
Dependency Pairs for Rewriting with Non-Free

Constructors

Stephan Falke and Deepak Kapur

Department of Computer Science
University of New Mexico

Albuquerque, NM 87131, USA
{spf|kapur}@cs.unm.edu

Abstract. A method based on dependency pairs for showing termina-
tion of functional programs on data structures generated by constructors
with relations is proposed. A functional program is specified as an equa-
tional rewrite system, where the rewrite system specifies the program and
the equations express the relations on the constructors that generate the
data structures. Unlike previous approaches, relations on constructors
can be collapsing, including idempotency and identity relations. Rela-
tions among constructors may be partitioned into two parts: (i) equations
that cannot be oriented into terminating rewrite rules, and (ii) equa-
tions that can be oriented as terminating rewrite rules, in which case an
equivalent convergent system for them is generated. The dependency pair
method is extended to normalized rewriting, where constructor-terms in
the redex are normalized first. The method has been applied to several
examples, including the Calculus of Communicating Systems and the
Propositional Sequent Calculus. Various refinements, such as dependency
graphs, narrowing, etc., which increase the power of the dependency pair
method, are presented for normalized rewriting.

1 Introduction

Algorithms in a functional programming style can be specified elegantly within
the framework of term rewrite systems. This is the approach taken by ELAN

[14], Maude [3], and theorem provers such as RRL [13], where a function defini-
tion is given as a terminating rewrite system on data structures generated using
constructors. We will follow that approach in this paper as well, i.e., we assume
that a functional program is represented in the form of a term rewrite system.
While automated termination methods (a collection of recent papers on termi-
nation is [7]) work well for establishing termination of rewrite systems defined on
data structures generated using free constructors (such as natural numbers, lists,
trees, etc.), they do not extend well to cases where the constructors of the data
structures are related. For example, the data structure of finite sets has set union
“∪” as a constructor which is not only associative (A) and commutative (C), but
also idempotent (x∪x ≈ x) and has the other constructor, the empty set “∅”, as
an identity (x∪∅ ≈ x). Methods for showing termination of AC-rewrite systems

2 Stephan Falke and Deepak Kapur

based on recursive path orderings and dependency pairs have been developed
[12, 19, 15, 17]. In [6], the dependency pair method was generalized to equational
rewriting with the restriction that equations need to be non-collapsing and have
identical unique variables (i.e., each variable occurs exactly once on each side).
So termination of rewrite systems defined on a data structure such as finite sets
cannot be established using any of these previous approaches.

In this paper, we extend the dependency pair method in order to establish
termination of equational rewrite systems in which equations may be collaps-
ing. However, if collapsing relations are included in the equational system, then
equational rewriting does not necessarily terminate in cases where this would
intuitively be expected. The key idea to handle this problem is to partition the
equational system relating the constructors of the data structures into two parts:
(i) equations which can be oriented and completed in a convergent subsystem,
and (ii) the remaining equations. Rewriting in an equational rewrite system is
then done using normalized rewriting1 à la Marché [16]. Before rewriting a term,
the constructor-terms in the redex are first normalized, and rewriting is thus
performed on normalized terms. This approach towards equational rewriting
has the major advantage that algorithms can be specified elegantly since, in the
specification, the constructor-terms can be assumed to be in normalized form.

Example 1. As an example, we consider the data structure of integers that are
built using the constructors 0, s (successor), and p (predecessor). We have the
relations E = {p(s(u)) ≈ s(p(u)), p(s(u)) ≈ u} between these constructors.
Defining a simple predicate pos, which checks whether an integer is strictly
positive, is highly nontrivial with ordinary equational rewriting. Using the ap-
proach of normalized rewriting, we can split E into E1 = {p(s(u)) ≈ s(p(u))}
and E2 = {p(s(u)) ≈ u}, where E2 can be oriented into S = {p(s(u)) → u},
which is convergent modulo E1. Using normalized rewriting, it is now straight-
forward to define pos by the rewrite rules R = {pos(0) → false, pos(s(x)) →
true, pos(p(x))→ false}. The predicate pos indeed correctly determines whether
its argument is strictly positive for constructor ground terms since normaliz-
ing produces a term of the form 0, si(0), or pi(0) for some i > 0. In contrast,
evaluation with ordinary equational rewriting using R and E does not yield
the desired result since, for example, pos(s(p(p(0)))) can be rewritten to true,
although s(p(p(0))) represents the negative integer −1. ♦

The results in this paper rely on the property that no equations involving
defined symbols (i.e., outermost symbols of left sides of rules in the rewrite
system) are allowed. Firstly, this allows us to permit collapsing equations as
well, which are not permitted in [6]. Note that orientable equations need not be
treated as rewrite rules. Instead, our method provides a uniform framework for
termination analysis in both cases. Secondly, even though we allow collapsing
equations, the proposed approach is conceptually simpler than the one of [6] since
we do not need to consider instantiations of rewrite rules. These instantiations

1 Strictly speaking this should be called normalized equational rewriting. We are fol-
lowing Marché’s convention of calling it normalized rewriting.

Dependency Pairs for Rewriting with Non-Free Constructors 3

are needed for correctness of the method in [6] and can cause problems since
they may generate a huge number of rules. Thirdly, using normalized rewriting
also enables us to consider equations that do not have identical unique variables,
which is another severe restriction of the method in [6]. We allow equations that
do not have identical unique variables as long as they can be oriented into rewrite
rules. All of these features significantly increase the scope of applicability of the
dependency pair approach. The proposed method for showing termination of
normalized rewriting has not been implemented yet, but we believe that it can
be easily incorporated into a termination tool implementing the dependency pair
framework such as AProVE [8].

The paper is organized as follows. In Section 2, we review equational rewriting
and, in particular, the distinction between rewriting modulo E and E-extended
rewriting. Normalized rewriting is then discussed in Section 3. It is argued that
algorithms can be specified elegantly and in a natural way using S-normalized
E-extended rewriting, in which constructor-terms in the redex are first normal-
ized using S modulo E , where S is a convergent system capturing (some of the)
relations on constructors. In Section 4, the dependency pair method is extended
to normalized rewriting. It is shown that if there are no infinite chains of de-
pendency pairs, then S-normalized E-extended rewriting is terminating. A first
method for automatically showing that there are no such chains is presented.
It uses so-called reduction pairs, which are widely used in the dependency pair
approach. Reduction pairs have the advantage that they do not need to be mono-
tonic. In Section 5, we extend the recently formulated dependency pair frame-
work to the context of normalized rewriting. This allows flexibility in establishing
the termination of complex rewrite systems including the sequent calculus, CCS,
etc. In Section 6, dependency pair (DP) processors are discussed. A DP processor
transforms a DP problem into a finite set of simpler DP problems in such a way
that termination of the simpler DP problems implies termination of the origi-
nal DP problem. The DP processors presented make use of dependency graphs,
reduction pairs, removal

The method has been used on interesting and nontrivial examples, many
of which cannot be handled otherwise. Detailed discussion of these examples is
contained in Appendix A.

2 Equational Rewriting

We assume familiarity with the concepts of term rewriting [2] and fix some
notation in the following. For a finite signatureF and an infinite set V of variables
the set of terms over F and V is denoted by T (F ,V). We often write s∗ to denote
a tuple of terms s1, . . . , sn for some n ≥ 0. The set of function symbols occurring
in the term t is denoted by F(t). Similarly, V(t) denotes the variables occurring
in t. This naturally extends to sets of terms, pairs of terms, and sets of pairs of
terms. The outermost function symbol of a term t is denoted by root(t).

An equational system (ES) is a finite set E = {u1 ≈ v1, . . . , um ≈ vm} of
equations, and a term rewrite system (TRS) is a finite set of oriented equations

4 Stephan Falke and Deepak Kapur

(called rules) R = {l1 → r1, . . . , ln → rn}, where li 6∈ V and V(ri) ⊆ V(li) for all
1 ≤ i ≤ n. The defined symbols of a TRS R are the symbols occurring as root(l)
for some rule l → r in R. The set of defined symbols of R is denoted by D(R).
The remaining symbols of F(R) are constructors.

For an ES E (resp. TRS R), we write s →E t (resp. s →R t) iff there exist
an equation l ≈ r in E (resp. rule l→ r in R), a substitution σ, and a position p

in s such that s|p = lσ and t = s[rσ]p. The symmetric closure of →E is denoted
by ⊢⊣E , and the reflexive-transitive closure of ⊢⊣E is denoted by ∼E .

Definition 2 (Rewriting Modulo E). Let R be a TRS and let E be an ES.
The term s rewrites modulo E to the term t, written s→R/E t, iff s′ →R t′ for
some terms s′ ∼E s and t′ ∼E t.

Thus, in order to determine whether a term s is reducible w.r.t. →R/E , a
term that is equivalent to s up to ∼E and reducible by →R has to be found.
If the E-equivalence classes are impractically large or even infinite this is not
feasible. To avoid this problem, virtually all implementations (e.g., ELAN [14]
and Maude [3]) use E-extended rewriting, which builds the equivalence up to ∼E

into the matching process.

Definition 3 (E-Extended Rewriting). Let R be a TRS and let E be an ES.
The term s rewrites E-extended to the term t, written s →E\R t, iff s|p ∼E lσ

and t = s[rσ]p for some rule l → r in R, some substitution σ, and some position
p in s.

An equation u ≈ v is collapsing iff u ∈ V or v ∈ V , and an ES is said to be
collapsing iff it contains a collapsing equation.

Definition 4 (Identical Unique Variables). Let E be an ES. Then E has
identical unique variables (E is i.u.v.) iff u, v are linear and V(u) = V(v) for all
equations u ≈ v in E.

In this paper we restrict ourselves to i.u.v. ESs. Note, however, that we do
allow collapsing equations, in contrast to [6]. Two important cases of i.u.v. ESs
are the following, which state that a binary function symbol f is associative and
commutative, possibly with a unit 0.

ACf = {f(u, f(v, w)) ≈ f(f(u, v), w), f(u, v) ≈ f(v, u)}
ACUf,0 = ACf ∪ {f(u, 0) ≈ u}

Note that equations like f(u, u) ≈ u, f(u, 0) ≈ 0 and f(u, u) ≈ 0 are not allowed
since they are nonlinear and/or not variable-preserving.

The reason for the restriction to i.u.v. ESs is the following lemma, which
does not hold true if E is not i.u.v. Intuitively, it states that subterms t with
root(t) 6∈ F(E) persist in terms that are equivalent up to ∼E .

Lemma 5. Let E be an i.u.v. ES and let C[f(s∗)] ∼E t for some context C,
some term f(s∗) with f 6∈ F(E), and some term t. Then t = C′[f(s′∗)] for some
context C′ ∼E C and some term f(s′∗) such that s∗ ∼E s′∗.

Dependency Pairs for Rewriting with Non-Free Constructors 5

Proof. Let C[f(s∗)] ∼E t, i.e., there exist terms t0, . . . , tn with n ≥ 0 such that
C[f(s∗)] = t0 ⊢⊣E t1 ⊢⊣E . . . ⊢⊣E tn = t. The claim is proved by induction on n.
If n = 0 then C[f(s∗)] = t and the claim is obvious.

