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Abstract

We resolve the question of whether Fourier sampling can efficiently solve the hidden subgroup problem.
Specifically, we show that the hidden subgroup problem over the symmetric group cannot be efficiently
solved by strong Fourier sampling, even if one may perform an arbitrary POVM on the coset state. These
results apply to the special case relevant to the Graph Isomorphism problem.

1 Introduction: the hidden subgroup problem

Many problems of interest in quantum computing can be reduced to an instance of the Hidden Subgroup
Problem (HSP). We are given a group G and a function f with the promise that, for some subgroup H ⊆ G,
f is invariant precisely under translation by H: that is, f is constant on the cosets of H and takes distinct
values on distinct cosets. We then wish to determine the subgroup H by querying f .

For example, in Simon’s problem [29], G = Zn
2 and f is an oracle such that, for some y, f(x) = f(x+ y)

for all x; in this case H = {0, y} and we wish to identify y. In Shor’s factoring algorithm [28] G is the group
Z∗n where n is the number we wish to factor, f(x) = rx mod n for a random r < n, and H is the subgroup
of Z∗n whose index is the multiplicative order of r. Both Simon’s and Shor’s algorithms use the following
approach, referred to as the standard method or Fourier sampling [3].

Step 1. Prepare two registers, the first in a uniform superposition over the elements of G and the second
with the value zero, yielding the state

ψ1 =
1√
|G|

∑
g∈G

|g〉 ⊗ |0〉 .

Step 2. Query (or calculate) the function f defined on G and XOR it with the second register. This
entangles the two registers and results in the state

ψ2 =
1√
|G|

∑
g∈G

|g〉 ⊗ |f(g)〉 .

1



Step 3. Measure the second register. This puts the first register in a uniform superposition over one of f ’s
level sets, i.e., one of the cosets of H, and disentangles it from the second register. If we observe the
value f(c), we have the state ψ3 ⊗ |f(c)〉 where

ψ3 = |cH〉 =
1√
|H|

∑
h∈H

|ch〉 .

Alternately, we can view the first register as being in a mixed state with density matrix

1
|G|

∑
c

|cH〉 〈cH|

where the sum includes one representative c for each of H’s cosets.

Step 4. Carry out the quantum Fourier transform on ψ3 and measure the result.

(Note that in Shor’s algorithm, since |Z∗n| is unknown, the Fourier transform is performed over Zq for some
q = poly(n); see [28] or [10, 11].)

In both Simon’s and Shor’s algorithms, the group G is abelian; it is not hard to see that, in this abelian
case, a polynomial number (i.e., polynomial in log |G|) of experiments of this type determine H. In essence,
each experiment yields a random element of the dual space H⊥ perpendicular to H’s characteristic function,
and as soon as these elements span H⊥ we are done.

While the nonabelian hidden subgroup problem appears to be much more difficult, it has very attractive
applications. In particular, solving the HSP for the symmetric group Sn would provide an efficient quantum
algorithm for the Graph Automorphism and Graph Isomorphism problems (see e.g. Jozsa [17] for a review).
Another important motivation is the relationship between the HSP over the dihedral group with hidden shift
problems [4] and cryptographically important cases of the Shortest Lattice Vector problem [23].

So far, algorithms for the HSP are only known for a few families of nonabelian groups, including wreath
products Zk

2 o Z2 [24]; more generally, semidirect products K n Zk
2 where K is of polynomial size, and

groups whose commutator subgroup is of polynomial size [16]; “smoothly solvable” groups [7]; and some
semidirect products of cyclic groups [14]. Ettinger and Høyer [5] provided another type of result, by showing
that Fourier sampling can solve the HSP for the dihedral groups Dn in an information-theoretic sense. That
is, a polynomial number of experiments gives enough information to reconstruct the subgroup, though it is
unfortunately unknown how to determine H from this information in polynomial time.

To discuss Fourier sampling for a nonabelian group G, one needs to develop the Fourier transform over
G which relies on the group’s linear representations. For abelian groups, the Fourier basis functions are
homomorphisms φ : G → C such as the familiar exponential function φk(x) = e2πikx/n for the cyclic group
Zn. In the nonabelian case, there are not enough such homomorphisms to span the space of all C-valued
functions on G; to complete the picture, one introduces representations of the group, namely homomorphisms
ρ : G → U(V ) where U(V ) is the group of unitary matrices acting on some C-vector space V of dimension
dρ. It suffices to consider irreducible representations, namely those for which no nontrivial subspace of V is
fixed by the various operators ρ(g). Once a basis for each irreducible ρ is chosen, the matrix elements ρij

provide an orthogonal basis for the vector space of all C-valued functions on G.
The quantum Fourier transform then consists of transforming (unit-length) vectors in C[G] =

{
∑

g∈G αg |g〉 | αg ∈ C} from the basis {|g〉 | g ∈ G} to the basis {|ρ, i, j〉} where ρ is the name of an
irreducible representation and 1 ≤ i, j ≤ dρ index a row and column (in a chosen basis for V ). Indeed,
this transformation can be carried out efficiently for a wide variety of groups [2, 13, 21]. Note, however,
that a nonabelian group G does not distinguish any specific basis for its irreducible representations which
necessitates a rather dramatic choice on the part of the transform designer. Indeed, careful basis selection
appears to be critical for obtaining efficient Fourier transforms for the groups mentioned above.

Perhaps the most fundamental question concerning the hidden subgroup problem is whether there is
always a basis for the representations of G such that measuring in this basis (in Step 4, above) provides
enough information to determine the subgroup H. This framework is known as strong Fourier sampling.
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In this article, we answer this question in the negative, showing that natural subgroups of Sn cannot be
determined by this process; in fact, we show this for an even more general model, where we perform an
arbitrary positive operator-valued measurement (POVM) on coset states |cH〉. We emphasize that the
subgroups on which we focus are among the most important special cases of the HSP, as they are those to
which Graph Isomorphism naturally reduces.

Related work. The terminology “strong Fourier sampling” [9] was invented to distinguish this approach
from the natural variant, called weak Fourier sampling, where one only measures the name of the represen-
tation ρ, and ignores the row and column information. Weak Fourier sampling is basis-independent, making
it attractive from the standpoint of analysis; however, it cannot distinguish conjugate subgroups from each
other, and Hallgren, Russell and Ta-Shma [12] showed that it cannot distinguish the trivial subgroup from
an order-2 subgroup consisting of n/2 disjoint transpositions. Specifically, they used character bounds to
show that the probability distribution obtained on representation names for the trivial and order-2 subgroups
are exponentially close in total variation distance: it requires an exponential number of such experiments
to distinguish them. Kempe and Shalev [18] have generalized this result to other conjugacy classes, and
conjecture that one can do no better than classical computation with this approach.

