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Abstract

This paper considers a set of shock physics experiments thatinvestigate how materials respond to the extremes
of deformation, pressure, and temperature when exposed to shock waves. Due to the complexity and the cost of
these tests, the available experimental data set is often very sparse. A support vector machine (SVM) technique
for regression is used for data estimation of velocity measurements from the underlying experiments. Because of
good generalization performance, the SVM method successfully interpolates the experimental data. The analysis
of the resulting velocity surface provides more information on the physical phenomena of the experiment. Ad-
ditionally, the estimated data can be used to identify outlier data sets, as well as to increase the understanding of
the other data from the experiment.
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1 Introduction

Experimental shock physics studies how materials behave under the extremes of deformation, pressure, and
temperature, when shock waves interact with them [1]. Most often these strong shock waves are produced by
using high explosives or propellant guns. Many different diagnostic techniques [2] have been used to investigate
material’s response to extreme conditions.

Usually, experimental equipment is destroyed during the test due to the exposure to the shock waves. Because
of this, experiments are sometimes quite expensive and complex. In order to conduct a thorough investigation of
one physical property as a function of another, a number of experiments have to be repeated at significant cost
and compexity. As the result, the data set available to a researcher is often very sparse: there may be a small
number of experiments, or each experiment can be sampled with only a few diagnostics.

In this paper we apply a support vector machine (SVM) technique for regression to data estimation based on
the velocity measurements from the underlying experiment.A Velocity Interferometer System for Any Reflector
(VISAR) that provides the data for this work, records a pointvelocity of the moving surface after a tin sample is
shocked with high explosives [3, 4, 5]. One can find a more detailed description elsewhere [6]. The VISAR data
presented here describe the behavior of the free surface of the tin coupon under the effect of a high explosive (HE)
generated shock wave. The analysis of the time dependence ofthe velocity magnitude can provide information
on the yield strength of the material, and the thickness of the leading damaged layer that may separate from the
bulk material during the shock/release of the sample.

The most common use of the SVM technology is for classification, though the SVM for regression data
analysis, used in this paper, is a rapidly growing research area. Fields, in which SVM methods were successfully
used, include geostatistics [7], bioinformatics [8], datamining [9], forecasting [10], and others. SVM methods
have never been applied to VISAR data, nor to any shock physics data set. Vannerem et al. [11] attempted to
analyze simulated high energy physics data using a support vector classification method. Another application of
SVM in the analysis of physics data is presented by Cai et al. [12], describing how the support vector machine is
used to classify sonar signals. Although SVM for regressionis rarely applied in physics, some successful support
vector regression applications also exist. In civil engineering, Dibike et al. [13] showed how support vector
regression techniques can be useful in the problem of streamflow data estimation based on records of rainfall and
other climatic data.

In section 2 we give a description of the underlying experiment and the way the data are captured. The problem
definition – intuitive and formal – is given in section 3. In section 4 we define a support vector regression method
and its advantages. The features of the data under consideration are given in section 5. In section 6 we analyse
how support vector regression techniques are applied. Finally, we conclude in section 7.

2 Underlying experiment

2.1 Shock test overview

The data used in this paper are acquired from a set of experiments where a metal coupon is shocked by high
explosives, detonated with a single point ignition. Using recorded data, researchers study the behavior of the
damaged/melted metal sample. Figure 1 shows a schematic view of the initial experimental configuration.

A metal sample is placed on top of a 12.7 mm thick high explosive (HE) disc. The diameter of the cylindrically
shaped sample is the same as that of the HE disc: 50.8 mm. In order to perform a symmetric single point ignition
of the HE disc, a point detonator is attached to the center of the disk of HE. Note that the experimental setup is
axially symmetric, which is important for reducing the complexity of further data analysis and providing more
intuition about physical phenomena in the experiment.

A VISAR probe is pointed at the center of the metal sample. During the experiment the probe transmits a
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Figure 1: A schematic illustration of the setup of the underlying experiment and its connection with the VISAR
system.

laser beam at the top surface of the shocked metal, and the velocity of this surface is deduced from the Doppler
shifted light reflected from it (see the next section for moredetails). As a result, the time series of the velocity is
recorded during the experiment.

