
Do malware reports expedite cleanup? An experimental study

Marie Vasek
Computer Science & Engineering Dept.

Southern Methodist University, Dallas, TX
marie.vasek@gmail.com

Tyler Moore
Computer Science & Engineering Dept.

Southern Methodist University, Dallas, TX
tylerm@smu.edu

Abstract
Web-based malware is pervasive. Miscreants compro-
mise insecure hosts or even set up dedicated servers to
distribute malware to unsuspecting users. This scourge
is mainly fought by the voluntary action of private actors
who detect and report infections to affected site own-
ers, hosting providers and registrars. In this paper we
describe an experiment to assess whether sending re-
ports to affected parties makes a measurable difference in
cleaning up malware. Using community reports of mal-
ware submitted to StopBadware over two months in Fall
2011, we find evidence that detailed notices are imme-
diately effective: 32% of malware-distributing websites
are cleaned within one day of sending a notice, compared
to just 13% of sites not receiving a notice. The improved
cleanup rate holds for longer periods, too – 62% of web-
sites receiving a detailed notice were cleaned up after
16 days, compared to 45% of websites not receiving a
notice. It turns out that including details describing the
compromise is essential for the notice to work – send-
ing reports with minimal descriptions of the malware was
found to be roughly as effective as not sending reports at
all. Furthermore, we present evidence that sending mul-
tiple notices from two sources is not helpful. Instead,
only the first transmitted notice makes a difference.

1 Introduction

The web is a leading vector for infecting computers with
malware. We distinguish between three main approaches
to distributing malware on the web: compromised web-
sites, free web hosting, and purely malicious websites.
The most common approach is for a miscreant to com-
promise a legitimate website using a variety of tech-
niques, such as by exploiting code injection vulnerabili-
ties or leveraging stolen FTP credentials. One key advan-
tage of compromising legitimate websites for attackers is
that regular visitors to the website can be exposed during

the course of routine browsing. Some attackers do not
even bother compromising websites. Instead, they sign
up sham accounts and place malware on free-hosting
websites, which offer web space to all comers.

The final distribution option is for the miscreant to
configure a website directly under their control. Such
purely malicious websites exist only to deliver malware.
Often, compromised websites are used in combination
with purely malicious websites, where the compromised
website will automatically redirect to a malicious site or
remotely load the malicious payload hosted on the purely
malicious website [6].

A constant battle is engaged between malware ped-
dlers and Internet operators over the infection and reme-
diation of websites. One striking feature of this back and
forth is the largely voluntary nature of exchanging infor-
mation on incidents and cleaning up infected websites.
We became interested because there have been commu-
nity efforts to devise standards for reporting [9]. These
efforts recommend increased levels of detail to be pro-
vided to operators whose websites have been infected.
Implicit in these recommendations are two key assump-
tions. First, the recommendations assume that website
operators will usually cooperate in the remediation if
provided information on infections. Second, more de-
tailed information is better, as it lends added credibility
to the report and therefore makes action more likely.

We set out to test these assumptions experimentally.
In particular, we hypothesize that transmitting detailed
reports of malware to affected parties will cause the re-
ported websites to be remediated more quickly and com-
prehensively than if no report were sent.

Confirming or refuting this hypothesis is important,
given the limited resources available to website operators
and those investigating malware incidents. Sending out
detailed reports can be quite resource-intensive, particu-
larly since it requires investigating compromises that can
vary considerably in method and involve a sequence of
affected websites. Furthermore, ascertaining which par-
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ties should receive the reports and tracking down their
contact details can be time consuming. Consequently, it
is important to provide reliable evidence of the effective-
ness of notices. If the notices are shown to lead to better
remediation outcomes, then the expense of disseminating
notices may be justified.