If n > 0, the inductive hypothesis implies tn−1 = C′′[f(s′′∗)] with C′′ ∼E C

and s′′∗ ∼E s∗. Since tn−1 ⊢⊣E tn, there exists an equation u ≈ v or v ≈ u

in E such that tn−1|p = uσ and tn = tn−1[vσ]p for some position p and some
substitution σ. Let q be the position with tn−1|q = f(s′′∗), i.e., C′′|q = �. We
perform a case analysis on the relationship between the positions p and q.

Case 1: p ⊥ q. Then, tn = tn−1[vσ]p = (C′′[f(s′′∗)])[vσ]p = (C′′[vσ]p)[f(s′′∗)]
with C′′[vσ]p ∼E C′′[uσ]p = C′′.

Case 2: p = qq′ for some position q′ 6= ε. In this case, tn = tn−1[vσ]p =
(C′′[f(s′′∗)])[vσ]qq′ = C′′[f(s′′∗)[vσ]q′]. Since q′ 6= ε, we can write q′ = iq′′ for
some i and some position q′′. Then s′j = s′′j if i 6= j and s′i = s′′i [vσ]q′′ ∼E

s′′i [uσ]q′′ = s′′, i.e., s′∗ ∼E s′′∗.

Case 3: q = pp′ for some position p′ (possibly p′ = ε). Since f 6∈ F(E), we can
write p′ = p′1p

′
2 such that u|p′

1
is a variable x and xσ|p′

2
= f(s′′∗). Since the

equation u ≈ v (or v ≈ u) is i.u.v., there exists an unique position p′′1 in v such
that v|p′′

1
= x. This implies vσ|p′′

1
p′

2
= xσ|p′

2
= f(s′′∗). Define the substitution

σ′ by yσ′ = yσ for y 6= x and xσ′ = xσ[�]p′

2
. Let C′ = (tn−1[vσ]p)[�]pp′′

1
p′

2
=

tn−1[vσ[�]p′′

1
p′

2
]p = tn−1[vσ′]p ∼E tn−1[uσ′]p = C′′. Thus, tn = tn−1[vσ]p =

C′[f(s′′∗)] and the claim follows. ⊓⊔

3 S-Normalized Rewriting

In this paper we are concerned with proving termination of rewriting with a
TRS R and an i.u.v. ES E , where F(E) does not contain any defined symbols
from R. Thus, E is an ES of constructors which specifies some properties of data
structures that the functions defined by R operate on. The first problem that
is encountered is that E-extended rewriting does not terminate in many cases
where E is an i.u.v. ES of constructors that is collapsing.

Example 6. Let E = ACU+,0 and R = {(x + y) · z → x · z + y · z}. Then →E\R

is not terminating since

0 · z ∼E (0 + 0) · z →R 0 · z + 0 · z
∼E (0 + 0) · z + 0 · z →R . . .

is an infinite →E\R reduction. ♦

To overcome problems like this, the notion of normalized rewriting was intro-
duced by Marché in [16]. In the following we use a slight variation of this notion.
The idea is to split an ES E , which does not necessarily need to be i.u.v., into
ESs E1 and E2 such that E1 is i.u.v. and E2 contains the remaining equations.

6 Stephan Falke and Deepak Kapur

Then, E2 is completed2 into a TRS S that is convergent modulo E1. Here, the
TRS S is convergent modulo E1 iff →S/E1

is terminating and confluent mod-
ulo E1, i.e., whenever t →∗

S/E1
t1 and t →∗

S/E1
t2 for some terms t, t1, t2, then

there exist terms s1, s2 with s1 ∼E1
s2 such that t1 →∗

S/E1

s1 and t2 →∗
S/E1

s2

(thus, ←∗
S/E1

◦ →∗
S/E1

⊆ →∗
S/E1

◦ ∼E1
◦ ←∗

S/E1

)3. Note that t ∼E1
t′ implies

t↓S/E1
∼E1

t′↓S/E1
if S is convergent modulo E1, where t↓S/E1

denotes the normal

form of t w.r.t. →S/E1
. This is also written t→!

S/E1
t↓S/E1

.
In the following table we list how some commonly occurring, not necessarily

i.u.v., ESs E can be split into an i.u.v. ES E1 and a TRS S that is convergent
modulo E1.

E E1 S
ACf ACf ∅
ACUf,0 ACf {f(u, 0)→ u}
ACIf = ACf ∪ {f(u, u) ≈ u} ACf {f(u, u)→ u}
ACUIf,0 = ACIf ∪ ACUf,0 ACf {f(u, 0)→ u, f(u, u)→ u}
AC0f,0 = ACf ∪ {f(u, 0) ≈ 0} ACf {f(u, 0)→ 0}
ACNf,0 = ACf ∪ {f(u, u) ≈ 0} ACf {f(u, u)→ 0}

As mentioned in Section 2, rewriting with →E\R tends to be infeasible and
rewriting with →R/E should be used instead. Now →R/E is clearly contained
in →E\R, but the converse is not true in general.4 For a certain class of TRSs,
however, →E\R and →R/E are essentially the same.

Definition 7 (Complete TRSs). Let R be a TRS and let E be an i.u.v. ES.
Then R is complete modulo E iff →R/E ⊆ →E\R ◦ ∼E , i.e., whenever s→R/E t,
then there exists a t′ ∼E t such that s→E\R t′.

In the following we assume that S is complete modulo E . For S to satisfy
Definition 7, an extension using ExtE(S) might be needed, see [18, 6]. In case
E =

⋃

f∈G ACf for some set G of binary functions the extension can be achieved
by adding rules f(l, z) → f(r, z) for all rules l → r ∈ S with root(l) = f ∈ G,
where z is a fresh variable. If the rule l → r AC-matches the extended rule
f(l, z) → f(r, z), then the extended rule does not need to be added, see [4,
Lemma 6.3]. For example, the extension of f(u, u) → u for an AC-symbol f is
f(f(u, u), v)→ f(u, v) for a fresh variable v. Similarly, the extension of f(u, 0)→
u is f(f(u, 0), v) → f(u, v) for a fresh variable v, but this extension does not
need to be added since the rule f(u, 0)→ u AC-matches it.

Complete TRSs enjoy the following important property.

Lemma 8. Let R be a TRS an let E be an i.u.v. ES such that R is complete
modulo E. If s →E\R t and s′ ∼E s, then there exists a t′ ∼E t such that
s′ →E\R t′.

2 In general, this requires E1-unification.
3 Here, ◦ denotes composition of relations, i.e., t ⊲⊳1 ◦ ⊲⊳2 q iff t ⊲⊳1 s ⊲⊳2 q for some s.
4 Consider E = {f(a) ≈ f(b)} and R = {a → c}. Then f(b) →R/E f(c), but f(b) is not

reducible by →E\R.

Dependency Pairs for Rewriting with Non-Free Constructors 7

Proof. Let s→E\R t. Then s→R/E t as well, and since s′ ∼E s we get s′ →R/E t.
Since R is complete modulo E we obtain s′ →E\R t′ for some t′ ∼E t. ⊓⊔

Since we are only interested in rewriting with non-free constructors, neither
S nor E contains any defined symbols from R. We thus have the following case.

Definition 9 (Equational Systems). An equational system (R,S, E) consists
of two TRSs R and S and an i.u.v. ES E such that S is complete and convergent
modulo E and F(E) ∩ D(R) = F(S) ∩ D(R) = ∅.

Now S-normalized E-extended rewriting is done with an equational system
(R,S, E), and intuitively the arguments to a defined function f need to be nor-
malized with →S/E before an f -rule from R may be applied.

Definition 10 (S-Normalized E-Extended Rewriting). Let (R,S, E) be an
equational system. The term t rewrites S-normalized E-extended to the term q,

written t
S
→E\R q, iff t|p↓E\S ∼E lσ and q = t[rσ]p for some rule l → r in R,

some position p with root(t|p) = root(l) in t, and some substitution σ.

Our notion of S-normalized rewriting differs from [16] in that we only nor-
malize the redex w.r.t.→E\S before the rule from R is applied, while in [16] the
whole term needs to be normalized w.r.t. →E\S .

Example 11. Continuing Example 6, we can split E into E1 = AC+ and E2 =
{u + 0 ≈ u}. Then E2 can be completed into the TRS S = {u + 0 → u}, which
is convergent modulo E1 and does not need to be extended. Thus, (R,S, E1) is
an equational system and the infinite reduction from Example 6 is not possible

anymore if
S
→E1\R is used since 0 · z is in normal form w.r.t. →E1\S and no rule

of R applies. Also, the infinite reduction starting with (0 + 0) · z is not possible
anymore since (0 + 0) · z would need to be normalized w.r.t. →E1\S first, which
again gives 0 · z. ♦

Apart from resulting in a terminating rewrite process in cases where →E\R

is not terminating, S-normalized rewriting also has the advantage of giving rise
to “natural” function definitions since we can assume that the arguments to a
function are in normal form w.r.t. →E\S before the function is evaluated. This
would not be true if →E\R∪S is used instead, as already shown in Example 1.

Example 12. Let us consider sets that are built using the empty set ∅, singleton
sets 〈·〉, and set union ∪. Then E = ACUI∪,∅ specifies the expected properties of
sets. This can be split into E1 = AC∪ and S = {u∪∅ → u, u∪u→ u, (u∪u)∪v →
u ∪ v}, where S is convergent modulo E1 and the third rule is the extension
of the second rule. Now we consider sets of natural numbers, and we want to

sum up the elements of a set. Using
S
→E1\R, this can easily be done by letting

R = {sum(∅) → 0, sum(〈m〉) → m, sum(x ∪ y) → sum(x) + sum(y), x + 0 →
x, x + s(y)→ s(x + y)}. Notice that →E1\R∪S does not compute the sum of the

8 Stephan Falke and Deepak Kapur

elements in a set since multiple occurrences of the same member can be summed
up more than once. For example,

sum(〈s(0)〉 ∪ 〈s(0)〉)→E1\R∪S sum(〈0〉) + sum(〈s(0)〉)

→E1\R∪S s(0) + sum(〈s(0)〉)

→E1\R∪S s(0) + s(0)

→∗
E1\R∪S s(s(0))

which is not what we intuitively expect. In contrast, evaluation with
S
→E1\R

produces the correct result since the argument to sum does not contain duplicate
members after normalization with →E1\S . ♦

Even more severely, →E\R∪S might not terminate while
S
→E\R does termi-

nate.