During the same experiment a proton beam is incident perpendicular to the axis of symmetry. A series of
Proton Radiography (pRad) images captures the current state of the experiment in a series of time steps produced
by the focussed proton beam. PRad imagery is a tomography technique, thus it can be compared to X-ray or
gamma ray tomography. Since a pRad image exposure time is less than 50ns, this technique is more suitable for
recording ultra fast experiments, e.g., up to 20 images are taken in a single experiment, such as the one described
in this paper. Another advantage of the pRad technique is that a proton beam penetrates metal fragments without
heavy attenuation, which is typical for an X-ray beam. In this paper we focus on VISAR data analysis, whereas
other publications [6] provide more details about pRad imagery analysis.

In order to identify the changes in physical processes over aset of experiments, two parameters of the initial
experiment setup are varied between different experiments. These parameters are the thickness of a metal coupon
and the type of the metal. For simplicity of this paper, we consider only those experiments that are performed on
tin samples of several selected thicknesses.

2.2 Capturing velocity with VISAR

A Velocity Interferometer System for Any Reflector (VISAR) is a system that captures changes of the velocity of
a moving surface by measuring the Doppler shift of a laser beam reflected from the surface. Velocity changes as
small as a few meters per second can be detected by the VISAR system.

The general components of a VISAR system, such as lasers, detectors, and optical elements, are shown in
figure 1. The laser emits a beam, which is delivered to the VISAR probe via fiber-optic cables. If the probe is
properly focussed, some of the laser light reflects from the moving surface and gets back into the probe. After
that the captured reflected light is forwarded to the interferometer. Since the reflected light is Doppler shifted, the
interferometer is able to determine the velocity of the moving surface.

2
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Once the Doppler shifted light is captured by the probe it is transmitted to the interferometer, shown in figure
2, where it is split into two beams. Using optics, one of the signals is delayed, hence the signals cover different

Figure 2: A schematic illustration of of the interferometersubsystem used in the VISAR system.

distances. After that the signals are adjusted so as to make them interfere before they reach the photodetectors.
The final VISAR information is retrieved from the system by recording the intensity signals from the photode-
tectors. More details about the VISAR system and its operation can be found elsewhere [3, 4, 5].

Figure 3 shows different time series data produced by the VISAR system after several experiments. The
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nesses (from 4.76 mm to 12.7 mm).

output of a VISAR system agrees well (∼1%) with velocity results obtained from analyzing the locations of
different visible fragments of a pRad image and calculatingtheir corresponding velocities [14].
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3 Problem definition

Due to the high cost of the experiments and their complexity,the amount of the experimental data obtained is
limited. Given these limitations, this paper attempts to tackle the problem of measurements estimation for the
missing experiments, or for those experiments whose VISAR data recordings were not successful, although other
components of the data, such as pRad images, were recorded correctly. This can potentially allow for a successful
interpretation of an experiment, despite errors in the VISAR data recording, and avoiding the need for repeating
the experiment. One might notice that this problem is strongly connected to the detection of “outlier” experi-
ments: those experiments that due to the errors in the initial setup or for some other reasons went wrong. The
experimental data that do not “fit” with other “good” experiments can be identified by data estimation techniques.
Using data computed by estimation techniques, we can increase the informational output of VISAR and over-
come the scarcity of the experiments. Researchers want to understand all the phenomena of these experiments,
hence using the combination of the VISAR data with the data estimations provides more possibilities for better
perception of physical processes than using the VISAR data alone.

In addition, velocity estimations can be compared with different kinds of hydrocode models, simulating an
experiment under relevant physical laws defined by a set of physical equations. The initial conditions of a hy-
drocode simulation are identical to those of the real experiment. Depending on the type of a hydrocode, the
simulations (frequently callednumerical experiments) are conducted in two or three dimensional spaces.

Furthermore, velocity estimations can be used to support and even improve other types of data. The pRad
imagery, which is collected during these experiments, is one such type of data.

3.1 Formal problem

Since each VISAR data point (in a time series that may extend over several microseconds) is a tuple〈time,thick,vel〉
(time is the time when the recording took place,thick is the thickness of the coupon in the experiment, andvel is
the recorded velocity), the data form a two dimensional surface in the three dimensional space. Thus, to deal with
the problems identified above, we need to reconstruct the twodimensional surface using the VISAR data sets.