Section 2 explains how designed and carried out the
experiment using malware reports submitted to Stop-
Badware over two months in Fall 2011. In Section 3
we present the results. We find that detailed reports do
in fact expedite malware cleanup substantially. Within
one day of receiving a detailed report, 32% of malware-
distributing websites have been cleaned, compared to
just 13% of websites that did not receive a notice. We
also find that the additional detail of incidents is essen-
tial, as less-detailed reports appeared about as effective
as not sending any reports at all. We review related work
in Section 4 before drawing conclusions and outlining
opportunities for further investigation in Section 5.

2 Experimental methodology

In order to determine whether sending malware notices
reduces the time it takes to clean up affected sites, we
carried out a three-phased procedure illustrated by the
flow charts in Figure 1. In the first phase (a), we process
incoming reports to identify sites with malware. In the
second phase (b), contact information for affected par-
ties is found and the sites are randomly assigned to the
control, minimal and full notification groups. In the third
phase (c), sites are periodically reevaluated to determine
if and when malware has been removed.

2.1 Processing incoming malware reports
The procedure for processing incoming reports follows
the flow chart in Figure 1 (a). We gathered reports of
malware URLs from the BadwareBusters.org com-
munity feed1, where any Internet user can report a mal-
ware URL to StopBadware. We then pared down the
reports by removing duplicates. We also exclude re-
ports from *.c[a-z].cc, *.ce.ms, and anything on the
dropbox.com domain, since the operators of these sites
already have established prior agreements to act on no-
tices from StopBadware.

We next determine if the URL is actively deliver-
ing malware. This process is discussed in Section 2.4.
We then classify every unique instance which helps de-
liver malware as a candidate for reporting. For our pur-
poses, we define a unique instance as coming from a
single IP address, second-level domain name, or subdo-
main of a known free web hosting service. For exam-

1https://badwarebusters.org/community/submit

ple, if bad.example.com redirected using HTTP status
code 301 to bad2.example.com, and both URLs had
the same IP address, we would count them as a sin-
gle malware instance. The only exception would be if
example.com was a free site hosting domain, in which
case they would be considered unique.

We also frequently identify compromised hosts that
load malicious code hosted on external websites. In these
cases, we add both sites to the candidate list.

2.2 Notifying affected parties

The procedure for notifying affected parties follows the
flow chart in Figure 1 (b). We first determine whether
a candidate site has been compromised or set up purely
for malicious purposes, as this affects which parties are
sent notices. We manually visit the associated second-
level domain (e.g., if my.example.com/ajaxam.js de-
livers malware, we would examine example.com in a
browser). If the top-level website appears legitimate,
we would deem the site compromised. However, if the
top-level site looks dubious, such as returning a default
Apache server page, or a 200 page with no content, then
we deem the site to be registered for primarily malicious
purposes. If the top-level site otherwise appears not in-
tended for end users to visit (e.g., delivering a 404 er-
ror or a default WordPress install), then we run the site
through google.com. If search results return pages of
what appears to be legitimate content, we consider the
site to be infected rather than purely malicious. Other-
wise, particularly if Google turns up only malware com-
plaints, we consider the site to be malicious. We also ex-
amine WHOIS information for the domain at this stage to
confirm information that can be found through Google.
If the WHOIS information is bogus (the address is not a
real place or otherwise appears obviously fake), we deem
the site malicious.

We next decide which operators should receive no-
tices. If the malware is hosted on a compromised web-
site or free-hosting service, we send notices to the site
owner and hosting provider. To look up contact infor-
mation for the site owner, we first check the website it-
self for an email address. If we cannot find one, we
next look up the WHOIS on the domain. If that does
not contain an email address, then we use the default
email addresses for a domain (abuse@example.com and
webmaster@example.com).

If the website is deemed to be purely malicious, we
send notices to the hosting provider and domain name
registrar. To contact the domain registrar, we look up
WHOIS information on the reported domain name. If the
registrar includes a contact email address there, then we
use it. Failing that, we look at the registrar’s website and
do a Google search for “{domain registrar} abuse con-
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Figure 1: Flow charts describing the experimental design.

tact.” When all else fails, we use the contact information
given by IANA that all registrars must provide.