Example 13. We again consider integers with E1 and S as in Example 1. Now
we define a function for determining whether an integer is non-negative by
R = {nonneg(0) → true, nonneg(s(x)) → nonneg(p(s(x)), nonneg(p(x)) → false}.
Then →E1\R∪S does not terminate since

nonneg(s(p(0)))→E1\R∪S nonneg(p(s(p(0))))

→E1\R∪S nonneg(p(s(p(p(0)))))

→E1\R∪S . . .

is an infinite→E1\R∪S-reduction. In contrast,
S
→E1\R is terminating since p(s(x))

in the recursive call of nonneg is normalized to x before the nonneg-rule can be
applied again. ♦

We next show two important properties of normalized rewriting with equa-

tional systems. Firstly,
S
→E\R does not distinguish between terms that are equiv-

alent up to ∼E , in the following sense.

Lemma 14. Let (R,S, E) be an equational system. If s
S
→E\R t and s′ ∼E s,

then s′
S
→E\R t′ for some t′ ∼E t.

Proof. Let (R,S, E) be an equational system and assume s
S
→E\R t. Thus, s =

C[f(u∗)] for some context C with f(u∗) ↓E\S ∼E lσ for some rule l → r in
R with root(l) = f , and t = C[rσ]. Since f 6∈ F(E) and s ∼E s′, Lemma
5 implies s′ = C′[f(u′∗)] for some context C′ with C′ ∼E C and u∗ ∼E u′∗.
Since →E\S is convergent modulo E we get f(u′∗)↓E\S ∼E f(u∗)↓E\S . Thus,

s′ = C′[f(u′∗)]
S
→E\R C′[rσ] ∼E C[rσ] = t. ⊓⊔

As a consequence we obtain that terms that are equivalent up to ∼E have

the same behavior w.r.t. starting infinite
S
→E\R-reductions.

Dependency Pairs for Rewriting with Non-Free Constructors 9

Corollary 15. Let (R,S, E) be an equational system and let s ∼E s′. Then s

starts an infinite
S
→E\R-reduction iff s′ starts an infinite

S
→E\R-reduction.

Proof. Assume s starts an infinite
S
→E\R-reduction

s
S
→E\R s1

S
→E\R s2

S
→E\R s3

S
→E\R . . .

Using Lemma 14 we get

s′
S
→E\R s′1

S
→E\R s′2

S
→E\R s′3

S
→E\R . . .

where si ∼E s′i, i.e., s′ starts an infinite
S
→E\R-reduction as well. The inverse

direction is shown the same way. ⊓⊔

4 Dependency Pairs

In this section we present a termination criterion for normalized rewriting with
equational systems that is based on dependency pairs. As usual in any approach
based on dependency pairs (see, e.g., [1, 6]), we extend F by a fresh tuple symbol
f ♯ for each defined symbol f ∈ D(R), where f ♯ has the same arity as f . For any
term t = f(t∗), we denote the term f ♯(t∗) by t♯. The notion of a dependency pair
is the standard one from [1]. Note that we do not need to add instantiations of
rules, which is needed in [6]. This is due to our restriction to equations between
constructors only.

Definition 16 (Dependency Pairs). The set of dependency pairs for a TRS
R is DP(R) = {l♯ → t♯ | l → r ∈ R, t is a subterm of r with root(t) ∈ D(R)}.

In order to verify termination we rely on the notion of chains. Intuitively, a
dependency pair corresponds to a recursive call, and a chain represents a possible
sequence of calls in a reduction. In the following we always assume that different
(dependency) pairs are variable disjoint, and we consider substitutions whose
domain may be infinite.

Definition 17 ((P ,R,S, E)-Chains). Let P be a set of pairs and let (R,S, E)
be an equational system. A (possibly infinite) sequence of pairs s1 → t1, s2 →
t2, . . . from P is a (P ,R,S, E)-chain iff there exists a substitution σ such that

tiσ
S
→E\R→∗ ◦ →!

E\S ◦ ∼E si+1σ for all i and s1σ is in normal form w.r.t. →E\S .

Example 18. We consider the following equational system (R,S, E):

R : p(0)→ 0 S : u + 0→ u

p(s(x))→ x u + s(v)→ s(u + v)
x− 0→ x (u + s(v)) + w → s(u + v) + w

x− s(y)→ p(x− y) E : u + (v + w) ≈ (u + v) + w

u + v ≈ v + u

10 Stephan Falke and Deepak Kapur

Here, S and E were obtained from the ES {u+0 ≈ u, u+ s(v) ≈ s(u+v)}∪AC+,
which specifies properties of the natural numbers in Peano representation. The
third rule in S is the extension of the second rule. Then DP(R) contains the
dependency pairs

x−♯ s(y)→ x−♯ y,

x−♯ s(y)→ p♯(x− y).

Using the first dependency pair twice, we can construct the chain

x1 −
♯ s(y1)→ x1 −

♯ y1, x2 −
♯ s(y2)→ x2 −

♯ y2

by considering the substitution σ with x1σ = 0, x2σ = 0, y1σ = s(0), y2σ = 0. For
this substitution, the instantiated right side of the first pair is 0−♯ s(0), the same
as the instantiated left side of the second pair. Furthermore, both instantiated
left sides, 0−♯ s(s(0)) and 0−♯ s(0), are in normal form w.r.t. →E\S . ♦

In the definition of a (P ,R,S, E)-chain we only require s1σ to be in normal
form w.r.t. →E\S , while we do not require this for siσ for i > 1 since this is
already true by the other requirements on a (P ,R,S, E)-chain.

Lemma 19. Let s
S
→E\R→∗ ◦ →!

E\S ◦ ∼E t. Then t is in normal form w.r.t.→E\S.

Proof. Let s
S
→E\R→∗ ◦ →!

E\S ◦ ∼E t. Thus, s
S
→E\R→∗ ◦ →!

E\S t′ ∼E t for some t′,

where t′ is in normal form w.r.t. →E\S . Assume that t is not in normal form
w.r.t. →E\S . Then, t→E\S w for some term w. By Lemma 8 we get t′ →E\S w′

for some w′ ∼E w, i.e., t′ is not in normal form w.r.t. →E\S , either. ⊓⊔

Using chains, we obtain the following termination criterion, which is the key
result of the dependency pair approach.

Theorem 20. Let (R,S, E) be an equational system. If there are no infinite

(DP(R),R,S, E)-chains, then
S
→E\R is terminating.

Proof. Assume there exists a term t which starts an infinite
S
→E\R-reduction.

By a minimality argument, t contains a subterm f1(u
∗
1) which starts an infinite

S
→E\R-reduction, but none of the terms in u∗

1 starts an infinite
S
→E\R-reduction.

Consider an infinite reduction starting with f1(u
∗
1). First, the arguments u∗

1

are reduced in zero or more steps to terms v∗1 , and then a rewrite rule is applied
to f1(v

∗
1) at the root, i.e., there exists a rule l1 → r1 in R and a substitution

σ1 such that f1(v
∗
1) →!

E\S f1(v
∗
1) ∼E l1σ1, and hence the reduction yields r1σ1.

Now the infinite
S
→E\R-reduction continues with r1σ1, i.e., the term r1σ1 starts

an infinite
S
→E\R-reduction, too. So up to now, the reduction of f1(u

∗
1) has the

following form:

f1(u
∗
1)

S
→E\R→∗ f1(v

∗
1)→!

E\S f1(v
∗
1) ∼E l1σ1 →R r1σ1

Dependency Pairs for Rewriting with Non-Free Constructors 11

By the definition of
S
→E\R we obtain l1 = f1(w

∗
1) and v∗

1 ∼E w∗
1σ1. Us-

ing Corollary 15, this means that the terms w∗
1σ1 do not start infinite

S
→E\R-

reductions since the terms v∗1 do not.
Hence, for all variables x occurring in f1(w

∗
1), the terms xσ1 do not start

infinite
S
→E\R-reductions. Thus, since r1σ1 starts an infinite

S
→E\R-reduction,

there exists a subterm f2(u
∗
2) in r1 such that f2(u

∗
2)σ1 starts an infinite

S
→E\R-

reduction, whereas the terms in u∗
2σ1 do not start infinite

S
→E\R-reductions.

The first dependency pair in the infinite (DP(R),R,S, E)-chain that we are

going to construct is f
♯
1(w

∗
1) → f

♯
2(u

∗
2), obtained from the rewrite rule l1 → r1.

The other dependency pairs of the infinite (DP(R),R,S, E)-chain are deter-

mined in the same way: let f
♯
i−1(w

∗
i−1) → f

♯
i (u

∗
i) be a dependency pair such

that f
♯
i (u∗

i)σi−1 starts an infinite
S
→E\R-reduction and the terms u∗

i σi−1 do not.
Again, in zero or more steps fi(u

∗
i)σi−1 reduces to fi(v

∗
i) to which a rewrite rule

fi(w
∗
i) → ri is applied and riσi starts an infinite

S
→E\R-reduction for a substi-

tutions σi with v∗i ∼E w∗
i σi. As above, ri contains a subterm fi+1(u

∗
i+1) such

that fi+1(u
∗
i+1)σi starts an infinite

S
→E\R-reduction, whereas the terms u∗

i+1σi

do not. This produces the ith dependency pair f
♯
i (w∗

i)→ f
♯
i+1(u

∗
i+1). In this way,

we obtain the infinite sequence

f
♯
1(w

∗
1)→ f

♯
2(u

∗
2), f

♯
2(w

∗
2)→ f

♯
3(u

∗
3), f

♯
3(w

∗
3)→ f

♯
4(u

∗
4), . . .

It remains to be shown that this sequence is indeed a (DP(R),R,S, E)-chain.

For this, note that f
♯
i (u

∗
i)σi−1

S
→E\R→∗ f

♯
i (v

∗
i)→!

E\S f
♯
i (v∗i) ∼E f

♯
i (w∗

i)σi for all
i > 1. Since we assume that the variables of different occurrences of dependency
pairs are disjoint, we obtain one substitution σ = σ1 ∪ σ2 ∪ σ3 ∪ . . . such that

f
♯
i (u∗

i)σ
S
→E\R→∗ ◦ →!

E\S ◦ ∼E f
♯
i (w∗

i)σ for all i > 1. ⊓⊔

This theorem gives rise to a first termination criterion, which relies on reduc-
tion pairs.

Definition 21 (Reduction Pairs). Let & be reflexive, transitive, monotonic,
and stable5. Let ≻ be well-founded and stable. Then (&,≻) is a reduction pair
iff ≻ is compatible with &, i.e., iff & ◦ ≻ ⊆ ≻ and ≻ ◦ & ⊆ ≻. We denote the
equivalence part & ∩ &−1 by ∼.

Note that ≻ does not need to be monotonic in a reduction pair. This is
the main advantage of the dependency pair approach which enables proving
termination of many rewrite systems where simplification orders fail. In order
to generate reduction pairs automatically, classical (monotonic) simplification
orders are often used. To benefit from the possibility that ≻ does not need to
be monotonic, argument filterings (which allow the deletion of certain function

5 A relation ⊲⊳ on terms is monotonic iff s ⊲⊳ t implies C[s] ⊲⊳ C[t] for all contexts C.
It is stable iff s ⊲⊳ t implies sσ ⊲⊳ tσ for all substitutions σ.