In an effort to shed light on the power of strong Fourier sampling, Grigni, Schulman, Vazirani and
Vazirani [9] showed that, for groups such as Sn, measuring in a random basis yields an exponentially small
amount of information. This can be explained, roughly, by the fact that projecting a vector into a sufficiently
high-dimensional random subspace results in tightly concentrated length. On the other hand, Moore, Rock-
more, Russell and Schulman [22] showed that for the affine and q-hedral groups, measuring in a well-chosen
basis can solve the HSP (at least information-theoretically) in cases where random bases cannot.

Our contribution. In this paper we show that strong Fourier sampling, in an arbitrary basis of the
algorithm designer’s choice, cannot solve the HSP for Sn. As in [12] we focus on order-2 subgroups of the
form {1,m} where m is an involution consisting of n/2 disjoint transpositions; we remark that if we fix
two rigid connected graphs of size n/2 and consider permutations of their disjoint union, then the hidden
subgroup is of this form if the graphs are isomorphic and trivial if they are not. Then we show that strong
Fourier sampling—and more generally, arbitrary measurements of coset states—cannot distinguish these
subgroups from each other, or from the trivial subgroup, without an exponential number of experiments.

We remark that our results do not preclude the existence of an efficient quantum algorithm for the
HSP on Sn. Rather, they force us to consider multi-register algorithms, in which we prepare multiple
coset states and subject them to entangled measurements. Ettinger, Høyer and Knill [6] showed that the
HSP on arbitrary groups can be solved information-theoretically with a polynomial number of registers,
although their algorithm takes exponential time for most groups of interest. Kuperberg [20] devised a
subexponential (2O(

√
log n)) algorithm for the HSP on the dihedral group Dn that works by performing

entangled measurements on two registers at a time, and Bacon, Childs, and van Dam [1] have determined
the optimal multiregister measurement for the dihedral group.

Whether a similar approach can be taken to the symmetric group is a major open question. In a
companion paper, the first two authors take a step towards answering this question by showing that if we
perform arbitrary entangled measurements over pairs of registers, distinguishing H = {1,m} from the trivial
group in Sn requires a superpolynomial number (specifically, eΩ(

√
n/ log n)) of experiments.

2 Fourier analysis over finite groups

We briefly discuss the elements of the representation theory of finite groups. Our treatment is primarily for
the purposes of setting down notation; we refer the reader to [8, 27] for complete accounts.

Let G be a finite group. A representation ρ of G is a homomorphism ρ : G→ U(V ), where V is a finite
dimensional Hilbert space and U(V ) is the group of unitary operators on V . The dimension of ρ, denoted
dρ, is the dimension of the vector space V . By choosing a basis for V , then, each ρ(g) is associated with a
unitary matrix [ρ(g)] so that for every g, h ∈ G, [ρ(gh)] = [ρ(g)] · [ρ(h)] where · denotes matrix multiplication.
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Fixing a representation ρ : G→ U(V ), we say that a subspace W ⊂ V is (left)-invariant if ρ(g)W ⊂ W
for all g ∈ G; observe that in this case the restriction ρW : G → U(W ), given by restricting each ρ(g) to
W , is also a representation. When ρ has no invariant subspaces other than the trivial space {0} and V , ρ
is said to be irreducible. When ρ is irreducible, Schur’s lemma asserts that the centralizer of the subgroup
im ρ ⊂ U(V ) ⊂ GL(V )—that is, the set of A ∈ GL(V ) such that Aρ(g) = ρ(g)A for all g ∈ G—consists only
of the scalar matrices {c1 | c ∈ C}. We use this fact below.

In the case when ρ is not irreducible, then, there is a nontrivial invariant subspace W ⊂ V and, as the
inner product 〈·, ·〉 is invariant under the unitary maps ρ(g), it is immediate that the dual subspace

W⊥ = {u | ∀w ∈W, 〈u,w〉 = 0}

is also invariant. Associated with the decomposition V = W ⊕ W⊥ is the natural decomposition of the
operators ρ(g) = ρW (g) ⊕ ρW⊥(g). By repeating this process, any representation ρ : G → U(V ) may be
decomposed into a direct sum of irreducible representations: we write ρ = σ1 ⊕ · · · ⊕ σk and, for the σi

appearing at least once in this decomposition, σi ≺ ρ. In general, a given σ can appear in multiply in this
decomposition, in the sense that ρ may have an invariant subspace isomorphic to the direct sum of aσ copies
of σ. In this case aσ is called the multiplicity of σi in ρ, and we write ρ =

⊕
σ≺ρ aσσ where aσσ = σ ⊕ · · · ⊕ σ︸ ︷︷ ︸

aσ

.

If two representations ρ and σ are the same up to a unitary change of basis, we say that they are
equivalent. It is a fact that any finite group G has a finite number of distinct irreducible representations up
to equivalence and, for a group G, we let Ĝ denote a set of representations containing exactly one from each
equivalence class. The irreducible representations of G give rise to the Fourier transform. Specifically, for a
function f : G→ C and an element ρ ∈ Ĝ, define the Fourier transform of f at ρ to be

f̂(ρ) =

√
dρ

|G|
∑
g∈G

f(g)ρ(g) .

The leading coefficients are chosen to the make the transform unitary, so that it preserves inner products:

〈f1, f2〉 =
∑

g

f∗1 (g)f2(g) =
∑
ρ∈ bG

tr
(
f̂1(ρ)† · f̂2(ρ)

)
.

There is a natural product operation on representations: if ρ : G → U(V ) and σ : G → U(W ) are
representations of G, we may define a new representation ρ ⊗ σ : G → U(V ⊗W ) by extending the rule
ρ⊗ σ(g) : u⊗ v 7→ ρ(g)u⊗ σ(g)v. In general, the representation ρ⊗ σ is not irreducible, even when both ρ
and σ are. This leads to the Clebsch-Gordan problem, that of decomposing ρ⊗ σ into irreducibles.

For a representation ρ we define the character of ρ, denoted χρ, to be the function χρ : G→ C given by
χρ(g) = tr ρ(g). As the trace of a linear operator is invariant under conjugation, characters are constant on
the conjugacy classes of G; for a conjugacy class A = {gag−1 | g ∈ G}, we define χ(A) = χ(a). Characters
are a powerful tool for reasoning about the decomposition of reducible representations. In particular, when
ρ =

⊕
i σi we have χρ =

∑
i χσi and, moreover, for ρ, σ ∈ Ĝ, we have the orthogonality conditions

〈χρ, χσ〉G =
1
|G|

∑
g∈G

χρ(g)χσ(g)∗ =

{
1 ρ = σ ,

0 ρ 6= σ .

