selection range. Thus, only the
last debugging step requested by the user will be displayed in the
editor.

One last issue is the display of unevaluated thunks in an object
viewer. The system should allow the user to see an indication of
whether or not the function in the thunk is likewise an
unevaluated object. In addition, the user will see the arguments to
this function.

5.2 Conclusions

Finally, consider what developing in this environment might be
like. You type parts of your code into a context sensitive color-
coded editor window. When you compile, the system suggests
corrections for your errors using the type system to guide its
suggestions. After you compile, you use expression cells to test
the code’s operation. If you find that one or more tries are
incorrect, a debugger window for any or all of them is a pop-up
menu away. When you make changes to the code, the expressions
automatically reevaluate, without needing to be retyped. As you
find expressions that do evaluate correctly, locking this correct
behavior into a regression test is also pop-up menu away. When
you are done debugging this portion of your code, you already
have a searchable/sortable set of examples using these recently
created functions. Any subset of these expressions can be
registered into a regression test.

6. ACKNOWLEDGEMENTS

Our thanks to Hajime Inoue for reading and critiquing an early
draft of this paper and to Harry Chomsky for useful discussions
on tools for functional programming.

7.
[1]

(2]

[3] Chang, P.,

(4]

REFERENCES

Achten, P. and Peyton Jones, S. Porting the Clean Object I/O
library to Haskell. Proceedings of the 12th International
workshop on the Implementation of Functional Languages,

2000, 194-213.

Brus, T., M.C.J.D. van Eekelen, M. ,van Leer, M., and
Plasmeijer, M. CLEAN - A Language for functional graph
rewriting, Conference on Functional Programming
Languages and Computer Architecture, 1987, pp. 364-384.

Mahlke, S., and Hwu, W. Using profile
information to assist classic code optimizations. Software -
Practice and Experience, 1991, 21(12), 1301-1321.

Hughes, J. Why functional programming matters. Computer
Journal, 1989. 33(2), 98-107.

[5]

[6]

[7]

[8]

de Mol, M., van Eekelen, M., and Plasmeijer, R. Theorem
Proving for Functional Programmers - SPARKLE: A
functional theorem prover. Proceedings of the 13th
International Workshop on the Implementation of Functional
Languages, 2001.

Peyton Jones, S. Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, Cambridge,
UK, 2003.

Somogyi, Z., Henderson, F., and Conway, T. The execution
algorithm of Mercury: an efficient purely declarative logic
programming language. Journal of Logic Programming,
29(1-3), 1996, 17-64.

Turner, D. Miranda: a non-strict functional language with
polymorphic types. Proceedings of the Functional
Programming Languages and Computer Architecture
Conference, 1985, 201, 1-16.