12 Stephan Falke and Deepak Kapur

symbols and arguments) are commonly used in combination with monotonic
orders (see [1]).

In the following, let P⊲⊳ = {(s, t) ∈ P | s ⊲⊳ t} for any set P of pairs of
terms and any relation ⊲⊳. Thus, for example, R& = R means that l & r for all
l → r ∈ R.

Theorem 22. Let (R,S, E) be an equational system. Then
S
→E\R is terminating

if there exists a reduction pair (&,≻) such that

• DP(R)≻ = DP(R),
• R& = R,
• S& = S, and
• E∼ = E.

Proof. Assume there exists an infinite (DP(R),R,S, E)-chain s1 → t1, s2 →

t2, Thus, there exists a substitution σ such that tiσ
S
→E\R→∗ ◦ →!

E\S ◦ ∼E

si+1σ for all i. Hence, there are terms t′i and t′′i such that tiσ
S
→E\R→∗ t′i →

!
E\S

t′′i ∼E si+1σ. We show that tiσ & si+1σ.

First, note that w
S
→E\R w′′ implies w & w′′. If w

S
→E\R w′′, then w →∗

E\S

w′ →E\R w′′ for some term w′. Since S ⊆ & and E ⊆ ∼, we get w & w′ because
& is transitive. Similarly, w′ & w′′ since R ⊆ & as well. Thus, w & w′′.

This implies tiσ & t′i. Also, t′i →
!
E\S t′′i implies t′i & t′′i using the same

argument. Finally, t′′i ∼ si+1σ since t′′i ∼E si+1σ and E ⊆ ∼.
In total, then, tiσ & si+1σ for all i. Since DP(R) ⊆ ≻ we obtain siσ ≻ tiσ

for all i. Hence, the infinite chain gives rise to

s1σ ≻ t1σ & s2σ ≻ t2σ & . . .

Using the compatibility of ≻ with &, this contradicts the well-foundedness of ≻.

Thus, there are no infinite chains and
S
→E\R is terminating by Theorem 20. ⊓⊔

Example 23. We now apply Theorem 22 in order to show that
S
→E\R is termi-

nating, where (R,S, E) is the equational system from Example 18. Thus, we
need to find a reduction pair (&,≻) such that

x−♯ s(y) ≻ x−♯ y u + 0 & u

x−♯ s(y) ≻ p♯(x− y) u + s(v) & s(u + v)
x− 0 & x (u + s(v)) + w & s(u + v) + w

x− s(y) & p(x− y) u + (v + w) ∼ (u + v) + w

p(0) & 0 u + v ∼ v + u

p(s(x)) & x

Using the reduction pair based on the polynomial order induced by Pol(0) =
0,Pol(s(x)) = x + 1,Pol(x + y) = x + y,Pol(p(x)) = x,Pol (p♯(x)) = x,Pol(x −
y) = x + y, and Pol(x −♯ y) = x + y, these constraints are satisfied. ♦

Dependency Pairs for Rewriting with Non-Free Constructors 13

5 Dependency Pair Framework

Theorem 20 provides a first method for proving termination, but this method
is inflexible. For regular rewriting, a huge number of techniques has been devel-
oped atop the basic dependency pair approach (see, e.g., [9, 11, 10]). In order to
show soundness of these techniques independently, and in order to be able to
freely combine them in a flexible manner in implementations like AProVE [8],
the notions of DP problems and DP processors were introduced in the context of
regular rewriting in [9], giving rise to the DP framework. In [20] the DP frame-
work was extended to equational rewriting under the restrictions of [6]. Here, we
extend these notions to normalized rewriting.

Definition 24 (DP Problems). A DP problem is a tuple (P ,R,S, E , γ) where
P is a set of pairs such that either

1. γ = n and (R,S, E) is an equational system, or
2. γ = e, S = ∅, E is an i.u.v. ES that is not collapsing, and R is a TRS that

is complete modulo E.

While DP problems with γ = n are used with
S
→E\R, DP problems with

γ = e are used with →E\R. In order to have a uniform notation we introduce
the following definition.

Definition 25 (→(P,R,S,E,γ)). Let (P ,R,S, E , γ) be a DP problem. The relation

→(P,R,S,E,γ) is defined to be
S
→E\R if γ = n and →E\R if γ = e.

Since we deal with two different kinds of DP problems we accordingly have
to modify the definition of a chain.

Definition 26 ((P ,R,S, E , γ)-chain). Let (P ,R,S, E , γ) be a DP problem. A
sequence of pairs s1 → t1, s2 → t2, . . . from P is a (P ,R,S, E , γ)-chain iff either

1. γ = n and s1 → t1, s2 → t2, . . . is a (P ,R,S, E)-chain, or
2. γ = e and there exists a substitution σ such that tiσ →∗

E\R ◦ ∼E si+1σ for
all i.

DP problems are now classified by whether they allow infinite chains.

Definition 27 (Finite DP Problems). A DP problem (P ,R,S, E , γ) is finite
iff there do not exist infinite (P ,R,S, E , γ)-chains. Otherwise, the DP problem
is infinite.6

According to Theorem 20 we are interested in showing that the DP problem
(DP(R),R,S, E ,n) is finite for an equational system (R,S, E). In order to show
the finiteness of a DP problem, it is transformed into a set of DP problems
whose finiteness has to be shown instead. This transformation is done by DP
processors.

6 Note that this definition of (in)finite DP problems is simpler than the one used in
[9]. This simpler notion is sufficient for our purposes.

14 Stephan Falke and Deepak Kapur

Definition 28 (DP Processors). A DP processor is a function Proc which
takes a DP problem as input and returns a set of DP problems as output. Proc
is sound iff for all DP problems (P ,R,S, E , γ) the finiteness of all DP problems
in Proc(P ,R,S, E , γ) implies the finiteness of (P ,R,S, E , γ).

Note that Proc(P ,R,S, E , γ) = {(P ,R,S, E , γ)} is possible. This can be
interpreted as a failure of Proc on its input and indicates that a different DP
processor should be applied. The following is immediate from Definition 27,
Definition 28, and Theorem 20.

Corollary 29. Let (R,S, E) be an equational system. We construct a tree whose
nodes are labelled with DP problems or “yes” and whose root is labelled with
(DP(R),R,S, E ,n). For every inner node labelled with the DP problem d, there
is a sound DP processor Proc satisfying one of the following conditions:

• Proc(d) = ∅ and the node has just one child, labelled with “yes”

• Proc(d) 6= ∅ and the children of the node are labelled with the DP problems
in Proc(d).

If all leaves of the tree are labelled with “yes”, then
S
→E\R is terminating.

6 DP Processors

In this section we introduce a variety of DP processors and prove their soundness.
Most DP processors are inspired by similar DP processors in the context of
regular rewriting (see [9, 10]).

6.1 A Trivial DP Processor

The first DP processor determines the finiteness of a trivial DP problem that
does not contain any pairs.7

Lemma 30 (Trivial DP Processor). Let Proc be a DP processor such that
Proc(P ,R,S, E , γ) = ∅ if P = ∅ and Proc(P ,R,S, E , γ) = {(P ,R,S, E , γ)} if
P 6= ∅. Then Proc is sound.

Proof. If P = ∅, then (P ,R,S, E , γ) is clearly finite. In the other case soundness
is obvious as well. ⊓⊔

7 This DP processor is actually not needed since the DP processor from Theorem 37
in Section 6.3 serves the same purpose.

Dependency Pairs for Rewriting with Non-Free Constructors 15

6.2 A DP Processor for Switching to Equational Rewriting

It is immediate from the definitions that
S
→E\R is contained in →E\R∪S . The

following DP processor thus transforms the DP problem (P ,R,S, E ,n) into the
DP problem (P ,R∪ S, ∅, E , e). It is of particular interest if there are sound DP
processors that are only applicable (or more powerful) if S = ∅. An example of
such a DP processor is given in Section 6.6. The disadvantage of using this DP
processor is that the information that certain terms are in normal form w.r.t.
→E\S is lost, which might be useful information for a DP processor. For example,
the DP processor in Section 6.3 makes use of this.

Theorem 31 (DP Processor for Switching to Equational Rewriting).
Let Proc be a DP processor such that Proc(P ,R,S, E ,n) = {(P ,R∪S, ∅, E , e)} if
E is not collapsing and Proc(P ,R,S, E , γ) = {(P ,R,S, E , γ)} in all other cases.
Then Proc is sound.

Proof. Let (P ,R,S, E ,n) be a DP problem where E is not collapsing and assume
there exists an infinite (P ,R,S, E ,n)-chain s1 → t1, s2 → t2 Thus, there

exists a substitution σ such that tiσ
S
→E\R→∗ ◦ →!

E\S ◦ ∼E si+1σ for all i ≥ 1.
Hence tiσ →∗

E\R∪S ◦ ∼E si+1σ as well and s1 → t1, s2 → t2, . . . is also an infinite

(P ,R∪ S, ∅, E , e)-chain. It still remains to be shown that (P ,R∪ S, ∅, E , e) is a
DP problem, i.e., that R∪S is complete modulo E . First note that S is complete
modulo E by assumption.R is complete modulo E by [6, Definition 8 and Lemma
10] since F(E) ∩ D(R) = ∅. Thus, R∪ S is complete modulo E .

In all other cases soundness is obvious. ⊓⊔

Since the rule from S are put into R, function symbols that used to be
constructors might effectively become defined symbols. We hence modify the
definition of defined symbols.

Definition 32 (Defined Symbols). Let (P ,R,S, E , γ) be a DP problem. The
defined symbols of (P ,R,S, E , γ) are defined by

D(P ,R,S, E , γ) =

{

D(R) if γ = n

D(R, E) if γ = e

where D(R, E) is the smallest set such that D(R, E) = {root(l) | l → r ∈ R} ∪
{root(v) | u ≈ v ∈ E or v ≈ u ∈ E , root(u) ∈ D(R, E)}.

Here, D(R, E) was already used in [6, Definition 12] and requires that E is
not collapsing.

6.3 A DP Processor Based on Dependency Graphs

The DP processor introduced in this section decomposes a DP problem into
several independent DP problems by determining which pairs of P may follow
each other in a (P ,R,S, E , γ)-chain. The processor relies on the dependency
graph, which is also used in regular rewriting (see [1]).

16 Stephan Falke and Deepak Kapur

Definition 33 (Dependency Graphs). Let (P ,R,S, E , γ) be a DP problem.
The nodes of the the (P ,R,S, E , γ)-dependency graph DG(P ,R,S, E , γ) are the
pairs in P and there is an arc from s1 → t1 to s2 → t2 iff s1 → t1, s2 → t2 is a
(P ,R,S, E , γ)-chain.

A set P ′ ⊆ P of pairs is a cycle iff for all pairs s1 → t1 and s2 → t2 in P ′

there exists a path from s1 → t1 to s2 → t2 that only traverses pairs from P ′. A
cycle is a strongly connected component (SCC) if it is not a proper subset of any
other cycle.8 Now, every infinite (P ,R,S, E , γ)-chain corresponds to a cycle in
DG(P ,R,S, E , γ), and it is thus sufficient to prove the absence of infinite chains
for all SCCs.