Then for an irreducible representation ρ and representation σ, 〈χρ, χσ〉G is equal to the multiplicity with
which ρ appears in the decomposition of σ. For example, since χρ⊗σ(g) = χρ(g) · χσ(g), the multiplicity of
τ in ρ⊗ σ is 〈χτ , χρχσ〉G

In general, we can consider subspaces of C[G] that are invariant under left multiplication, right multipli-
cation, or both; these subspaces are called left-, right-, or bi-invariant respectively. Each ρ ∈ Ĝ corresponds
to a d2

ρ-dimensional bi-invariant subspace of C[G], which can be broken up further into dρ dρ-dimensional
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left-invariant subspaces, or (transversely) dρ dρ-dimensional right-invariant subspaces. However, this decom-
position is not unique. If ρ acts on a vector space V , then choosing an orthonormal basis for V allows us
to view ρ(g) as a dρ × dρ matrix. Then ρ acts on the d2

ρ-dimensional space of such matrices by left or right
multiplication, and the columns and rows correspond to left- and right-invariant spaces respectively. More
generally, each left-invariant subspace isomorphic to ρ corresponds to a unit vector b ∈ V .

3 The structure of the optimal measurement

In this section we show that starting with a random coset state, the optimal one-register measurement for the
hidden subgroup problem is precisely an instance of strong Fourier sampling (possibly in an over-complete
basis). This has been pointed out several times in the past, at varying levels of explicitness [15, 20]; we
state it here for completeness. Everything we say in this section is true for the hidden subgroup problem
in general. However, for simplicity we focus on the special case of the hidden subgroup problem called the
hidden conjugate problem in [22]: there is a (non-normal) subgroup H, and we are promised that the hidden
subgroup is one of its conjugates, Hg = g−1Hg for some g ∈ G.

We may treat the states arising after Step 3 of the procedure above as elements of the group algebra
C[G]. We use the notation |g〉 = 1 · g ∈ C[G] so that the vectors |g〉 form an orthonormal basis for C[G].
Given a set S ⊂ G, |S〉 denotes a uniform superposition over the elements of S, |S〉 = (1/

√
|S|)

∑
s∈S |s〉.

3.1 The optimal POVM consists of strong Fourier sampling

The most general type of measurement allowed in quantum mechanics is a positive operator-valued measure-
ment (POVM). A POVM with a set of possible outcomes J consists of a set of positive operators {Mj | j ∈ J}
subject to the completeness condition, ∑

j

Mj = 1 . (3.1)

Since positive operators are self-adjoint, they can be orthogonally diagonalized, and since their eigenvalues
are positive, they may be written as a positive linear combination of projection operators (see e.g. [26, §10]).
Any POVM may thus be refined so that each Mj = ajµj where µj is a projection operator and aj is positive
and real.

The result of this measurement on the state |ψ〉 is a random variable, taking values in J , that is equal to j ∈
J with probability Pj = aj 〈ψ|µj |ψ〉. Note that outcomes j need not correspond to subgroups directly; the
algorithm designer is free to carry out a polynomial number t of experiments, observing outcomes j1, . . . , jt,
and then apply some additional computation to find the most likely subgroup given these observations.

If g is chosen from G uniformly so that the hidden subgroup is a uniformly random conjugate of H, we
wish to find a POVM that maximizes the probability of correctly identifying g from the coset state |Hg〉.
(Of course, to identify a conjugate Hg, we only need to specify g up to an element of the normalizer of H.)
Since a random left coset of Hg can be written cgHg = cHg for a random c ∈ G, the probability we observe
outcome j is

Pj = aj
1
|G|

∑
c∈G

〈cHg|µj |cHg〉 . (3.2)

Ip [15] observed that in the special case that each outcome j corresponds to a subgroup, maximizing the
probability that j is correct subject to the constraint (3.1) gives a semi-definite program. Since such programs
are convex, the optimum is unique and is a fixed point of any symmetries possessed by the problem.

However, our proof relies on an elementary “symmetrization” argument. Given a group element x ∈ G,
let Lx |g〉 = |xg〉 denote the unitary matrix corresponding to left group multiplication by x. In particular,
applying Lx maps one left coset onto another: |cHg〉 = Lc |Hg〉. Writing

Pj = aj
1
|G|

∑
c∈G

〈cHg|µj |cHg〉 = aj

〈
Hg

∣∣∣∣∣ 1
|G|

∑
c∈G

L†cµjLc

∣∣∣∣∣Hg
〉

,
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we conclude that replacing µj for each j with the symmetrization

µ′j =
1
|G|

∑
g∈G

L†gµjLg

does not change the resulting probability distribution Pj . Since µ′j commutes with Lx for every x ∈ G and
provides exactly the same information as the original µj , we may assume without loss of generality that the
optimal POVM commutes with Lx for every x ∈ G.

It is easy to see that any projection operator that commutes with left multiplication projects onto a left-
invariant subspace of C[G], and we can further refine the POVM so that each µj projects onto an irreducible
left-invariant subspace. Each such space is contained in the bi-invariant subspace corresponding to some
irreducible representation ρ, in which case we write im µj ⊆ ρ. As discussed in Section 2, a given irreducible
left-invariant subspace corresponds to some unit vector b in the vector space V on which ρ acts. Thus we
can write

µj = |bj〉 〈bj | ⊗
1
dρ
1dρ

where 1dρ
acts within the left-invariant subspace. Let B = {bj | im µj ∈ ρ}; then (3.1) implies a complete-

ness condition for each ρ ∈ Ĝ, ∑
bj∈B

aj |bj〉 〈bj | = 1dρ (3.3)

and so B is a (possibly over-complete) basis for V . In other words, the optimal POVM consists of first
measuring the representation name ρ, and then performing a POVM on the vector space V with possible
outcomes B. Another way to see this is to regard the choice of coset as a mixed state; then its density matrix
is block-diagonal in the Fourier basis, and so as Kuperberg puts it [20] measuring the representation name
“sacrifices no entropy.”