For all sites, we look up contact information for the
hosting provider by collecting WHOIS information on
the IP address. In our study, all sites included the requi-
site information in the WHOIS report.

Finally, we randomly assigned each site to one of three
groups: control, minimal, and full. Sites assigned to the
control group receive no report. Sites assigned to the
minimal group are sent an email report which contains
the minimum amount of information required to satisfy
the best practices [9] (URL, short description of mal-
ware, IP address, date and time malware detected, email
address of reporter) along with why that person was the
target of a malware report. Sites assigned to the full
group receive all the information from the minimal re-
port, plus a longer and more detailed description of the
malware along with any special information needed for
the malware to deliver (e.g., a specific HTTP referrer).

2.3 Following up to estimate cleanup time

We regularly reinspect sites distributing malware to mea-
sure the time it takes to clean sites.Because the inspection
is performed manually, we only carry it out at fixed in-
tervals of 1, 2, 4, 8 and 16 days following the initial re-
port. We continue to follow up even after a site has been
found to be clean, since sites are often immediately re-
infected. We only consider a site clean once it is never
subsequently found to be bad.

We begin the followup procedure outlined in Fig-
ure 1 (c) by checking to see if the site is still bad. If the
site appears clean and has not been classified as purely
malicious, then we mark the site clean and conclude our
assessment. However, if the site purely exists for ma-
licious purposes and we cannot find malware, we must

continue our investigation since many such sites attempt
to hide malicious behavior from investigators. If the site
does not resolve, then we check the WHOIS record to see
if the responsible parties took the site down. If there is no
change, then we assume that the malicious actors are still
present and consider the site bad. If the site resolves but
delivers suspicious behavior such as a 404 or 403 page,
then we consider the site bad. However, if the site is de-
livering a hosting provider interstitial page or something
similar, we deem the site to be clean.

2.4 Assessing for malware
In the previous subsections, we explained that we check
whether a site is bad. We now describe in detail how we
make this determination. The basic procedure is given
by the flow chart in Figure 2.

We start by opening the site in a browser in a vir-
tual machine (VM) and capture all HTTP traffic using
a packet logger. We access the URL with a google.com
HTTP referrer, or other referrer depending on the context
given in the initial clearinghouse report.

If the reported site appears to deliver a malicious exe-
cutable, we download the executable and run it through
VirusTotal2, an online service that compares executables
against all major antivirus products. If at least 3 differ-
ent vendors flag an executable as malicious, we conclude
that the website is distributing malware.

We analyze the network traffic for anything out of the
ordinary (e.g., draws code from a known malicious site
or from a suspicious site). We also inspect the HTML
and associated JavaScript and CSS files from the page for
malicious injected code. Some malicious code renders in
one browser but not another, so we do not rely only on
observing attempted exploitation on our VM’s browser.

2https://www.virustotal.com/
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Figure 2: Flow chart for deciding whether a site is bad,
i.e., distributing malware.

Finally, if we cannot find malware on the reported
URL, we spider the site and manually assess the code
on a representative sample of the URLs on the site. If
this is an initial report, we report the first URL we find
malware on along with up to two other URLs on the same
site with malware. For follow-up investigations, we note
the other URLs that deliver malware to check in any sub-
sequent followups and consider this site still bad. Only
after a site clears all these checks do we deem it clean.

3 Results

We examined reports submitted to the StopBadware
Clearinghouse between October 10 and December 5,
2011. Of the 960 distinct reports submitted during that
time, we identified 161 distinct instances of malware el-
igible for reporting.

3.1 Measuring the impact of notices
We first set out to determine whether sending notices af-
fected the rates of malware cleanup. Table 1 provides
some summary statistics to help answer this question.
Entries are given for each category of notice – control
(no notice issued), minimal, or detailed notices. The

left-most figures summarize all 161 reports. We report
the number matching each category, followed by the per-
centage of websites that have been found clean at the end
of our 16-day investigation. Lastly, we report the median
number of days required to clean up those sites that were
successfully remediated.