In general DG(P ,R,S, E , γ) cannot be computed exactly since it is undecid-
able whether two pairs form a chain. Thus, an estimation has to be used instead.
The idea of the estimation is that subterms of t1 with a defined root symbol are
abstracted by a fresh variable. Then, it is checked whether this term and s2 are
E ∪ S-unifiable.

Definition 34 (Estimated Dependency Graphs). Let (P ,R,S, E , γ) be a
DP problem. The estimated (P ,R,S, E , γ)-dependency graph EDG(P ,R,S, E , γ)
has the pairs in P as nodes and there is an arc from s1 → t1 to s2 → t2 iff
cap(t1) and s2 are E ∪ S-unifiable with an unifier µ such that s1µ and s2µ are
in normal form w.r.t. →E\S.

Here, cap is defined as

cap(x) = y for variables x

cap(f(t1, . . . , tn)) =

{

y if f ∈ D(P ,R,S, E , γ)

f(cap(t1), . . . ,cap(tn)) if f 6∈ D(P ,R,S, E , γ)

where y is the next variable in an infinite list y1, y2, . . . of fresh variables.

Next, we show that the estimated dependency graph is indeed an overap-
proximation of the dependency graph, i.e., every arc in DG(P ,R,S, E , γ) is also
present in EDG(P ,R,S, E , γ).

Lemma 35. Let (P ,R,S, E , γ) be a DP problem. Then EDG(P ,R,S, E , γ) is an
overapproximation of DG(P ,R,S, E , γ), i.e., if there is an arc from s1 → t1 to
s2 → t2 in DG(P ,R,S, E , γ), then there is an arc from s1 → t1 to s2 → t2 in
EDG(P ,R,S, E , γ).

Proof. Let s1 → t1, s2 → t2 be a (P ,R,S, E , γ)-chain. We need to show that
cap(t1) and s2 are E ∪ S-unifiable with an unifier µ such that s1µ and s2µ are
in normal form w.r.t. →E\S .

Since s1 → t1, s2 → t2 is a (P ,R,S, E , γ)-chain, there exists a substitution

σ such that t1σ
S
→E\R→∗ u →!

E\S ◦ ∼E s2σ if γ = n or t1σ →∗
E\R u ∼E s2σ if

8 Note that the notions of cycle and SCC are different from the ones used in graph
theory. We follow the notions used in the dependency pair literature.

Dependency Pairs for Rewriting with Non-Free Constructors 17

γ = e. Note that s1σ and s2σ are in normal form w.r.t. →E\S by Definition 17
and Lemma 19 if γ = n. For γ = e we have S = ∅ and s1σ and s2σ are clearly
in normal form w.r.t. →E\S as well.

We first prove the following property by induction on t1.

If t1σ →∗
(P,R,S,E,γ) u for some term u, then there exists a substitution τ

whose domain contains only variables that are introduced in the construction
of cap(t1) such that cap(t1)στ = u.

If root(t1) ∈ D(P ,R,S, E , γ) or t1 ∈ V , then cap(t1) is a fresh variable y. Letting
τ = {y 7→ u} establishes the claim since cap(t1)στ = yστ = yτ = u because
y is a fresh variable. Otherwise, t1 = c(t′1, . . . , t

′
n) with c 6∈ D(P ,R,S, E , γ)

and t′iσ →
∗
(P,R,S,E,γ) u′

i, where u = c(u′
1, . . . u

′
n). By the inductive hypothe-

sis there exist substitutions τi such that cap(t′i)στi = u′
i. Since the variables

newly introduced in cap(t′i) are disjoint from the variables newly introduced
in cap(t′j) for all i 6= j, we can let τ = τi ∪ . . . ∪ τn. Then cap(t1)στ =
c(cap(t′1)στ, . . . ,cap(t′n)στ) = c(u′

1, . . . u
′
n) = u.

Since u →!
E\S∼E s2σ if γ = n or u ∼E s2σ if γ = e we get u ∼E∪S s2σ.

Thus, cap(t1)στ ∼E∪S s2σ = s2στ since the variables of s2σ do not occur in the
domain of τ . Hence, cap(t1) and s2 are E ∪ S-unifiable with an unifier µ = στ

and it remains to be shown that s1µ and s2µ are in normal form w.r.t. →E\S .
But s1µ = s1στ = s1σ and s2µ = s2στ = s2σ since the variables of s1σ and s2σ

do not occur in the domain of τ . Thus, s1µ and s2µ are in normal form w.r.t.
→E\S since s1σ and s2σ are in normal form w.r.t. →E\S . ⊓⊔

Example 36. With P = {x −♯ s(y) → x −♯ y, x −♯ s(y) → p♯(x − y)} and R,S
and E as in Example 23 we obtain the following EDG(P ,R,S, E ,n).

x−♯ s(y)→ p♯(x− y)

x−♯ s(y)→ x−♯ y

♦

In this example, EDG(P ,R,S, E , γ) and DG(P ,R,S, E , γ) coincide, but in
general EDG(P ,R,S, E , γ) is a strict supergraph of DG(P ,R,S, E , γ).

Theorem 37 (DP Processor Based on Dependency Graphs). Let Proc be
a DP processor with Proc(P ,R,S, E , γ) = {(P1,R,S, E , γ), . . . , (Pn,R,S, E , γ)},
where P1, . . . ,Pn are the SCCs of (E)DG(P ,R,S, E , γ).9 Then Proc is sound.

Proof. After a finite number of pairs in the beginning, any infinite (P ,R,S, E , γ)-
chain only contains pairs from some SCC. Hence, every infinite (P ,R,S, E , γ)-
chain gives rise to an infinite (Pi,R,S, E , γ)-chain for some 1 ≤ i ≤ n. ⊓⊔

Example 38. Continuing Example 36 we have Proc(P ,R,S, E ,n) = {({x −♯

s(y)→ x−♯ y},R,S, E ,n)}. ♦

9 Note, in particular, that Proc(∅,R,S ,E , γ) = ∅.

18 Stephan Falke and Deepak Kapur

6.4 A DP Processor Based on Reduction Pairs

The DP processor presented in this section is closely related to the first termina-
tion criterion given in Theorem 22. It now, however, operates on DP problems
(P ,R,S, E , γ), and we do not require all pairs in P to be strictly decreasing.

Theorem 39 (DP Processor Based on Reduction Pairs). Let (&,≻) be a
reduction pair. Let Proc be a DP processor such that Proc(P ,R,S, E , γ) returns

• {(P − P≻,R,S, E , γ)}, if
– P≻ ∪ P& = P,
– R& = R,
– S& = S, and
– E∼ = E.

• {(P ,R,S, E , γ)}, otherwise.

Then Proc is sound.

Proof. The proof for the first case is similar to the proof of Theorem 22. Since P
is finite, any infinite (P ,R,S, E , γ)-chain has to traverse at least one pair from
P infinitely often. These pairs cannot be in P≻ since this would contradict the
well-foundedness of ≻.

In the other case soundness is obvious. ⊓⊔

Example 40. We consider the DP problem (P ,R,S, E ,n) with P = {x−♯ s(y)→
x −♯ y} from Example 38. Using the reduction pair based on the polynomial
order induced by Pol(0) = 0,Pol(s(x)) = x + 1,Pol(x + y) = x + y,Pol(p(x)) =
x,Pol(x − y) = x + y, and Pol(x −♯ y) = x + y the constraints for the first
case of Theorem 39 are satisfied and the (only) pair x −♯ s(y) → x −♯ y is
strictly decreasing. It can thus be removed and we obtain the trivial DP problem
(∅,R,S, E ,n). ♦

6.5 A DP Processor Based on Removal of Rules

In this section we present a DP processor for the modular removal of rules. For
this, a DP problem (P ,R,S, E , γ) may be processed with a monotonic reduction
pair (&,≻). Then, rules l → r ∈ R satisfying l ≻ r may be removed. For regular
rewriting a corresponding DP processor was introduced in [21].

Theorem 41 (DP Processor Based on Removal of Rules). Let (&,≻) be
a reduction pair where ≻ is monotonic. Let Proc be a DP processor such that
Proc(P ,R,S, E , γ) returns

• {(P − P≻,ExtE(R−R≻),S, E , γ)}10, if
– P≻ ∪ P& = P,
– R≻ ∪R& = R,
– S& = S, and

10 The extension of R−R≻ is of course only needed if γ = e.

Dependency Pairs for Rewriting with Non-Free Constructors 19

– E∼ = E.
• {(P ,R,S, E , γ)}, otherwise.

Then Proc is sound.

Proof. For the first case, let s1 → t1, s2 → t2, . . . be an infinite (P ,R,S, E , γ)-

chain. Thus, there exists a substitution σ such that either tiσ
S
→E\R→∗ ◦ →!

E\S
◦ ∼E si+1σ for all i and γ = n, or γ = e and tiσ →∗

E\R ◦ ∼E si+1σ for all i.
Assume for a contradiction that rules from R≻ are applied for infinitely many i.
Then, tiσ ≻ si+1σ for infinitely many i since ≻ is monotonic, which contradicts
the well-foundedness of ≻.

Thus, there exists some n ≥ 1 such that either tiσ
S
→E\R−R≻
→∗ ◦ →!

E\S ◦ ∼E

si+1σ for all i ≥ n and γ = n, or γ = e and tiσ →∗
E\R−R≻

◦ ∼E si+1σ for all

i ≥ n. Thus, sn → tn, sn+1 → tn+1, . . . is an infinite (P ,R−R≻,S, E , γ)-chain.
As in the proof of Theorem 39, pairs from P≻ can only be traversed finitely often
and there thus exists an infinite (P − P≻,R−R≻,S, E , γ)-chain.

In the other case soundness is obvious. ⊓⊔

Removing rules has several advantages. Firstly, it might be possible to remove
“problematic” rules which prevent finding a reduction pair which yields a strict
decrease in at least one pair of P . Secondly, it might happen that P contains no
cycle anymore after some rules are removed from R since some defined symbols
might become constructors.

Example 42. We take the equational system from Example 18, but replace the
second “−”-rule by

x− s(y)→ p(x− p(s(y)))

After computing the estimated dependency graph, we then obtain the DP prob-
lem (P ,R,S, E ,n) with P = {x −♯ s(y) → x −♯ p(s(y))}. In order to apply the
DP processor from Theorem 39 we need to find a reduction pair (&,≻) such that
x −♯ s(y) ≻ x −♯ p(s(y)) and p(s(x)) & x. It can be shown that there does not
exist a reduction pair based on a simplification order with an argument filtering
that satisfies these constraints, i.e., an automated proof will most likely fail.