We note that in the special case that this POVM is a von Neumann measurement—that is, when the
B is an orthonormal basis for V—then it corresponds to measuring the column of ρ in that basis, which is
how strong Fourier sampling is usually defined. (As pointed out in [9], nothing is gained by measuring the
row, since we have a random left coset cHg and left-multiplying by a random element c in an irreducible
representation completely mixes the probability across the rows in each column. Here this is reflected by the
fact that µj is a scalar in each left-invariant subspace.) However, in general the optimal measurement might
consist of an over-complete basis, or frame, in each ρ, consisting of the vectors {bj} and the weights aj .

Now that we know µj takes this form, let us change notation. Given ρ ∈ Ĝ acting on a vector space
V and a unit vector b ∈ V , let Πρ

b = |b〉 〈b| ⊗ 1dρ
denote the projection operator onto the left-invariant

subspace corresponding to b. Then µj = Πρ
bj

, and (3.2) becomes

Pj = aj
1
|G|

∑
c∈G

∥∥∥Πρ
bj
|cHg〉

∥∥∥2

= aj

∥∥∥Πρ
bj
|Hg〉

∥∥∥2

. (3.4)

We can write this as the product of the probability P (ρ) that we observe ρ, times the conditional probability
P (ρ,bj) that we observe bj . Note that by (3.3),

Πρ =
∑

bj∈B

ajΠ
ρ
bj

is the projection operator onto the bi-invariant subspace corresponding to ρ. Then

Pj = P (ρ)P (ρ,bj)

where

P (ρ) = ‖Πρ |H〉‖2 (3.5)

P (ρ,bj) = aj

∥∥∥Πρ
bj
|Hg〉

∥∥∥2
/
P (ρ) . (3.6)
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Note that P (ρ,bj) depends on g but P (ρ) does not, which is why weak sampling is incapable of distinguishing
conjugate subgroups.

3.2 The probability distribution for a conjugate subgroup

Now let us use the fact that |H〉 is a superposition over a subgroup, and calculate P (ρ) and P (ρ,bj) as
defined in (3.5) and (3.6). This will set the stage for asking whether we can distinguish different conjugates
of H from from the trivial subgroup and from each other.

Fix an irreducible representation ρ that acts on a vector space V . Then Fourier transforming the state

|H〉 =
1√
|H|

∑
h∈H

|h〉

yields the coefficient

Ĥ(ρ) =

√
dρ

|H||G|
∑
h∈H

ρ(h) =

√
dρ|H|
|G|

ΠH

where ΠH = (1/|H|)
∑

h∈H ρ(h) is a projection operator onto a subspace of V . The probability that we
observe ρ is then the norm squared of this coefficient,

P (ρ) =
∥∥∥Ĥ(ρ)

∥∥∥2

=
dρ|H|
|G|

rk ΠH (3.7)

and, as stated above, this is the same for all conjugates Hg. The conditional probability that we observe the
vector bj , given that we observe ρ, is then

P (ρ,bj) = aj

∥∥∥Πρ
bj
|H〉
∥∥∥2

P (ρ)
= aj

∥∥∥Ĥ(ρ)bj

∥∥∥2

P (ρ)
= aj

‖ΠHbj‖2

rk ΠH
. (3.8)

In the case where H is the trivial subgroup, ΠH = 1dρ
and P (ρ,bj) is given by

P (ρ,bj) =
aj

dρ
. (3.9)

We call this the natural distribution on the frame B = {bj}. In the case that B is an orthonormal basis,
aj = 1 and this is simply the uniform distribution.

This probability distribution over B changes for a conjugate Hg in the following way. Again ignoring left
multiplication since the columns are left-invariant, the Fourier transform becomes

Ĥg(ρ) =

√
dρ|H|
|G|

ΠHρ(g)

and we have

P (ρ,bj) = aj
‖ΠHgbj‖2

rk ΠH

where we write gb for ρ(g)b. It is not hard to show that, for any b ∈ V , the expected value of ‖ΠH(gb)‖2,
over the choice of g ∈ G, is rk ΠH/dρ. Our primary technical contribution is a method for establishing
concentration results for this random variable.
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4 The variance of projection through a random involution

In this section we focus on the case where H = {1,m} for an element m chosen uniformly at random from
a conjugacy class [m] of involutions. (Observe that order is preserved under conjugation so that if m is an
involution, then so are all elements of [m].) Given an irreducible representation ρ : G→ U(V ) and a vector
b ∈ V , we bound the variance, over the choice of m, of the probability P (ρ,b) that b is observed given
that we observed ρ. Our key insight is that this variance depends on how the tensor product representation
ρ⊗ρ∗ decomposes into irreducible representations σ, and how the vector b⊗b∗ projects into the constituent
orthogonal irreducibles.

Recall that, if a representation ρ is reducible, it can be written as an orthogonal direct sum of irreducibles
ρ =

⊕
σ≺ρ aσσ where aσ is the multiplicity of σ. We let Πρ

σ denote the projection operator whose image is
aσσ, that is, the span of all the irreducible subspaces isomorphic to σ.

Lemma 1. Let ρ be a representation of a group G acting on a space V and let b ∈ V . Let m be an element
chosen uniformly from a conjugacy class [m] of involutions. If ρ is irreducible, then

Expm〈b,mb〉 =
χρ([m])
dim ρ

‖b‖2
.

If ρ is reducible, then

Expm〈b,mb〉 =
∑
σ≺ρ

χσ([m])
dimσ

‖Πρ
σb‖2

.

Proof. Fix a particular element µ ∈ [m]. Let ρ([m]) denote the average of ρ(m) over [m]; this is

ρ([m]) =
1

|[m]|
∑

m∈[m]

ρ(m) =
1
|G|

∑
g∈G

ρ(g−1µg) =
1
|G|

∑
g∈G

ρ(g)†ρ(µ) ρ(g) .

Observe that ρ([m]) commutes with ρ(g) for all g ∈ G and hence, by Schur’s lemma, its action on any
irreducible subspace is multiplication by a scalar. Note that for the scalar linear operator A = α1d acting
on a space of dimension d, we have α = trA/d. In particular, if ρ is irreducible then

ρ([m]) =
χρ([m])
dim ρ

1dρ

and so

Expm〈b,mb〉 = 〈b, ρ([m])b〉 =
χρ([m])
dim ρ

‖b‖2
.

If ρ is reducible, these same considerations apply to each irreducible subspace:

ρ([m]) =
∑
σ≺ρ

χσ([m])
dimσ

Πρ
σ

and so

Expm〈b,mb〉 = 〈b, ρ([m])b〉 =
∑
σ≺ρ

χσ([m])
dimσ

〈b,Πρ
σb〉 =

∑
σ≺ρ

χσ([m])
dimσ

‖Πρ
σb‖2

.