Mathematically speaking, the problem is to find a regressionof velocity on the thickness of a sample and
time. That is, given three random variablesT, V, W corresponding totime, velocity, andthicknessthat map a
probability space(Ω,A,P) into a measure space(Γ,S), we want to estimate coefficientsλ from some setΛ ⊆ Γ
such that the errore= V −η(T,W;λ) is small, whereη : Γ2×Λ → Γ is a regression function. Note that most
of the time, including the case considered in this article,Γ = R. The variableV, the regression of which we try
to find, is called anobservation. The variablesT,W, upon which the regression is based, are calledregression
factors.

4 Support vector regression

4.1 Definition

The Support Vector Machine (SVM) estimates a functional input/output relationship from a set of data. Like most
othersupervised learningmethods, SVM needs to be trained using a training data set ofk points{〈xi ,yi〉|xi ∈
X,yi ∈ Y, i = 1. . .k}. The SVM method assumes that each training data point is independently and randomly
generated by some unknown functionf , which the method approximates using the following form

f (x) = w ·φ(x)+b. (1)
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Hereφ is a nonlinear mappingφ : X → H from an input spaceX ⊆R
n to a high dimensional feature spaceH. The

coefficientb is from an output spaceY ⊆ R, andw∈ H. By minimizing theregularized risk[15]

R=
k

∑
i=1

Loss( f (xi),yi)+ λ ‖ w ‖2
,

that consists of an empirical risk defined using a loss function Loss(the first term) and a regularization term to
ensure flatness of the estimated function (the second term),we obtain parametersb andw. In order to determine
an empirical risk, we usedε-intensive loss function [16] defined as

Loss( f (x),y) =

{

| f (x)−y|− ε, i f | f (x)−y| ≥ ε
0, otherwise

.

Besides being a supervised learning method, SVM is akernelmethod. A kernel of a functionh : A→ B defines
an equivalence relation onA as follows

ker(h) = {(a1,a2)|a1,a2 ∈ A,h(a1) = h(a2)} ⊆ A×A.

Classification problems were some of the first application domains of the SVM method. In order to classify
the data, the algorithm attempts to find the maximum-margin hyperplane in the transformed feature spaceH that
separates the data into two classes. Later the SVM techniquewas successfully used for regression estimation
(Support Vector Regression, SVR) that produces a model based on only a subset of training data. This is due to
the fact that the loss function used during SVR training ignores all the training data points that are close to the
model prediction (those that are inside theε-tube).

4.2 SVR advantages

There are several attractive features of the SVM approach [17] that were decisive when we chose this method for
addressing our problem.

• Good generalization performance

One attractive feature is the good generalization performance. A unique principle of structural risk mini-
mization [18] is the key to such generalization achievementof the SVM method.

• Sparse representation

A solution obtained by SVM depends only on a subset of the training data, calledsupport vectors. This is
why the representation of the solution is sparse.

• No local minima problem

Since training of the SVM is equivalent to solving a linearlyconstrained quadratic programming problem,
its solution is unique and globally optimal. Therefore, we do not need to worry about local minima.

• Kernel power

The involvement of kernels in the SVM technique allows us to work with arbitrarily large feature spaces:
there is no need to explicitly computeφ – the mapping from the data space to the feature space, thus
avoiding computing the dot product of (1).

It is known [19] that a linear algorithm that uses only dot products can be transformed to a nonlinear
one by replacing all the dot products with a kernel function.Note that although the SVM algorithm after
the kernel transformation is nonlinear, it is still linear in the feature space (the range of the mappingφ).
Since when using the SVM algorithm we apply a kernel instead of w ·φ(x) of (1), the explicit computation
of φ is not needed. This kernel transformation of a linear algorithm to a nonlinear one is known as the
kernel trick[19].
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5 Features of VISAR velocimetry

The VISAR data we use in this paper are suitable for application of supervised learning methods, since the
VISAR system captures values of some unknown function for each given couple〈time,thickness〉. Hence the
support vector regression method can be also applied to thistask, using the velocity component of each data point
as a target value and the pair of time and thickness components as feature values. Unfortunately, we cannot apply
SVR in a straight forward manner, due to different features of the VISAR data.
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Figure 4: The available VISAR data set: (a) in three dimensional Time×Thickness×Velocitydata space; (b)
projected on theTime×Velocityplane together with its smoothed version.