Instead, we may apply the DP processor from Theorem 41 with the mono-
tonic polynomial order based on Pol(0) = 0,Pol(s(x)) = x + 1,Pol(p(x)) =
x,Pol(x + y) = Pol(x − y) = Pol(x −♯ y) = x + y. Then all of P ,R and S
are at least weakly decreasing, and the rule p(s(x)) → x is strictly decreasing
and can thus be removed. Next, we can apply the DP processor from Theorem
39 with the polynomial order based on Pol(0) = Pol(p(x)) = 0,Pol(s(x)) =
x + 1,Pol(x + y) = Pol(x − y) = Pol(x −♯ y) = x + y. Then, the pair in P is
strictly decreasing and all rules in R and S are at least weakly decreasing, i.e.,
we obtain the trivial DP problem (∅,R,S, E ,n). ♦

As mentioned in [21] and shown in the example, the DP processor from
Theorem 41 can be automated efficiently by using monotonic polynomial orders
induced by linear polynomials.

20 Stephan Falke and Deepak Kapur

6.6 A DP Processor Based on Narrowing

In the context of regular rewriting it is often necessary to apply transformations
to the pairs in a cycle in order to obtain a successful termination proof (see [1,
10]). In this section we introduce one such transformation within our framework.
The transformation, however, can only be applied to DP problems with f = e.

If it can be shown that for each chain containing a pair s→ t, the reduction
from the instantiation of t to the instantiation of the left side of the next pair
in the chain requires at least one →E\R-step, then we can perform all possible
→E\R-reductions in order to obtain new pairs that replace the pair s→ t. Since
we also need to determine the instantiations of t, we use the concept of narrowing.
For this, let CUE(s, t) denote a complete set of E-unifiers for the terms s and t,
i.e., for each E-unifier σ of s and t there exist a substitution µ ∈ CUE(s, t) and
some substitution ρ such that σ ∼E µρ.

Definition 43 (Narrowing). Let (P ,R,S, E , e) be a DP problem. The term t

narrows to the term t′ with the substitution µ, written t
µ
E\R t′, iff there exists

a non-variable position p in t such that µ ∈ CUE(t|p, l)11 for some rule l → r in
R and t′ = tµ[rµ]p.

Now, given the DP problem (P ,R,S, E , e), we may replace some pair s →
t ∈ P by all of its narrowings if t satisfies certain conditions. Narrowing of
dependency pairs has also been considered in [1, 4].

Theorem 44 (DP Processor Based on Narrowing). Let Proc be a DP
processor such that Proc(P ∪ {s→ t},R,S, E , γ) returns

• (P ∪ {sµ→ t′ | t µ
E\R t′},R,S, E , γ), if

– γ = e,
– t is not E-unifiable with any (variable-renamed) left side of a pair in
P ∪ {s→ t}, and

– t is linear.
• (P ∪ {s→ t},R,S, E , γ), otherwise.

Then Proc is sound.

Proof. If the second case applies then Proc is clearly sound. Otherwise, let P ′ =
P ∪ {s → t} and P ′′ = P ∪ {sµ → t′ | t

µ
E\R t′}. We show that for every

(P ′,R, ∅, E , e)-chain . . . , v1 → w1, s → t, v2 → w2, . . . there exists a narrowing
t′ of t with the substitution µ such that . . . , v1 → w1, sµ → t′, v2 → w2, . . . is
a (P ′′,R, ∅, E , e)-chain (here, s → t may also be the first element in the chain,
i.e., v1 → w1 may be missing). Then, all occurrences of s→ t in a chain may be
replaced by pairs from {sµ → t′ | t µ

E\R t′} and every infinite (P ′,R, ∅, E , e)-

chain results in an infinite (P ′′,R, ∅, E , e)-chain.
If . . . , v1 → w1, s→ t, v2 → w2, . . . is a (P ′,R, ∅, E , e)-chain, then there exists

a substitution σ such that for all pairs in the chain the instantiated right side

11 Here, the variables of l → r have been renamed to fresh variables.

Dependency Pairs for Rewriting with Non-Free Constructors 21

reduces by →∗
E\R ◦ ∼E to the instantiated left side of the next pair in the chain.

Let σ be such a substitution where the length of the reduction

tσ →∗
E\R ◦ ∼E v2σ

has a minimal number of→E\R steps. Note that there is at least one→E\R step
since t and v2 are not E-unifiable. Hence we have tσ →E\R q →∗

E\R ◦ ∼E v2σ for
some term q.

First, we assume that the reduction tσ →E\R q takes place “in σ”. Hence,
t|p = x for some position p such that xσ →E\R r and q = t[r]p. The variable x

occurs only once in t since t is linear, and therefore we have q = tσ′, where σ′

is the substitution with xσ′ = r and yσ′ = yσ for all y 6= x. As all (occurrences
of) pairs in the chain can be assumed to be variable disjoint, σ′ behaves like σ

on all pairs except s→ t. For this pair we have

w1σ
′ = w1σ →

∗
E\R ◦ ∼E sσ →∗

E\R sσ′

and
tσ′ = q →∗

E\R ◦ ∼E v2σ = v2σ
′

Using Lemma 8 we obtain w1σ
′ →∗

E\R ◦ ∼E sσ′. Hence, σ′ is also a substitu-
tion where each instantiated right side reduces by→∗

E\R ◦ ∼E to the instantiation

of the next left side in the chain. But as the reduction from tσ′ to v2σ
′ has less

→E\R-steps than the reduction from tσ to v2σ, this is a contradiction to the
assumption that σ yields a reduction with a minimal number of →E\R-steps.

So the reduction tσ →E\R q cannot take place “in σ”. Hence, t contains some
subterm t|p = f(u∗) such that a rule l → r has been applied to f(u∗)σ. In other
words, there exists a substitution ρ such that f(u∗)σ ∼E lρ. Hence, the reduction
has the form

tσ = tσ[f(u∗)σ]p ∼E tσ[lρ]p →R tσ[rρ]p = q

Since we can assume that the variables of l → r have been renamed to fresh
ones, we can extend σ to behave like ρ on the variables of l and r (but it still
remains the same on all other variables). Now, σ is an E-unifier of f(u∗) and l,
and hence there exists a substitution µ ∈ CUE(f(u∗), l) and some substitution τ

such that σ ∼E µτ .
Let t′ be the term tµ[rµ]p. Then t

µ
E\R t′. As we can assume sµ→ t′ to be

variable disjoint from all other pairs in the chain we can extend σ to behave like
τ on the variables of sµ and t′. Then we have

w1σ →
∗
E\R ◦ ∼E sσ ∼E sµτ = sµσ

and
t′σ = t′τ = tµτ [rµτ]p ∼E tσ[rσ]p = q →∗

E\R ◦ ∼E v2σ

Hence, w1σ →∗
E\R ◦ ∼E sµσ and t′σ →∗

E\R ◦ ∼E v2σ, where the latter is

a consequence of Lemma 8. Thus, . . . , v1 → w1, sµ → t′, v2 → w2, . . . is a
(P ′,R, ∅, E , e)-chain. ⊓⊔

22 Stephan Falke and Deepak Kapur

Example 45. We again consider the DP problem (P ,R,S, E ,n) from Example
42. By applying the DP processor from Theorem 31, we obtain the DP problem
(P ,R ∪ S, ∅, E , e). For the only pair x −♯ s(y) → x −♯ p(s(y)) the right side is
linear and does not E-unify with the (variable-renamed) left side. We can thus
replace that pair by its narrowings. The only narrowing of the pair is the pair
x−♯ s(y)→ x−♯ y, resulting in a DP problem that can be handled like the one
in Example 40. ♦

7 Conclusions

We have proposed normalized rewriting as an alternative to E-extended rewriting
for equational rewrite systems in which equations only relate constructors. The
paper extends the dependency pair framework in order to establish termination
of normalized rewriting for such equational rewrite systems. It is shown that
whereas E-extended rewriting for such systems may not terminate, normalized
rewriting often does terminate. Based on our experience in specifying a number
of examples on data structures generated by non-free constructors, we feel that
algorithms can be specified naturally and elegantly as rewrite systems (pos is
one such example). Unlike previous related work [6], the equations relating con-
structors may be collapsing and, in some cases, do not need to have identical
unique variables. In particular, properties such as idempotency, identity, etc., of
constructors on data structures are allowed.

Many functional programming languages use eager evaluation as the evalua-
tion strategy. Then, termination of the functional program corresponds to inner-
most termination of the equational rewrite system. We believe that our method
can be extended to show innermost termination, similarly to how this can be
done for regular rewriting [1]. This needs to be investigated. An implementation
of the proposed approach in AProVE [8] is planned.

References

1. Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

2. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

3. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn Talcott. The Maude 2.0 system. In Robert
Nieuwenhuis, editor, Proceedings of the 14th International Conference on Rewriting
Techniques and Applications (RTA ’03), volume 2706 of Lecture Notes in Computer
Science, pages 76–87. Springer-Verlag, 2003.

4. Stephan Falke. Automated termination analysis for equational rewriting. Diplo-
marbeit, Department of Computer Science, Rheinisch-Westfälische Technische
Hochschule, Aachen, Germany, 2004.

5. Jürgen Giesl and Deepak Kapur. Dependency pairs for equational rewriting. Tech-
nical Report TR-CS-2000-53, Department of Computer Science, University of New
Mexico, Albuquerque, NM, USA, 2000.

Dependency Pairs for Rewriting with Non-Free Constructors 23

6. Jürgen Giesl and Deepak Kapur. Dependency pairs for equational rewriting.
In Aart Middeldorp, editor, Proceedings of the 12th International Conference on
Rewriting Techniques and Applications (RTA ’01), volume 2051 of Lecture Notes
in Computer Science, pages 93–108. Springer-Verlag, 2001.

7. Jürgen Giesl and Deepak Kapur, editors. Journal of Automated Reasoning, 34(2),
34(4) & 37(3), 2005–2006. Special issues on Techniques for Automated Termination
Proofs.

8. Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In Ulrich Furbach and
Natarajan Shankar, editors, Proceedings of the 3rd International Joint Conference
on Automated Reasoning (IJCAR ’06), volume 4130 of Lecture Notes in Computer
Science, pages 281–286. Springer-Verlag, 2006.

9. Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair
framework: Combining techniques for automated termination proofs. In Franz
Baader and Andrei Voronkov, editors, Proceedings of the 11th International Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR ’04),
volume 3452 of Lecture Notes in Computer Science, pages 301–331. Springer-
Verlag, 2004.

10. Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Mech-
anizing and improving dependency pairs. Journal of Automated Reasoning,
37(3):155–203, 2006.

11. Nao Hirokawa and Aart Middeldorp. Tyrolean termination tool: Techniques and
features. Information and Computation, 2007. To appear.

12. Deepak Kapur and G. Sivakumar. Proving associative-commutative termination
using RPO-compatible orderings. In Ricardo Caferra and Gernot Salzer, editors,
Automated Deduction in Classical and Non-Classical Logics: Selected Papers, vol-
ume 1761 of Lecture Notes in Artificial Intelligence, pages 40–62. Springer-Verlag,
2000.