Turning now to the second moment of 〈b,mb〉, we observe that

|〈b,mb〉|2 = 〈b,mb〉〈b,mb〉∗ = 〈b⊗ b∗,mb⊗mb∗〉 = 〈b⊗ b∗,m(b⊗ b∗)〉,

where the action of m on the vector b⊗b∗ is precisely given by the action of G in the representations ρ⊗ρ∗.
This will allow us to express the second moment of the inner product 〈b,mb〉 in terms of the projections of
b⊗ b∗ into the irreducible constituents of the tensor product representation ρ⊗ ρ∗.
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Lemma 2. Let ρ be a representation of a group G acting on a space V and let b ∈ V . Let m be an element
chosen uniformly at random from a conjugacy class [m] of involutions. Then

Expm |〈b,mb〉|2 =
∑

σ≺ρ⊗ρ∗

χσ([m])
dimσ

∥∥∥Πρ⊗ρ∗

σ (b⊗ b∗)
∥∥∥2

.

Proof. We write the second moment as a first moment over the product representation ρ ⊗ ρ∗: as above,
|〈b,mb〉|2 = 〈b⊗ b∗,m(b⊗ b∗)〉, so that

Expm |〈b,mb〉|2 = Expm〈b⊗ b∗,m(b⊗ b∗)〉

and applying Lemma 1 completes the proof.

Now let Πm = ΠH denote the projection operator given by

Πmv =
v +mv

2
.

For a given vector b ∈ B, we will focus on the expectation and variance of ‖Πmb‖2. These are given by the
following lemma.

Lemma 3. Let ρ be an irreducible representation acting on a space V and let b ∈ V . Let m be an element
chosen uniformly at random from a conjugacy class [m] of involutions. Then

Expm ‖Πmb‖2 =
1
2
‖b‖2

(
1 +

χρ([m])
dim ρ

)
(4.1)

Varm ‖Πmb‖2 ≤ 1
4

∑
σ≺ρ⊗ρ∗

χσ([m])
dimσ

∥∥∥Πρ⊗ρ∗

σ (b⊗ b∗)
∥∥∥2

. (4.2)

Proof. For the expectation,

Expm ‖Πmb‖2 = Expm〈b,Πmb〉

=
1
2

Expm (〈b,b〉+ 〈b,mb〉)

=
1
2
‖b‖2

(
1 +

χρ([m])
dim ρ

)
where the last equality follows from Lemma 1.

For the variance, we first calculate the second moment,

Expm ‖Πmb‖4 = Expm |〈b,Πmb〉|2

=
1
4

Expm |〈b,b〉+ 〈b,mb〉|2

=
1
4

Expm

(
|〈b,b〉|2 + 2<〈b,b〉〈b,mb〉+ |〈b,mb〉|2

)
=

1
4

(
‖b‖4 + 2 ‖b‖4 χρ([m])

dim ρ
+

∑
σ≺ρ⊗ρ∗

χσ([m])
dimσ

∥∥∥Πρ⊗ρ∗

σ (b⊗ b∗)
∥∥∥2
)

where in the last line we applied Lemmas 1 and 2 and the fact that any character evaluated at an involution
is real. Then

Varm ‖Πmb‖2 = Expm ‖Πmb‖4 −
(
Expm ‖Πmb‖2

)2

=
1
4

[ ∑
σ≺ρ⊗ρ∗

χρ([m])
dim ρ

∥∥∥Πρ⊗ρ∗

σ (b⊗ b∗)
∥∥∥2

− ‖b‖4

(
χρ([m])
dim ρ

)2
]
. (4.3)

Ignoring the second term, which is negative, gives the stated result.
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Finally, we point out that since

Expm ‖Πmb‖2 = ‖b‖2 rk Πm

dim ρ

we have
rk Πm

dim ρ
=

1
2

(
1 +

χρ([m])
dim ρ

)
, (4.4)

a fact which we will use below.

5 The representation theory of the symmetric group

In this section we record the particular properties of Sn and its representation theory applied in the proofs
of the main results. The irreducible representations of Sn are labeled by Young diagrams, or equivalently by
integer partitions of n,

λ = (λ1, . . . , λt)

where
∑

i λi = n and λi ≥ λi+1 for all i. The conjugate Young diagram λ′ is obtained by flipping λ about
the diagonal: λ′ = (λ′1, . . . , λ

′
λ1

) where λ′j = |{i | λi ≥ j}|. In particular, λ′1 = t. The number of such
diagrams, equal to the number of conjugacy classes in Sn, is the partition number p(n), which obeys

p(n) = (1 + o(1))
1

4
√

3 · n
eπ
√

2n/3 = eΘ(
√

n) .

We denote these irreducibles Sλ, their characters χλ, and their dimensions dλ. In particular, Sλ is the trivial
or parity representation if λ is a single row (n) or a single column (1, . . . , 1) respectively, and Sλ′ is the
(tensor) product of Sλ with the parity representation.

The dimensions of the representations of the symmetric group are given by the remarkable hook length
formula:

dλ =
n!∏

c hook(c)
,

where this product runs over all cells of the Young diagram associated with λ and hook(c) is the number of
cells appearing in either the same column or row as c, excluding those that are above or to the left of c.

For example, the partition λ = (λ1, λ2, λ3, λ4) = (6, 5, 3, 2) is associated with the diagram shown in
Figure 1 below. The hook associated with the cell (2, 2) in this diagram appears in Figure 2; it has length 6.

λ1

λ2

λ3

λ4

Figure 1: The Young diagram for λ = (6, 5, 3, 2).

λ1

λ2

λ3

λ4

Figure 2: A hook of length 6.

The symmetric groups have the property that every representation Sλ possesses a basis in which its
matrix elements are real, and so all its characters are real. However, in a given basis Sλ might be complex,
so we will refer below to the complex conjugate representation (Sλ)∗ (not to be confused with Sλ′).
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The study of the asymptotic properties of the representations of Sn typically focuses on the Plancherel
distribution. (See, e.g., Kerov’s monograph [19] for further discussion.) For a general group G, this is the
probability distribution obtained on Ĝ by assigning ρ the probability density d2

ρ/|G|. One advantage of
this distribution is that the density at ρ is proportional to its contribution, dimensionwise, to the group
algebra C[G]; this will allow us to reduce structural questions about representations chosen according to
this distribution to questions about the regular and conjugation representation. Note that in the context of
the hidden subgroup problem, the Plancherel distribution is exactly the one obtained by performing weak
Fourier sampling on the trivial hidden subgroup.