Figure 4(a) presents the entire VISAR data set. As can be seenin the figure, the data is considerably extended
along the time axis. The reason for this is the fact that the available data set consists of the time series of velocities
corresponding to each experiment included in the set. Recall that throughout each experiment the VISAR system
measured the velocity of the moving surface every 2ns for up to 6000 time steps. Note however that in some
experiments the VISAR recordings stop having useful information (due to high noise and artifacts) earlier than in
others. This happens because the experiments on thinner samples produce a more diffuse moving surface, velocity
of which is harder for the VISAR system to capture, than a moving surface in the experiments on thicker samples.
It has been identified experimentally that SVR performs better on the aligned data; this is why we cropped the
data by the shortest sequence (1656 time steps). Along the thickness axis the data spans the thicknesses starting
from 6.35 mm up to 12.7 mm with 1.5875 mm step. After cropping the time series, the data used by the SVM
method is combined of 5 time series with 1656 points each.

Since for different experiments the start of a test (first motion of the tin surface) and the time step at which the
measurements were recorded were different, the output datahave to be time-aligned. The goal of the alignment is
to make each time series start exactly at the moment when the shock wave reaches the top surface of the coupon
bringing the surface to motion. Figure 4(b) shows the projection of the complete data set on theTime×Velocity
plane. The abscissa of this figure shows the amount of time steps, 2ns each. The dashed lines represent the
original time series, whereas the solid lines show these data after smoothing with a triangular window.

Note also that the magnitudes of the components’ values of each data point (time, thickness, and velocity) are
of the drastically different order. The order of magnitude of the time component is 10−6, whereas it is 1 for the
thickness component, and 103 for the velocity component.

In the next section we show how to deal with the data features of the VISAR measurements identified above.
We also show how to find the optimal SVM configuration for the best application.
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6 The use of support vector regression techniques

The quality of the resulting regression is affected by several factors. The main one is the error in the VISAR data
that could be the result of tiny misalignments in the initialexperimental setup or other hard-to-control problems
during the expriment. This error together with the error contributed during the data preprocessing affects the
accuracy of the reconstructed surface the most. It is calculated that a VISAR system measures the velocity values
with an absolute error of 3-5%. This error is an approximation computed from differences between repeated
experiments. Despite a very small number of repeated experiments which do not support a more robust statistical
analysis, this level of uncertainty is in the range of valuesgenerally accepted by VISAR experimenters [3, 4, 5].
This error together with the noise and a potential inaccuracy caused by the time alignment of the SVR input data
transfers into the regression result.

The specific features of the VISAR data outlined in the previous section also affect the accuracy of the
reconstructed surface. Recall that the time series recorded in various experiments have different length. Since
it was observed that the SVM performance improves considerably if the data is aligned, we cut the data by the
shortest time series. Scaling data, coordinates of which are of significantly different orders of magnitude, also
improves the SVM performance.

The application of SVR to the data at this point (the data thathave been time-aligned, cropped, and scaled)
yields overfitted results. For any interval there are more data points along the time axis than those along the
thickness axis, because the distance between two neighbor points in the time direction is much smaller than in the
thickness direction. In our research we dealt with the overfitting problem by transforming the data in a custom
manner such that the interval between any two neighbor points is one unit long in any direction.

It is known that SVM with nonlinear kernels perform better when the dynamics of an underlying experiment
are nonlinear. Among nonlinear kernels, the Gaussian Radial Basis Function (RBF) kernel shows good results
under the general smoothness assumption [20]. Furthermore, as practice showed, the SVR method with a simpler
than RBF kernel, e.g., a polynomial kernel, trains slower and returns non-satisfactory results. This is why we
chose the Gaussian RBF

k(x,y) = e−γ‖x−y‖2

as a kernel for the estimation of a velocity surface.

There are three free parameters in the SVR method with an RBF kernel that directly influence its execution.
These parameters are the RBF radiusγ, the sizeε of the error-insensitive zone, also known as anε-margin or
anε-tube, and the regularization constantC, also called a capacity factor or an upper bound on the Lagrangian
multipliers. Recall thatε determines the amount by which a training point is permittedto diverge from the
regression, which directly affects the accuracy of the regression.