For instance, we can see that 45% of websites in the
control group are cleaned within 16 days, compared to
49% of those receiving a minimal notice and 62% of
those receiving a detailed notice. This supports the hy-
pothesis that notices do make remediation more likely.
The data also suggests that the remediation, when it takes
place, occurs faster when detailed notices are sent. Sites
receiving detailed notices are cleaned up within one day
(that is, if they are among the 62% of sites that are
cleaned up at all), compared to two days for detailed no-
tices and four days for websites in the control group.

The other figures in the table examine whether differ-
ences in the type of malicious behavior affect the no-
tices. The table compares those websites deemed to
be “purely malicious” to those websites that are merely
compromised. In both cases, notices substantially im-
prove cleanup rates – rising from 46% to 58% on purely
malicious sites and 45% to 63% on compromised sites.
Similarly, the distinction between sites directly distribut-
ing executables and others does not seem to substantially
impact the effectiveness of notices. The figures tell a
similar tale: more detailed notices lead to better cleanup
within a shorter amount of time.

Because we periodically check whether an infected
website has been remediated, we cannot know precisely
when the cleanup occurs. Instead, the data on cleanup
times is interval-censored. For example, if a website is
still infected when we check after 1,2, and 4 days, but on
the eighth day is found to be clean, we record the cleanup
time as having occurred during the interval (4,8]. No-
tably, many websites remain infected even after 16 days.
In this case, we record the cleanup time as having oc-
curred between (16,∞).

The presence of interval-censored data means that we
cannot directly compute statistics such as cumulative dis-
tribution functions. Instead, we must use survival analy-
sis to estimate the expected probabilities based upon the
recorded intervals. Figure 3 (left) plots a survival func-
tion for the three categories of notices. A survival func-
tion S(t) measures the probability that an infection takes
more than t days to clean. This is similar to a comple-
mentary cumulative distribution function, except that the
time intervals are taken into account using a Turnbull es-
timator to compute the the probabilities [10].

The black dashed lines in the plot includes 95% confi-
dence intervals for the control case based on the cumula-
tive hazard function. The red dash-dotted line indicates
the survival function for those sites receiving minimal
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Report All badware Purely malicious Compromised Executable Other malware
type # % clean days # % clean days # % clean days # % clean days # % clean days

Control 53 45 4 13 46 4 40 45 4 12 67 2.5 41 39 4
Minimal 55 49 2 17 53 4 38 47 1 6 50 8 49 48 1.5
Full 53 62 1 17 58 1.5 36 63 1 5 80 8.5 48 60 1

Table 1: Summary statistics on the time to clean up malware, according to the type of report issued. The table first
presents results for all sites, then divided according to whether the site was deemed to be purely malicious and whether
the website directly hosted a malicious executable file.

Figure 3: Survival function for cleanup time of infected websites: all sites (left), sites not in Google’s blacklist (center),
sites also in Google’s blacklist (right).

notices, while the blue dotted line indicates the survival
function for sites receiving full notices. 87% of web-
sites that received no notice remained infected after one
day, compared to 76% for those receiving minimal no-
tices and 68% of those receiving full notices.

As can be seen from the graph, sites receiving full no-
tices tend to be cleaned up sooner, and the reduction is
nearly always greater than the 95% confidence interval
for the control notices at each point. By contrast, the sur-
vival function for the minimal notices is very similar to
the control notices, except after the first day. These re-
sults suggest that detailed notices expedite cleanup more
than sending sparse notices or not sending notices at all.
In the following subsections we examine additional fac-
tors that may affect the effectiveness of notices.

3.2 Accounting for outside notifications

One complicating factor when running an experiment
measuring the impact of sending notices is that we are
not necessarily the only party sending them. Any un-
observed notices will necessarily weaken our findings,

since for example if a website assigned to our control
group receives a notice from someone else, then we are
measuring the effect of that notice but assigning it to a
group that was not supposed to receive a notice.

There are a few ways we can deal with this issue. First,
we can observe that so long as the unobserved notices are
relatively evenly distributed amongst our groups, then
the effect will be felt across all groups and so the only
impact of the unobserved notices would be to understate
the effectiveness of notices.