In the symmetric groups a fair amount is known about representations chosen according to the Plancherel
distribution. In particular, Vershik and Kerov have shown that with high probability they have dimension
equal to eΘ(

√
n)
√
n!.

Theorem 4 ([30]). Let Sλ be chosen from Ŝn according to the Plancherel distribution. Then there exist
positive constants c1 and c2 for which

lim
n→∞

Pr
[
e−c1

√
n
√
n! ≤ dλ ≤ e−c2

√
n
√
n!
]

= 1 .

Vershik and Kerov have also obtained estimates for the maximum dimension of a representation in Ŝn:

Theorem 5 ([30]). There exist positive constants č and ĉ such that for all n ≥ 1,

e−č
√

n
√
n! ≤ max

Sλ∈cSn

dλ ≤ e−ĉ
√

n
√
n! .

Along with these estimates, we shall require some (one-sided) large-deviation versions of Theorem 4,
recorded below.

Lemma 6. Let Sλ be chosen according to the Plancherel distribution on Ŝn.

1. Let δ = π
√

2/3. Then for sufficiently large n, Pr
[
dλ ≤ e−δ

√
n
√
n!
]
< e−δ

√
n.

2. Let 0 < c < 1/2. Then Pr[dλ ≤ ncn] = n−Ω(n).

Proof. For the first bound, setting d = e−δ
√

n
√
n! and using p(n) < eδ

√
n, we have∑

Sλ:dλ≤d

(dλ)2

n!
≤ p(n)

d2

n!
< e−δ

√
n .

For the second bound, recalling Sterling’s approximation n! ∼
√

2πn(n/e)n, we have

1
n!

∑
λ:dλ≤ncn

(dλ)2 ≤ p(n)n2cn

n!
= n−(1−2c)neO(n) = n−Ω(n) .

Finally, we will also apply Roichman’s [25] estimates for the characters of the symmetric group:

Definition 1. For a permutation π ∈ Sn, define the support of π, denoted supp(π), to be the cardinality of
the set {k ∈ [n] | π(k) 6= k}.
Theorem 7 ([25]). There exist constants b > 0 and 0 < q < 1 so that for n > 4, for every conjugacy class
C of Sn, and every irreducible representation Sλ of Sn,∣∣∣∣χλ(C)

dλ

∣∣∣∣ ≤ (max
(
q,
λ1

n
,
λ′1
n

))b·supp(C)

,

where supp(C) = supp(π) for any π ∈ C.

In our application, we take n to be even and consider involutions m in the conjugacy class of elements
consisting of n/2 disjoint transpositions, M = Mn = {σ ((12)(34) · · · (n − 1 n))σ−1 | σ ∈ Sn}. Note that
each m ∈Mn is associated with one of the (n− 1)!! perfect matchings of n things, and that supp(m) = n.
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6 Strong Fourier sampling over Sn

We consider the hidden subgroup H = {1,m}, where m is chosen uniformly from M = Mn ⊂ Sn, the
conjugacy class

{π−1((1 2)(3 4) · · · (n− 1 n))π | π ∈ Sn} ;

we assume throughout that n is even. We start by measuring the name of an irreducible representation,
yielding Sλ for a diagram λ. We remark that Hallgren, Russell, and Ta-Shma [12] established that the
probability distribution on λ is exponentially close to the Plancherel distribution in total variation. We allow
the algorithm designer to choose an arbitrary POVM, with a frame B = {bj} and weights {aj} obeying
the completeness condition (3.3). We will show that with high probability (over m and λ), the conditional
distribution induced on the vectors B is exponentially close to the natural distribution (3.9) on B. It will
follow by the triangle inequality that it requires an exponential number of single-register experiments to
distinguish two involutions from each other or, in fact, distinguish H from the trivial subgroup.

For simplicity, and to illustrate our techniques, we first prove this for a von Neumann measurement, i.e.,
where B is an orthonormal basis for Sλ. In this case, we show that the probability distribution on B (or
equivalently, on the columns of Sλ) is exponentially close to the uniform distribution.

6.1 von Neumann measurements

Theorem 8. Let B = {b} be an orthonormal basis for an irreducible representation Sλ. Given the hidden
subgroup H = {1,m} where m is chosen uniformly at random from M , let Pm(b) be the probability that we
observe the vector b conditioned on having observed the representation name Sλ, and let U be the uniform
distribution on B. Then there is a constant δ > 0 such that for sufficiently large n, with probability at least
1− e−δn in m and λ, we have

‖Pm − U‖1 < e−δn .

Proof. First, recall from (3.8) in Section 3 that the conditional distribution on B is given by (since aj = 1)

Pm(b) = P (Sλ,b) =
‖Πmb‖2

rk Πm
. (6.1)

Our strategy will be to bound Varm ‖Πmb‖2 using Lemma 3, and apply Chebyshev’s inequality to conclude
that it is almost certainly close to its expectation. Recall, however, that our bounds on the variance of
‖Πmb‖2 depend on the decomposition of Sλ ⊗ (Sλ)∗ is into irreducibles and, furthermore, on the projection
of b ⊗ b∗ into these irreducible subspaces. Matters are somewhat complicated by the fact that certain Sµ

appearing in Sλ ⊗ (Sλ)∗ may contribute more to the variance than others. While Theorem 7 allows us to
bound the contribution of those constituent irreducible representations Sµ for which µ1 and µ′1 are much
smaller than n, those which violate this condition could conceivably contribute large terms to the variance
estimates. Fortunately, we will see that the total fraction of the space Sλ⊗ (Sλ)∗, dimensionwise, consisting
of such Sµ is small with overwhelming probability. Despite this, we cannot preclude the possibility that for a
specific vector b, the quantity Var ‖Πmb‖2 is large, as b may project solely into spaces of the type described
above. On the other hand, as these troublesome spaces amount to a small fraction of Sλ⊗ (Sλ)∗, only a few
b can have this property, and we will see that this suffices to control the distance in total variation to the
uniform distribution.

Specifically, let 0 < c < 1/4 be a constant, and let Λ = Λc denote the collection of Young diagrams µ
with the property that either µ1 ≥ (1 − c)n or µ′1 ≥ (1 − c)n. We have the following upper bounds on the
cardinality of Λ and the dimension of any Sµ with µ ∈ Λ:

Lemma 9. Let p(n) denote the number of integer partitions of n. Then |Λ| ≤ 2cnp(cn), and dµ < ncn for
any µ ∈ Λ.
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Proof. For the first statement, note that removing the top row of a Young diagram µ with µ1 ≥ (1 − c)n
gives a Young diagram of size n − µ1 ≤ cn. The number of these is at most p(cn), and summing over all
such µ1 gives cnp(cn). The case µ′1 ≥ (1− c)n is similar, and summing the two gives |Λ| ≤ 2cnp(cn).