13. Deepak Kapur and Hantao Zhang. An overview of rewrite rule laboratory (RRL).
Computers & Mathematics with Applications, 29(2):91–114, 1995.

14. Hélène Kirchner and Pierre-Etienne Moreau. Promoting rewriting to a program-
ming language: A compiler for nondeterministic rewrite programs in associative-
commutative theories. Journal of Functional Programming, 11(2):207–251, 2001.

15. Keiichirou Kusakari and Yoshihito Toyama. On proving AC-termination by
AC-dependency pairs. IEICE Transactions on Information and Systems, E84-
D(5):604–612, 2001.

16. Claude Marché. Normalized rewriting: An alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation, 21(3):253–288, 1996.

17. Claude Marché and Xavier Urbain. Modular and incremental proofs of AC-
termination. Journal of Symbolic Computation, 38(1):873–897, 2004.

18. Gerald E. Peterson and Mark E. Stickel. Complete Sets of Reductions for
Some Equational Theories. Journal of the Association for Computing Machinery,
28(2):233–264, 1981.

19. Albert Rubio. A fully syntactic AC-RPO. Information and Computation,
178(2):515–533, 2002.

20. Christian Stein. Das Dependency Pair Framework zur automatischen Ter-
minierungsanalyse von Termersetzung modulo Gleichungen. Diplomarbeit, Depart-
ment of Computer Science, Rheinisch-Westfälische Technische Hochschule, Ger-
many, 2006.

24 Stephan Falke and Deepak Kapur

21. René Thiemann, Jürgen Giesl, and Peter Schneider-Kamp. Improved modular ter-
mination proofs using dependency pairs. In David A. Basin and Michaël Rusinow-
itch, editors, Proceedings of the 2nd International Joint Conference on Automated
Reasoning (IJCAR ’04), volume 3097 of Lecture Notes in Computer Science, pages
75–90. Springer-Verlag, 2004.

Dependency Pairs for Rewriting with Non-Free Constructors 25

A Examples

A.1 Natural numbers 1

The following example was already erroneously used in [5], but since it contains
a collapsing equation their approach is not applicable.

R : (x + y)− y → x E : u + 0 ≈ u

0÷ s(y)→ 0 u + s(v) ≈ s(u + v)
s(x)÷ s(y)→ s((x − y)÷ s(y)) u + (v + w) ≈ (u + v) + w

u + v ≈ v + u

Then, (R, ∅, E) is an equational system and we want to show that
∅
→E\R is

terminating.
There is only one dependency pair:

s(x)÷♯ s(y)→ (x− y)÷♯ s(y)

Using Theorem 22, we obtain the constraints

s(x)÷♯ s(y) ≻ (x− y)÷♯ s(y) u + 0 ∼ u

(x + y)− y & x u + s(v) ∼ s(u + v)
0÷ s(y) & 0 u + (v + w) ∼ (u + v) + w

s(x) ÷ s(y) & s((x− y)÷ s(y)) u + v ∼ v + u

The constraints are satisfied by the polynomial order induced by

Pol(0) = 0
Pol(s(x)) = x + 1
Pol(x + y) = x + y

Pol(x− y) = x

Pol(x÷ y) = x

Pol(x÷♯ y) = x

A.2 Natural numbers 2

This example considers a distributive rule on natural numbers.

R : (x + y) · z → x · z + y · z E : u + 0 ≈ u

u + s(v) ≈ s(u + v)
u + (v + w) ≈ (u + v) + w

u + v ≈ v + u

Then→E\R is not terminating, as already shown in Example 6. As shown in
Example 11 we obtain the equational system

R : (x + y) · z → x · z + y · z S : u + 0→ u

E1 : u + (v + w) ≈ (u + v) + w u + s(v)→ s(u + v)
u + v ≈ v + u (u + s(v)) + w → s(u + v) + w

26 Stephan Falke and Deepak Kapur

and we want to show that
S
→E1\R is terminating.

We get the dependency pairs

(x + y) ·♯ z → x ·♯ z

(x + y) ·♯ z → y ·♯ z

Using Theorem 22, we obtain the constraints

(x + y) ·♯ z ≻ x ·♯ z u + 0 & u

(x + y) ·♯ z ≻ y ·♯ z u + s(v) & s(u + v)
(x + y) · z & x · z + y · z (u + s(v)) + w & s(u + v) + w

u + (v + w) ∼ (u + v) + w

u + v ∼ v + u

These constraints are satisfied by the AC-RPO of [19] with the precedence
·♯ ≻F · ≻F + ≻F s.

Alternatively, the polynomial order induced by

Pol(0) = 0
Pol(s(x)) = x

Pol(x + y) = x + y + 1
Pol(x ·♯ y) = x

Pol(x · y) = x

can be used.

A.3 Natural numbers 3

Here, we consider a gcd-function on natural numbers. As in Example A.1, we do
not need to split E .

R : gcd(x, 0)→ x E : u + 0 ≈ u

gcd(0, s(y))→ s(y) u + s(v) ≈ s(u + v)
gcd(s(x), s(x + y))→ gcd(s(x), y) u + (v + w) ≈ (u + v) + w

gcd(s(x + y), s(y))→ gcd(x, s(y)) u + v ≈ v + u

We get the dependency pairs

gcd♯(s(x), s(x + y))→ gcd♯(s(x), y)

gcd♯(s(x + y), s(y))→ gcd♯(x, s(y))

Using Theorem 22, we obtain the constraints

gcd♯(s(x), s(x + y)) ≻ gcd♯(s(x), y) u + 0 ∼ u

gcd♯(s(x + y), s(y)) ≻ gcd♯(x, s(y)) u + s(v) ∼ s(u + v)
gcd(x, 0) & x u + (v + w) ∼ (u + v) + w

gcd(0, s(y)) & s(y) u + v ∼ v + u

gcd(s(x), s(x + y)) & gcd(s(x), y)
gcd(s(x + y), s(y)) & gcd(x, s(y))

Dependency Pairs for Rewriting with Non-Free Constructors 27

The constraints are satisfied by the polynomial order induced by

Pol(0) = 0
Pol(s(x)) = x + 1
Pol(x + y) = x + y

Pol(gcd(x, y)) = x + y

Pol(gcd♯(x, y)) = x + y

A.4 Integers

Addition on integers can be defined as follows.

R : x + 0→ x E : p(s(u)) ≈ s(p(u))
x + s(y)→ s(x + y) p(s(u)) ≈ u

x + p(y)→ p(x + y)

Then →E\R is not terminating since

0 + 0 ∼E 0 + p(s(0))→R p(0 + s(0))→R p(s(0 + 0)) ∼E . . .

is an infinite reduction.

We split E into E1 = {p(s(u)) ≈ s(p(u))} and E2 = {p(s(u)) ≈ u}. Then E2
can be completed into S = {p(s(u))→ u}, which is convergent modulo E1. Since
we do not need to add extended rules to S (see [5, Example A.8]), we obtain the
equational system

R : x + 0→ x S : p(s(u))→ u

x + s(y)→ s(x + y) E1 : p(s(u)) ≈ s(p(u))
x + p(y)→ p(x + y)

and we want to show that
S
→E1\R is terminating.

We get the dependency pairs

p(x) +♯ y → x +♯ y

s(x) +♯ y → x +♯ y

Using Theorem 22, we obtain the constraints

p(x) +♯ y ≻ x +♯ y x + 0 & x

s(x) +♯ y ≻ x +♯ y x + s(y) & s(x + y)
p(s(u)) ∼ s(p(u)) x + p(y) & p(x + y)

p(s(x)) & x

These constraints are satisfied by an RPO with the non-strict precedence
+ ≻F s, + ≻F p and p ∼F s.

28 Stephan Falke and Deepak Kapur

A.5 Sets

Sets are built from the empty set ∅ and singleton sets 〈·〉 using set union ∪. We
have the following axioms:

E : u ∪ (v ∪ w) ≈ (u ∪ v) ∪ w

u ∪ v ≈ v ∪ u

u ∪ ∅ ≈ u

u ∪ u ≈ u

We split E into E1 = {(u ∪ v) ∪ w ≈ u ∪ (v ∪ w), u ∪ v ≈ v ∪ u} and (after
adding an extended rule) S = {u ∪ ∅ → u, u ∪ u→ u, (u ∪ u) ∪ v → u ∪ v}.

Consider a quicksort function that takes a set and returns a sorted list:

R : x < 0→ false

0 < s(y)→ true

s(x) < s(y)→ x < y

app(nil, y)→ y

app(cons(m, x), y)→ cons(m, app(x, y))
low(n, ∅)→ ∅

low(n, 〈m〉)→ if(m < n, m)
low(n, x ∪ y)→ low(n, x) ∪ low(n, y)

high(n, ∅)→ ∅
high(n, 〈m〉)→ if(n < m, m)

high(n, x ∪ y)→ high(n, x) ∪ high(n, y)
if(true, m)→ 〈m〉
if(false, m)→ ∅

qsort(∅)→ nil

qsort(〈m〉)→ cons(m, nil)
qsort(〈n〉 ∪ y)→ app(qsort(low(n, y)), cons(n, qsort(high(n, y))))

We get the dependency pairs

s(x) <♯ s(y)→ x <♯ y (1)

app♯(cons(m, x), y)→ app♯(x, y) (2)

low♯(n, 〈m〉)→ if♯(m < n, m) (3)

low♯(n, 〈m〉)→ m <♯ n (4)

low♯(n, x ∪ y)→ low♯(n, x) (5)

low♯(n, x ∪ y)→ low♯(n, y) (6)

high♯(n, 〈m〉)→ if♯(n < m, m) (7)

high♯(n, 〈m〉)→ m <♯ n (8)

high♯(n, x ∪ y)→ high♯(n, x) (9)

high♯(n, x ∪ y)→ high♯(n, y) (10)

Dependency Pairs for Rewriting with Non-Free Constructors 29

qsort♯(〈n〉 ∪ y)→ app♯(qsort(low(n, y)), cons(n, qsort(high(n, y)))) (11)

qsort♯(〈n〉 ∪ y)→ qsort♯(low(n, y)) (12)

qsort♯(〈n〉 ∪ y)→ low♯(n, y) (13)

qsort♯(〈n〉 ∪ y)→ qsort♯(high(n, y)) (14)

qsort♯(〈n〉 ∪ y)→ high♯(n, y) (15)

The estimated dependency graph contains 5 SCCs:

(1)
(2)

(5), (6)
(9), (10)
(12), (14)

In order to satisfy the constraints of Theorem 39 for all SCCs simultaneously
and such that the resulting DP problems do not contain any further cycles, we
obtain the constraints

s(x) <♯ s(y) ≻ x <♯ y

app♯(cons(m, x), y) ≻ app♯(x, y)

low♯(n, x ∪ y) ≻ low♯(n, x)

low♯(n, x ∪ y) ≻ low♯(n, y)

high♯(n, x ∪ y) ≻ high♯(n, x)

high♯(n, x ∪ y) ≻ high♯(n, y)
qsort♯(〈n〉 ∪ y) ≻ qsort♯(low(n, y))
qsort♯(〈n〉 ∪ y) ≻ qsort♯(high(n, y))

x < 0 & false

0 < s(y) & true

s(x) < s(y) & x < y

app(nil, y) & y

app(cons(m, x), y) & cons(m, app(x, y))
low(n, ∅) & ∅

low(n, 〈m〉) & if(m < n, m)
low(n, x ∪ y) & low(n, x) ∪ low(n, y)

high(n, ∅) & ∅
high(n, 〈m〉) & if(n < m, m)

high(n, x ∪ y) & high(n, x) ∪ high(n, y)
if(true, m) & 〈m〉
if(false, m) & ∅

qsort(∅) & nil

qsort(〈m〉) & cons(m, nil)
qsort(〈n〉 ∪ y) & app(qsort(low(n, y)), cons(n, qsort(high(n, y))))

u ∪ ∅ & u

30 Stephan Falke and Deepak Kapur

u ∪ u & u

(u ∪ u) ∪ v & u ∪ v

(u ∪ v) ∪ w ∼ u ∪ (v ∪ w)
u ∪ v ∼ v ∪ u

We apply an argument filtering that collapses low, low♯, high, and high♯ to
their last argument and eliminates the first argument of if and cons.