Second, we can directly examine the impact of out-
side notifications on our results. To do that, we checked
all websites against Google’s Safe Browsing malware
blacklist [1]. Google’s malware blacklist is noteworthy
because it is very extensive and since Google automat-
ically notifies webmasters whenever their websites are
found to be infected. Unsurprisingly, a malware no-
tice from Google can quickly attract the attention of a
webmaster dependent on traffic referrals from search en-
gines. Consequently, we compare the effects of notice
on reports that did not receive Google reports to those
receiving Google reports.
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Report Not in Google In Google’s BL
type # % clean days # % clean days

Control 35 46 3 18 44 4
Minimal 28 54 1 27 44 3
Full 37 65 1 16 56 16

Table 2: Summary statistics on cleanup rates based on
whether a site appears in Google’s blacklist. Sites not in
Google’s blacklist see the biggest gains from notices.

Table 2 shows that 100 of the 161 websites appearing
in our data set did not appear in Google’s blacklist. It
also shows a relatively even distribution among the three
categories of notices.

Perhaps the most striking result can be seen by in-
specting Figure 3 (center), which shows the survival
function for the websites that did not receive a notice
from Google. In this case, the effect of sending full no-
tices increases substantially. Now, the survival function
for sites receiving full notices clearly exceeds the 95%
confidence interval for the control group. The cleanup
rate for full notices is consistently around 20 percentage
points higher than for the control case. For instance, 17%
of websites that did not receive a notice from Google or
us were cleaned up within one day, compared to 40% of
sites receiving a notice from us. Even after 16 days, when
46% of sites receiving no notice are cleaned up, 65% of
websites receiving a detailed notice were cleaned up.

Finally, Figure 3 (right) shows the survival function
for the websites that did receive a notice from Google.
Here, our sending additional notices did not have any ad-
ditional positive effect. Rather, the cleanup rate is vir-
tually indistinguishable between sites receiving a notice
and those that did not. This is somewhat surprising – one
might expect that a website receiving multiple notices of
infection from different sources would be more likely to
take action. Instead, it appears that diligent website op-
erators act on the first notice, while irresponsible ones
ignore all notifications.

3.3 Does the nature of compromise affect
cleanup?

We also wondered whether the nature of compromise
might affect the cleanup rate. Websites that have been
compromised often have a strong incentive to remove
malware, particularly if search engines stop referring
web traffic to their sites as a result. By contrast, websites
that have been registered for malicious purposes will by
definition be unresponsive, leaving the cleanup task to
the domain name registrar or the hosting provider, which
may not be keen to offend a paying customer. To that

Figure 4: Survival function for cleanup time of compro-
mised and purely malicious websites.

end, we now examine the evidence to answer the follow-
ing two questions:

1. Do compromised hosts get cleaned up faster than
purely malicious websites?

2. Does hosting the payload make a difference?

Recall that we distinguish between websites that are
compromised from those that are registered for purely
malicious purposes. We send notices to the site owner
and hosting provider in the former case, and to the host-
ing provider and domain name registrar in the latter. Fig-
ure 4 plots the survival function for full notices where
Google has not already sent notices themselves. We only
consider that case because the prior sections have already
shown these notices to be the most effective. The solid
green line plots the survival function for compromised
sites, whereas the orange line with long dashes shows
the survival of purely malicious websites. We can see
that compromised sites are consistently cleaned up more
quickly than purely malicious sites, but the difference is
not statistically significant at a 95% confidence interval.

It can be useful distinguish between the type of mal-
ware hosted on a particular URL, such as malicious exe-
cutables, injected JavaScript or VBScript code, redirects,
and exploits. URLs compromised by a malicious exe-
cutable host the file. By contrast, URLs compromised by
injected JavaScript code contain malicious code mixed in
with legitimate code.URLs compromised by redirects re-
turn either a 301 or 302 HTTP status code where the tar-
get is a malware website; sometimes these redirects only
occur with a particular HTTP referrer. URLs hosting ex-
ploits attempt to infect users’ computers through holes in
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Figure 5: Survival function for cleanup time of websites
hosting executables and others.