Now let µ ∈ Λ with µ1 ≥ (1 − c)n. By the hook-length formula, since the ith cell from the right in the
top row has hook(c) ≥ i, dµ < n!/µ1! ≤ n!/((1− c)n)! ≤ ncn. The case µ′1 ≥ (1− c)n is similar.

As a result, the representations associated with diagrams in Λ constitute a negligible fraction of Ŝn;
specifically, from Lemma 6, part 2, the probability that a λ drawn according to the Plancherel distribution
falls into Λ is n−Ω(n). The following lemma shows that this is also true for the distribution P (ρ) induced on
Ŝn by weak Fourier sampling the coset state |H〉.

Lemma 10. Let d < 1/2 be a constant and let n be sufficiently large. Then there is a constant γ > 0 such
that we observe a representation Sλ with dλ ≥ ndn with probability at least 1− n−γn.

Proof. The proof is nearly identical to that of Lemma 6, and follows an argument from [9]. Recall from (3.7)
in Section 3 that we observe an irreducible ρ with probability P (ρ) = (dρ|H|/|G|)rk πH . Given |H| = 2,
|G| = n!, and rk πH ≤ dρ, we have P (ρ) ≤ 2d2

ρ/n!. Since the total number of irreducibles of Sn is p(n) and
n! > nne−n, we have ∑

Sλ:dλ<ndn

P (Sλ) < 2p(n)n2dn/n! < 2p(n)enn(2d−1)n

and setting γ < 1− 2d completes the proof.

On the other hand, for a representation Sµ with µ /∈ Λ, Theorem 7 implies that∣∣∣∣χµ(M)
dµ

∣∣∣∣ ≤ (max(q, 1− c)
)bn ≤ e−αn (6.2)

for a constant α ≥ bc > 0. Thus the contribution of such an irreducible to the variance estimate of Lemma 3
is exponentially small. In addition, let E0 be the event that dλ ≥ ndn as in Lemma 10; then conditioning on
E0 and setting d such that c < 1/4 < d, Lemma 9 implies that λ /∈ Λ, and Equations (4.4) and (6.2) imply

dλ

2
(
1− e−αn

)
≤ rk Πm ≤ dλ

2
(
1 + e−αn

)
. (6.3)

We turn now to the problem of bounding the multiplicities with which representations Sµ, for µ ∈ Λ,
can appear in Sλ ⊗ (Sλ)∗. While no explicit decomposition is known for Sλ ⊗ (Sλ)∗, the endomorphism
representations of Sn, we record a coarse bound below which will suffice for our purposes. Recall that
character of Sλ⊗(Sλ)∗ is χλ·(χλ)∗ = (χλ)2 as characters of Sn are real. The multiplicity of the representation
Sµ in Sλ ⊗ (Sλ)∗ is 〈χµ, (χλ)2〉G. However, this is equal to 〈χµχλ, χλ〉G, the multiplicity of Sλ in the
representation Sµ ⊗ Sλ. Counting dimensions, this is clearly no more than dim(Sµ ⊗ Sλ)/dimSλ = dµ.
Hence the multiplicity of Sµ in Sλ ⊗ (Sλ)∗ is never more than dµ; we have

〈χµ, (χλ)2〉G ≤ dµ . (6.4)

Let L ⊂ Sλ ⊗ (Sλ)∗ be the subspace consisting of copies of representations Sµ with µ ∈ Λ, and let ΠL

be the projection operator onto this subspace. By Lemma 9, we have

dimL ≤
∑
µ∈Λ

(dµ)2 ≤ 2cnp(cn)n2cn = eO(
√

n)n2cn .

Note by Lemma 10 with d > 2c, dimL is a vanishingly small fraction of dλ.
As B is an orthonormal basis for Sλ, the vectors {b⊗b∗ | b ∈ B} are mutually orthogonal in Sλ⊗ (Sλ)∗.

Therefore, ∑
b∈B

‖ΠL(b⊗ b∗)‖2 ≤ dimL .
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In particular, if BL ⊂ B denotes the set of b with the property that

‖ΠL(b⊗ b∗)‖2 ≥ e−αn ,

then, conditioning on E0, |BL| cannot be larger than eαn dimL = eO(n)n2cn = n−Ω(n)dλ. For a basis vector
b /∈ BL, we apply Lemma 3 to bound the variance as follows: assuming pessimistically that χµ(M)/dµ = 1
for all µ ∈ Λ, and applying (6.2), gives

Varm ‖Πmb‖2 ≤ 1
4

 ∑
Sµ:µ∈Λ

∥∥Πλ
µ(b⊗ b∗)

∥∥2
+

∑
Sµ:µ/∈Λ

χµ(M)
dµ

∥∥Πλ
µ(b⊗ b∗)

∥∥2


≤ 1

4

e−αn + e−αn
∑

Sµ:µ/∈Λ

∥∥Πλ
µ(b⊗ b∗)

∥∥2

 ≤ 1
2
e−αn .

In this case, by Chebyshev’s inequality,

Pr
[ ∣∣∣‖Πmb‖2 − Expm ‖Πmb‖2

∣∣∣ ≥ e−αn/3
]
≤ e−αn/3 . (6.5)

We say that a basis vector is bad if this bound is violated, i.e.,∣∣∣‖Πmb‖2 − Expm ‖Πmb‖2
∣∣∣ ≥ e−αn/3 .

Let Bbad denote the subset of B consisting of bad basis vectors (observe that while BL depends only on the
choice of λ, Bbad depends also on m). Then (6.5) implies

Expm |Bbad| ≤ e−αn/3dλ.

Now let E1 be the event that
|Bbad| < e−αn/6dλ ;

then by Markov’s inequality, E1 occurs with probability at least 1− e−αn/6.
Now let us separate ‖Pm − U‖1 into contributions from basis vectors outside and inside BL ∪Bbad:

‖Pm − U‖1 =
∑

b/∈BL∪Bbad

|Pm(b)− U |+
∑

b∈BL∪Bbad

|Pm(b)− U | . (6.6)

The first sum is taken only over vectors b for which∣∣∣‖Πmb‖2 − Expm ‖Πmb‖2
∣∣∣ < e−αn/3 .

