CS 241
Data Organization

Using GDB

September 12, 2018



What is GDB?

e The GNU debugger

e Allows you to inspect the program during
execution

e Works for several languages, including C and
C++



Compiling for Debugging

When you are going to use the debugger, compile
your code with the —g option to include debugging
information in your executable.

gcc —g —O0 mMyprog myprog.c
Compiling with picky flags would look like:
gcc -Wall -ansi -pedantic -g -o myprog myprog.c

Makefiles will help save you typing.



Starting gdb

o Generally, you'll start gdb specifying the
program to debug.

> gdb myprog
(gdb)
e Alternatively, you can specify the program after
starting the debugger.
> gdb
(gdb) file myprog
e Use the quit command to exit.



Getting help with gdb commands

e gdb is an interactive shell, similar to the shell
you use in a linux terminal.

e Recall history with arrow keys
e Auto-complete with TAB
e Give short versions of commands
e |f you need more information while using the
debugger, use the help command.

e For information on a particular command, use
help commandname



Running the program

Run the program with the run command.
You can give command line arguments to the
program here.

If program is runs normally outside of
debugger, it should run fine here, too.

If program crashes, you'll get useful
information about where it crashed.



O ~NO O WN

Segfault example

#include <stdio.h>

int main()

{
char *str = "value";
int 1i;

str[3] = ’x’;

for(i = 0; i < 5; i++)
{

printf ("%c\n", strl[il);
}

return O;

Program received signal SIGSEGV, Segmentation fault.
0x000000000040050¢c in main () at str-broken.c:8
8 str[3] = ’x’;



Breakpoints

e You can set a breakpoint at a given line or
function with the break command.

e break 21
e break myfile.c:32
e break myfunction

e You can set as many breakpoints as you want.
e |f the program reaches a breakpoint while

running, it will pause and prompt you for
another command.



Reached a breakpoint, now what?

e Resume until next breakpoint with continue

e Use step to execute the next line of code,
possibly entering another function.

e Use next to execute the next line of code,
treating function call as single line.



Inspecting data

e The print command prints the value of an
expression.

e Use to inspect value of variables.

e Can dereference pointers, access array
elements, etc.



Where am |7

e Use 1ist to display source code around the
currently suspended line.

e Use backtrace to show the current stack.



Watchpoints

e Watchpoints pause the program whenever a
watched variable's value is modified.

e Use watch myvar to start watching a myvar

e Whenever myvar's value changes, the program
will pause and print out the old and new values.



Conditional breakpoints

e Perhaps you know the problem only happens
under a certain condition.

e You can create a conditional breakpoint
that will only trigger a condition is true.

e (gdb) break 6 if i == 10 will pause on
line 6 only if the value of the variable i is equal
to 10.



Wrong result example

1 [#include <stdio.h>

2

3 |int factorial(int n)

4 | {

5 int result = 1;

6 while(n--)

7 {

8 result *= n;

9 }

10 return result;

11 |}

12

13 |int main ()

14 | {

15 int n = 5;

16 int fact = factorial (5);
17 printf ("%d! = %d\n", n, fact);
18 return O;

19 |}



O ~NO O W

=
AW N R OO

Recursive example

#include <stdio.h>

int fib(int n)
{

if(n < 2) return 1;

else return fib(n-1) + fib(n-2);
}

int main ()

{
int n = 5;
printf ("fib(%d) = %d\n", n, fib(n));
return O;

3