In order to identify the optimal values of the free parameters that lead to the best application of the SVR
method to the VISAR data, we use standardk-fold cross-validation. After dividing the data set intok parts, we
usedk−1 parts for training the supervised learning machine and theremaining part for its successive validation.
This process is repeatedk times using each part only once for validation. At the end of each cross-validation we
computed anl2 error corresponding to a particular instantiation of the SVR free parameters. The error changes
as a function of the values of these parameters as shown in figure 5.

From figure 5 we can study the relationship between the free parameters and the error. For example, we can
see that ifε and/orγ increases, then the error also grows. Note also that the regularizaton constantC influences
the error the most when the radiusγ is the smallest. This influence ofC on the error reduces asγ grows, becoming
negligible whenγ exceeds 0.3. Furthermore, given a smallγ, parameterC changes the error more with a smaller
ε. Finally, after analyzing the error we identified that it is the smallest when the tuple〈ε,γ,C〉 is in the range
[〈0.001,0.1,0.75〉 . . .〈0.001,0.1,1.0〉]. Note that this range provides suboptimal parameter values. In order to
identify a final model that produces the most accurate velocity surface expert knowledge was used, i.e., an expert
from the physics domain chose the best surface out of severalproduced by models with different suboptimal
values. Figure 6 shows the velocity surface (represented bythe dashed lines) estimated by the SVR method from
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the given data (showed with the solid lines).
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Figure 6: Prediction results of the SVR method: (a) in three dimensionalTime×Thickness×Velocitydata space;
(b) projected on theTime×Velocityplane, the solid lines represent experimentally produced data and the dashed
lines show the estimated data.

A velocity value for any〈time,thickness〉 pair can be easily estimated, once the velocity surface is found. We
can also identify the potentially failed VISAR data that veers significantly from the surface, assuming that the
reconstructed surface is sufficiently accurate. Much more information about the velocity changes is provided by
the estimated surface together with VISAR readings than from the experimental data alone. For an experiment,
in which only pRad data were successfully recorded, the surface can provide a velocity time series, enhancing the
analysis quality of the experiment. This, in turn, helps researchers to understand the entire physical system better.

Note that in this paper we used theSVM-lightimplementation of the SVR method [21].
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7 Conclusions and future work

An interesting case of VISAR data analysis was discussed in this paper. We sought to estimate the velocity
values between the data points recorded by the VISAR system.Using the support vector regression method, we
successfully reconstructed the two dimensional velocity surface in the tree dimensional data space withTime,
Thickness, andVelocityas its dimensions. In order to find the optimal values of the SVR free parameters, a grid
search as well as expert knowledge were used. Support vectorregression does not require a large input data set
for producing good results. This is very helpful in the environment of expensive and highly complex experiments
providing a limited amount of data points.

The velocity surface delivers a lot of information about thepatterns of the velocity as a function of time
and thickness, more than sparse experimentally obtained VISAR data alone. PRad imagery analysis, hydrocode
simulations, and other areas of analysis of shock physics experiments may also benefit from the VISAR data
enhanced by the velocity estimations. Moreover, the “outlier” experiments, those tests that for some reason
went wrong, can be identified more easily with the help of the reconstructed velocity surface. The data from an
“outlier” experiment will be substantially different thanthe data predicted by the surface.

This work can be advanced in several directions, one is to determine a better way for finding optimal values for
the SVM free parameters. Recall that a grid search and expertknowledge were used, leading to the suboptimal
parameter values. It might be very useful to design an onlinelearning algorithm for SVM parameter fitting
specific to the VISAR data. The usage of a custom kernel instead of an RBF is another direction of further
research. Intuitively, the results of support vector regression may be improved by using an elliptical kernel that
takes into account the data density along one axis and the data sparsity along the other axis. Another direction
for future work might be to attempt to capture uncertainty inthe surface reconstruction. Currently, SVR returns a
point estimate, however it is more appealing to find a conditional distribution of the target values given the feature
values. Such methods asrelevancevector machines, Bayesian SVM, and other extensions of the original SVM
method that employ probabilistic methods might provide considerably more information about the underlying
experiments.
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