Conditioning on E0 and recalling that Pm(b) = ‖Πmb‖2
/rkΠm, the rank estimate of (6.3) gives∑

b/∈BL∪Bbad

|Pm(b)− U | ≤ e−αn/3

rk Πm
· dλ ≤ 2e−αn/3

1− e−αn
< 4e−αn/3 . (6.7)

It follows that Pm(BL∪Bbad) is at most |BL∪Bbad|/dλ +4e−αn/3. Therefore, since conditioning on E0 and
E1 we have |BL ∪Bbad| ≤ (n−Ω(n) + e−αn/6)dλ < 2e−αn/6dλ, the second sum in (6.6) is at most∑

b∈BL∪Bbad

∣∣∣∣Pm(b)− 1
dλ

∣∣∣∣ ≤ Pm(BL ∪Bbad) +
|BL ∪Bbad|

dλ
< 4e−αn/6 + 4e−αn/3 < 5e−αn/6 . (6.8)

Then combining (6.6), (6.7) and (6.8),

‖Pm − U‖1 < 4e−αn/3 + 5e−αn/6 < 6e−αn/6

with probability at least Pr[E0 ∧E1] ≥ 1− n−γn − e−αn/6 ≥ 1− 2e−αn/6. We complete the proof by setting
δ < α/6.
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6.2 Arbitrary POVMs

We now generalize the proof of Theorem 8 to the case where the algorithm designer is allowed to choose an
arbitrary finite frame B = {b} of unit length vectors in Sλ, with a family of positive real weights ab, that
satisfy the completeness condition ∑

b

ab |b〉 〈b| = 1 . (6.9)

(Note that this is simply (3.3) where we have written b and ab instead of bj and aj .)

Theorem 11. Let B = {b} be a frame with weights {ab} satisfying the completeness condition (6.9) for
an irreducible representation Sλ. Given the hidden subgroup H = {1,m} where m is chosen uniformly at
random from M , let Pm(b) be the probability that we observe the vector b conditioned on having observed
the representation name Sλ, and let N be the natural distribution (3.9) on B. Then there is a constant δ > 0
such that for sufficiently large n, with probability at least 1− e−δn in m and λ, we have

‖Pm −N‖1 < e−δn .

Proof. Recall from (3.8) in Section 3 that the conditional distribution on B is given by

Pm(b) = P (Sλ,b) = ab
‖Πmb‖2

rk Πm

and the natural distribution (3.9) is given by N(b) = ab/d
λ.

The proof of Theorem 8 goes through with a few modifications. First, let us change some semantics:
given a subset A ⊆ B, we let |A| denote the weighted size of A,

|A| =
∑
b∈A

ab .

With this definition, the total probability that falls in A under the natural distribution is N(A) = |A|/dλ.
Then we will use the following lemma:

Lemma 12. Let L be a subspace of Sλ ⊗ (Sλ)∗ and let ΠL be the projection operator onto L. Then∑
b∈B

ab ‖ΠL(b⊗ b∗)‖2 ≤ dimL . (6.10)

Proof. First note that a vector e ∈ Sλ ⊗ (Sλ)∗ has entries ej,k for 1 ≤ j, k ≤ dλ. There is a unique linear
operator E on Sλ whose matrix entries are Ej,k = ej,k, and the inner product 〈b⊗b∗, e〉 in Sλ ⊗ (Sλ)∗ can
then be written as the bilinear form 〈b, Eb〉 in Sλ. The Frobenius norm of E is ‖E‖2 = trE†E = ‖e‖2.

Now let {ei} be an orthonormal basis for L and let Ei be the operator corresponding to ei. Then∑
b∈B

ab |〈b⊗ b∗, ei〉|2 =
∑
b∈B

ab |〈b, Eib〉|2 ≤
∑
b∈B

ab ‖b‖2 ‖Eib‖2 =
∑
b∈B

ab ‖Eib‖2

=
∑
b∈B

ab tr
(
E†i |b〉 〈b|Ei

)
= tr

[
E†i

(∑
b∈B

ab |b〉 〈b|

)
Ei

]
= trE†iEi = ‖ei‖2 = 1

where we used the Cauchy-Schwartz inequality in the second line and completeness in the second. Summing
over the dimL basis vectors ei then gives (6.10).

We define Λ and E0 as before, and Lemmas 9 and 10 still apply. As before, let L ⊂ Sλ ⊗ (Sλ)∗ be the
subspace consisting of copies of representations Sµ with µ ∈ Λ, and let BL ⊂ B denote the set of b with the
property that

‖ΠL(b⊗ b∗)‖2 ≥ e−αn .

15



Then Lemma 12 implies that
|BL| ≤ eαn dimL

where |BL| is defined as above. We again define Bbad as the set of b ∈ B \BL such that∣∣∣‖Πmb‖2 − Expm ‖Πmb‖2
∣∣∣ ≥ e−αn/3

and Chebyshev’s and Markov’s inequalities imply that the event E1, namely

|Bbad| < e−αn/6dλ ,

occurs with probability at least 1− e−αn/6.
We separate ‖Pm −N‖1 as we did ‖Pm − U‖1 before:

‖Pm −N‖1 =
∑

b/∈BL∪Bbad

|Pm(b)−N(b)|+
∑

b∈BL∪Bbad

|Pm(b)−N(b)| . (6.11)

Since
∣∣∣‖Πmb‖2 − Expm ‖Πmb‖2

∣∣∣ < e−αn/3 for all b /∈ BL ∪ Bbad, and since
∑

b ab = dλ, conditioning on
E0 and using (6.3) bounds the first sum as follows,

∑
b/∈BL∪Bbad

|Pm(b)−N(b)| ≤ e−αn/3

rk Πm
· dλ ≤ 2e−αn/3

1− e−αn
< 4e−αn/3 . (6.12)

It follows that Pm(BL ∪ Bbad) is at most |BL ∪ Bbad|/dλ + 4e−αn/3. Conditioning on E0 and E1, we have
|BL ∪Bbad| ≤ (n−Ω(n) + e−αn/6)dλ < 2e−αn/6dλ. Thus the second sum in (6.11) is at most∑

b∈BL∪Bbad

|Pm(b)−N(b)| ≤ Pm(BL ∪Bbad) +N(BL ∪Bbad) < 4e−αn/6 + 4e−αn/3 < 5e−αn/6 . (6.13)

Then combining (6.11), (6.12) and (6.13),

‖Pm −N‖1 < 4e−αn/3 + 5e−αn/6 < 6e−αn/6

with probability at least Pr[E0 ∧E1] ≥ 1− n−γn − e−αn/6 ≥ 1− 2e−αn/6. We complete the proof by setting
δ < α/6 as before.
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