The filtered constraints are

s(x) <♯ s(y) ≻ x <♯ y

app♯(cons(x), y) ≻ app♯(x, y)
x ∪ y ≻ x

x ∪ y ≻ y

x ∪ y ≻ x

x ∪ y ≻ y

qsort♯(〈n〉 ∪ y) ≻ qsort♯(y)
qsort♯(〈n〉 ∪ y) ≻ qsort♯(y)

x < 0 & false

0 < s(y) & true

s(x) < s(y) & x < y

app(nil, y) & y

app(cons(x), y) & cons(app(x, y))
∅ & ∅

〈m〉 & if(m)
x ∪ y & x ∪ y

∅ & ∅
〈m〉 & if(m)

x ∪ y & x ∪ y

if(m) & 〈m〉
if(m) & ∅

qsort(∅) & nil

qsort(〈m〉) & cons(nil)
qsort(〈n〉 ∪ y) & app(qsort(y), cons(qsort(y)))

u ∪ ∅ & u

u ∪ u & u

(u ∪ u) ∪ v & u ∪ v

(u ∪ v) ∪w ∼ u ∪ (v ∪ w)
u ∪ v ∼ v ∪ u

These constraints are satisfied by an AC-RPO with the precedence qsort ≻F

app ≻F cons ≻F nil, < ≻F true ≻F false, if ≻F ∅, and if ∼F 〈·〉.

A.6 CCS

This examples considers a subset of Milner’s Calculus of Communicating Systems
(CCS). Processes are built using the terminated process 0, the prefixing operator
“.”, nondeterministic choice +, and parallel composition |. The complementary

Dependency Pairs for Rewriting with Non-Free Constructors 31

action of an action a is denoted by a. The silent action is denoted by τ . Properties
of processes are modelled using the following ES.

E : p + q ≈ q + p

p + (q + r) ≈ (p + q) + r

p + p ≈ p

p + 0 ≈ p

p | q ≈ q | p
p | (q | r) ≈ (p | q) | r

p | 0 ≈ p

a ≈ a

This ES can be split into an ES E1 and a TRS S which is complete and
convergent modulo E1 as follows.

E1: p + q ≈ q + p S: p + p→ p

p + (q + r) ≈ (p + q) + r (p + p) + q → p + q

p | q ≈ q | p p + 0→ p

p | (q | r) ≈ (p | q) | r p | 0→ p

a→ a

Here, the second rule in S is the extension of the first one.
Now, we can define a function eval that computes a possible trace of a process

description.

R: eval(0)→ 0

eval(a.p)→ a.eval(p)
eval(p + q)→ if+(eval(p))

if+(a.p)→ a.eval(p)
eval(p | q)→ if|(eval(p), q)
if|(a.p, q)→ a.eval(p | q)

eval(p | q)→ ifτ (eval(p), eval(q))
ifτ (a.p, a.q)→ τ.eval(p | q)

For showing termination of
S
→E1\R, we obtain the following dependency pairs.

eval♯(a.p)→ eval♯(p)

eval♯(p + q)→ if
♯
+(eval(p))

eval♯(p + q)→ eval♯(p)

if♯(a.p)→ eval♯(p)

eval♯(p | q)→ if
♯
| (eval(p), q)

eval♯(p | q)→ eval♯(p)

if
♯
| (a.p, q)→ eval♯(p | q)

eval♯(p | q)→ if♯τ (eval(p), eval(q))

eval♯(p | q)→ eval♯(p)

eval♯(p | q)→ eval♯(q))

32 Stephan Falke and Deepak Kapur

These dependency pairs form an SCC of the estimated dependency graph.
Using the polynomial order induced by

Pol(0) = 1

Pol(τ) = 0

Pol(x) = x

Pol(x.y) = y + 2

Pol(x + y) = 2xy + 2x + 2y + 1

Pol(x | y) = x + y + 1

Pol(eval(x)) = x

Pol(if+(x)) = x

Pol(if |(x, y)) = x + y + 1

Pol(ifτ (x, y)) = x + y

Pol(eval♯(x)) = x

Pol(if♯+(x)) = x

Pol(if♯| (x, y)) = x + y

Pol(if♯τ (x, y)) = x + y

the following constraints are satisfied:

eval♯(a.p) ≻ eval♯(p)

eval♯(p + q) ≻ if
♯
+(eval(p))

eval♯(p + q) ≻ eval♯(p)

if♯(a.p) ≻ eval♯(p)

eval♯(p | q) ≻ if
♯
| (eval(p), q)

eval♯(p | q) ≻ eval♯(p)

if
♯
| (a.p, q) ≻ eval♯(p | q)

eval♯(p | q) ≻ if♯τ (eval(p), eval(q))

eval♯(p | q) ≻ eval♯(p)

eval♯(p | q) ≻ eval♯(q))

eval(0) & 0

eval(a.p) & a.eval(p)

eval(p + q) & if+(eval(p))

if+(a.p) & a.eval(p)

eval(p | q) & if|(eval(p), q)

if|(a.p, q) & a.eval(p | q)

eval(p | q) & ifτ (eval(p), eval(q))

ifτ (a.p, a.q) & τ.eval(p | q)

Dependency Pairs for Rewriting with Non-Free Constructors 33

p + p & p

(p + p) + q & p + q

p + 0 & p

p | 0 & p

a & a

p + q ∼ q + p

p + (q + r) ∼ (p + q) + r

p | q ∼ q | p

p | (q | r) ∼ (p | q) | r

According to Theorem 39, all dependency pairs can be deleted and termina-
tion has been shown.

A.7 Sequent Calculus

We consider the propositional sequent calculus for formulas built from ∧ and ¬.
Sequents are built from two sets of formulas using =⇒ . Set of formulas are
built from the empty set ∅ using “,” to add a formula. Similarly, sets of sequents
are built using � and •.

From the ES

E : u, (v, w) ≈ v, (u, w)
u, (u, v) ≈ u, v

u • (v • w) ≈ v • (u • w)
u • (u • v) ≈ u • v

we obtain

E1: u, (v, w) ≈ v, (u, w) S: u, (u, v)→ u, v

u • (v • w) ≈ v • (u • w) u • (u • v)→ u • v

Now the sequent calculus rules for ∧ and ¬ are modelled by the function eval

defined by the following TRS.

R: eval(�)→ �
eval((x, y =⇒ x, z) • s)→ eval(s)
eval((¬x, y =⇒ z) • s)→ eval((y =⇒ x, z) • s)
eval((x =⇒ ¬y, z) • s)→ eval((y, x =⇒ z) • s)

eval((x ∧ y, z =⇒ z′) • s)→ eval((x, (y, z) =⇒ z′) • s)
eval((x =⇒ y ∧ z, z′) • s)→ eval((x =⇒ y, z′) • ((x =⇒ z, z′) • s))

Then R has five dependency pairs, which form an SCC in the estimated
dependency graph.

eval♯((x, y =⇒ x, z) • s)→ eval♯(s)

eval♯((¬x, y =⇒ z) • s)→ eval♯((y =⇒ x, z) • s)

eval♯((x =⇒ ¬y, z) • s)→ eval♯((y, x =⇒ z) • s)

eval♯((x ∧ y, z =⇒ z′) • s)→ eval♯((x, (y, z) =⇒ z′) • s)

eval♯((x =⇒ y ∧ z, z′) • s)→ eval♯((x =⇒ y, z′) • ((x =⇒ z, z′) • s))

34 Stephan Falke and Deepak Kapur

From R, S, and E1 we obtain the following constraints:

eval(�) & �

eval((x, y =⇒ x, z) • s) & eval(s)

eval((¬x, y =⇒ z) • s) & eval((y =⇒ x, z) • s)

eval((x =⇒ ¬y, z) • s) & eval((y, x =⇒ z) • s)

eval((x ∧ y, z =⇒ z′) • s) & eval((x, (y, z) =⇒ z′) • s)

eval((x =⇒ y ∧ z, z′) • s) & eval((x =⇒ y, z′) • ((x =⇒ z, z′) • s))

u, (u, v) & u, v

u • (u • v) & u • v

u, (v, w) ∼ v, (u, w)

u • (v • w) ∼ v • (u • w)

We first apply the polynomial order induced by

Pol(x ∧ y) = xy + x + y + 1

Pol(¬x) = x

Pol(x =⇒ y) = xy + x + y

Pol(x, y) = xy + x + y

Pol(�) = 0

Pol(x • y) = x + y

Pol(eval(x)) = 0

Pol(eval♯(x)) = x + 1

Then the constraints fromR, S, and E1 are satisfied. Additionally, the fourth and
fifth dependency pair are strictly decreasing, while the remaining dependency
pairs are weakly decreasing. Using Theorem 39, the fourth and fifth dependency
pair may thus be deleted.

Next, we apply the polynomial order induced by

Pol(x ∧ y) = 0

Pol(¬x) = x + 1

Pol(x =⇒ y) = x + y

Pol(x, y) = x + y

Pol(�) = 0

Pol(x • y) = x + y

Pol(eval(x)) = 0

Pol(eval♯(x)) = x

Then the constraints from R, S, and E1 are again satisfied, and the second and
third dependency pair are strictly decreasing, while the first dependency pair is

Dependency Pairs for Rewriting with Non-Free Constructors 35

weakly decreasing. After application of Theorem 39, only the first dependency
pair is left.

The first dependency pair is now strictly decreasing if we use the polynomial
order induced by

Pol(x ∧ y) = 0

Pol(¬x) = 0

Pol(x =⇒ y) = 0

Pol(x, y) = 0

Pol(�) = 0

Pol(x • y) = y + 1

Pol(eval(x)) = 0

Pol(eval♯(x)) = x

which also satisfies the constraints from R, S, and E1. This concludes the proof

of the termination of
S
→E1\R.

