
CS 241
Data Organization

Using GDB

September 12, 2018



What is GDB?

• The GNU debugger

• Allows you to inspect the program during
execution

• Works for several languages, including C and
C++



Compiling for Debugging
When you are going to use the debugger, compile
your code with the -g option to include debugging
information in your executable.

gcc -g -o myprog myprog.c

Compiling with picky flags would look like:

gcc -Wall -ansi -pedantic -g -o myprog myprog.c

Makefiles will help save you typing.



Starting gdb

• Generally, you’ll start gdb specifying the
program to debug.

> gdb myprog

(gdb)

• Alternatively, you can specify the program after
starting the debugger.

> gdb

(gdb) file myprog

• Use the quit command to exit.



Getting help with gdb commands

• gdb is an interactive shell, similar to the shell
you use in a linux terminal.

• Recall history with arrow keys
• Auto-complete with TAB
• Give short versions of commands

• If you need more information while using the
debugger, use the help command.

• For information on a particular command, use
help commandname



Running the program

• Run the program with the run command.

• You can give command line arguments to the
program here.

• If program is runs normally outside of
debugger, it should run fine here, too.

• If program crashes, you’ll get useful
information about where it crashed.



Segfault example
1 #include <stdio.h>

2
3 int main()

4 {

5 char *str = "value";

6 int i;

7
8 str [3] = ’x’;

9
10 for(i = 0; i < 5; i++)

11 {

12 printf("%c\n", str[i]);

13 }

14 return 0;

15 }

Program received signal SIGSEGV, Segmentation fault.

0x000000000040050c in main () at str-broken.c:8

8 str[3] = ’x’;



Breakpoints

• You can set a breakpoint at a given line or
function with the break command.

• break 21
• break myfile.c:32
• break myfunction

• You can set as many breakpoints as you want.

• If the program reaches a breakpoint while
running, it will pause and prompt you for
another command.



Reached a breakpoint, now what?

• Resume until next breakpoint with continue

• Use step to execute the next line of code,
possibly entering another function.

• Use next to execute the next line of code,
treating function call as single line.



Inspecting data

• The print command prints the value of an
expression.

• Use to inspect value of variables.

• Can dereference pointers, access array
elements, etc.



Where am I?

• Use list to display source code around the
currently suspended line.

• Use backtrace to show the current stack.



Watchpoints

• Watchpoints pause the program whenever a
watched variable’s value is modified.

• Use watch myvar to start watching a myvar

• Whenever myvar’s value changes, the program
will pause and print out the old and new values.



Conditional breakpoints

• Perhaps you know the problem only happens
under a certain condition.

• You can create a conditional breakpoint

that will only trigger a condition is true.

• (gdb) break 6 if i == 10 will pause on
line 6 only if the value of the variable i is equal
to 10.



Wrong result example
1 #include <stdio.h>

2
3 int factorial(int n)

4 {

5 int result = 1;

6 while(n--)

7 {

8 result *= n;

9 }

10 return result;

11 }

12
13 int main()

14 {

15 int n = 5;

16 int fact = factorial (5);

17 printf("%d! = %d\n", n, fact);

18 return 0;

19 }



Recursive example

1 #include <stdio.h>

2
3 int fib(int n)

4 {

5 if(n < 2) return 1;

6 else return fib(n-1) + fib(n-2);

7 }

8
9 int main()

10 {

11 int n = 5;

12 printf("fib(%d) = %d\n", n, fib(n));

13 return 0;

14 }


