
CS 241, Data Organization Final Exam December 12, 2013

Name: NetID:

Answer all questions in the space provided. Write clearly and legibly, you will
not get credit for illegible or incomprehensible answers. This is a closed book
exam. However, each student is allowed to bring one page of notes to the exam.
Print your name at the top of every page.

1. (a) (2 points) Show how to use automatic variables to allocate room for an array capable of
holding 40 integers on the stack.

(b) (2 points) Show how to initialize all elements of above created array to 0. This has to be
done separate from the array declaration.

(c) (2 points) Show how to make the same allocation as in (a) but using dynamic memory
allocation instead.

2. (2 points) A variable of type void * can be very useful. Why?

3. (2 points) C programming is said to be close to the machine. One remnant of assembly pro-
gramming is that C contains a goto keyword that actully works. Why is the goto instruction
considered by many hazardous to use?

Page 1 of 10

CS 241 Final Student Name:

4. (10 points) What is the output of this program?

1 #include <stdio.h>

2
3 void main(void)

4 {

5 unsigned char x = 21;

6
7 unsigned char a = x << 2;

8 unsigned char b = x >> 2;

9 unsigned char c = x & 13;

10 unsigned char d = x | 13;

11 unsigned char e = x ^ 13;

12
13 printf("a=%d, b=%d, c=%d, d=%d, e=%d\n",

14 a, b, c, d, e);

15 }

Page 2 of 10

CS 241 Final Student Name:

5. (12 points) What is the output of this program?

1 #include <stdio.h>

2
3 void main(void)

4 {

5 char s[] = "fQiQQnQalQ";

6 char del = ’Q’;

7
8 int sourceIndex = 0;

9 int sinkIndex = 0;

10 while (s[sourceIndex])

11 {

12 if (s[sourceIndex] != del)

13 {

14 s[sinkIndex] = s[sourceIndex];

15 sinkIndex ++;

16 }

17 else

18 {

19 printf("[%d,%d] %s\n", sourceIndex , sinkIndex , s);

20 }

21 sourceIndex ++;

22 }

23 s[sinkIndex]=’\0’;

24 printf("result: %s\n",s);

25 }

Page 3 of 10

CS 241 Final Student Name:

6. (10 points) What is the output of this program?

1 #include <stdio.h>

2 #include <string.h>

3
4 char *findSubstring(char *str , char *target)

5 {

6 int len = strlen(target);

7 int n = 0;

8 while (*str)

9 {

10 printf("%c%c ",*str , *(target+n));

11 if (*(target+n) == *str)

12 {

13 n++;

14 if (n == len) return (str -len)+1;

15 }

16 else

17 {

18 str -= n;

19 n = 0;

20 }

21 str++;

22 }

23 return NULL;

24 }

25
26 void main(void)

27 {

28 findSubstring("ABCDCDEF", "CDE");

29 }

Page 4 of 10

CS 241 Final Student Name:

7. (10 points) What is the output of this program?

1 #include <stdio.h>

2
3 int binarySearch(int x, int v[], int length)

4 {

5 int low , high , mid;

6 low = 0;

7 high = length -1;

8
9 while (low <=high)

10 {

11 mid = (low+high)/2;

12 printf("[%d %d %d] ", low , mid , high);

13
14 if (x < v[mid]) high = mid -1;

15 else if (x > v[mid]) low = mid +1;

16 else return mid;

17 }

18 return -1;

19 }

20
21 void main(void)

22 {

23 int nums[] = {12, 13, 15, 17, 21, 23, 27, 39, 43, 51};

24 printf("index = %d\n", binarySearch (17, nums , 10));

25 printf("index = %d\n", binarySearch (64, nums , 10));

26 }

Page 5 of 10

CS 241 Final Student Name:

8. (4 points) Consider the following code.

1 void main(void)

2 {

3 int a[] = {22 ,33 ,44};

4 int *x = a;

5 printf("sizeof(int)=%lu ", sizeof(int));

6 printf("x=%p, x[0]=%d\n", x, x[0]);

7 x = x + 2;

8 printf("x=%p, x[0]=%d\n", x, x[0]);

9 }

If the output from lines 5 and 6 is
sizeof(int)=4 x=0x7fff29af6530, x[0]=22

what is the output from line 8?

Page 6 of 10

CS 241 Final Student Name:

9. (5 points) The following program is compiled and run with the command: ./a.out 010123

What is the output?

1 #include <stdio.h>

2
3 int main(int argc , char* argv [])

4 {

5 char* c_pt;

6 int n = 0;

7 if(argc == 2)

8 {

9 c_pt = argv [1];

10 while(*c_pt)

11 {

12 if(*c_pt < ’0’ || *c_pt > ’1’) break;

13 n = n*2 + *c_pt - ’0’;

14 c_pt ++;

15 }

16 printf("%d\n", n);

17 }

18 }

10. (4 points) What is the output of this program?

1 #include <stdio.h>

2
3 void main(void)

4 {

5 char data[] = "hello";

6 data [4] = ’!’;

7 char *linePt = &data [3];

8 *linePt = ’p’;

9 printf("[%s], [%s]\n", data , linePt);

10 }

Page 7 of 10

CS 241 Final Student Name:

11. (6 points) What is the output of this program?

1 #include <stdio.h>

2
3 struct Point

4 {

5 int x;

6 int y;

7 };

8
9 struct Point incPoints(struct Point p1 , struct Point *p2)

10 {

11 p1.x++;

12 p1.y++;

13 p2 ->x++;

14 p2 ->y++;

15 return p1;

16 }

17
18 void main(void)

19 {

20 struct Point a = {1, 2};

21 struct Point b = {3, 4};

22 struct Point c = incPoints(a, &b);

23 printf("a=(%d, %d), b=(%d,%d), c=(%d,%d)\n",

24 a.x, a.y, b.x, b.y, c.x, c.y);

25 }

Page 8 of 10

CS 241 Final Student Name:

12. For the given tree, write out the following traversals.

A

B C

D E F

G H I

(a) (3 points) Breadth First (also known as level-order):

(b) (3 points) Depth First, in-order:

(c) (3 points) Depth First, pre-order:

Page 9 of 10

CS 241 Final Student Name:

13. (10 points) It’s always intersting to see how different programming languages handle various
operations. In Python and Matlab there a notion of array “slices”. This makes it possible to
do the following (Python):

>>> arr = range (0, 10)

>>> print arr

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> print arr [1:7:2]

[1, 3, 5]

In the above example there’s a 10 element array, and the slice operator takes elements from
start index 1 (inclusive), to end index 7 (exclusive), stepping by increment 2. Please show how
to write a function called slice that does this in C. Your function should operate on an integer
array and return a newly allocated array of the correct size. You do not need to perform
boundary checks on the passed parameters, but your function should work if called with valid
data.

Page 10 of 10