Adobe Flash, Adobe Reader, Java, Internet Explorer, and
so on. For the purposes of our study, we divide URLs by
whether they host a malicious executable or not, since
this distinction is fairly straightforward.

Figure 5 plots the survival functions for those sites
directly hosting executables and for those that do not.
There is little discernible difference between the cleanup
rates. Thus, we conclude that whether a site delivers exe-
cutables does not affect the speed at which it is removed.

4 Related work

Researchers have documented the proliferation of web-
based malware in recent years. Provos et al. described
the pervasiveness of “drive-by-download” targeting web
search results [6]. Rajab et al. describe the evolution of
attack and defense between web-based malware devel-
opers and those attempting to eradicate malware [7].

Moore and Clayton examined a wide range of on-
line content that is subject to “notice and take-down”
efforts [5]. By comparing different classes of content,
they argued that the incentives for defenders to remove
content was the biggest driver for whether or not par-
ties complied with take-down notices. Undoubtedly, in-
centives can influence whether or not an operator acts
on a malware notice such as those sent out in our study.
We suspect that website operators who believe that an in-
fection could directly harm themselves and not just their
customers (e.g., if they fear punishment in search-engine
results) are more likely to take action after receiving a no-
tice. Of course, in our study we do not directly observe
incentives of operators; instead, we can only measure the
effect of a successful cleanup.

In a study of website take-down companies serving
banks targeted by phishing, Moore and Clayton found
that a lot more information is being collected on bad
websites than is being shared [4]. Our study lends more
empirical support to the argument that notices can make a
difference, supporting Moore and Clayton’s recommen-
dation for security firms to issue more reports.

While we are not aware of any other work describ-
ing experiments to assess the effectiveness of malware
reports as a security countermeasure, a number of pa-
pers have studied the extent to which other interventions
could be effective in combating online crime. Levchenko
et al. found substantial concentration in the registrars
and payment processors used by spam-advertised web-
sites [2]. They recommended that notices of the illicit
behavior should be sent to these points of concentration
as a way to disrupt the spammers’ operations. Liu et al.
consider whether it would be effective to notify regis-
trars of known bad domains in the hopes of suspending
them [3]. They conclude that criminals are more adept at
shifting to new domains than the registrars can act to sus-
pend the offending domains. We have not yet considered
how attackers might adapt if detailed notices of malware
were to be sent en masse.

5 Conclusions, limitations and future work

We have described an empirical study measuring the im-
pact of sending malware reports to affected stakehold-
ers in the hope of remediating malware. The key take-
away from our study is that notices work. Their impact
is immediate – 32% of malware-distributing websites are
cleaned within one day of sending a notice, compared to
just 13% of sites not receiving a notice. Notices are also
long-lasting – 62% of websites receiving a detailed no-
tice were cleaned up after 16 days, compared to 45% of
websites not receiving a notice.

There are two important caveats to these findings,
however. First, the notices must be detailed – notices that
lack detail about the nature of the compromise appear to
have no distinguishable impact compared to not send-
ing a report at all. Second, only the first notice is likely
to be helpful. Websites that have also received malware
warnings from Google were no more likely to respond
to our additional reports. Consequently, we recommend
that prospective malware reporters first examine whether
others have likely already sent notifications before ex-
pending valuable resources on constructing detailed re-
ports. Fortunately, reporters can easily check whether a
website has been flagged as bad by Google by check-
ing the suspected URL against Google’s Safe Browsing
API [1]. Alternatively, one could consult a resource such
as StopBadware’s malware website clearinghouse [8].

There are a number of limitations to the current study
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that might be improved in future work. First, we could
identify more explanatory variables that could be tested
for affecting the malware cleanup rates. Broadly speak-
ing, we could collect relevant data on characteristics of
the defender or the malware itself. Defender characteris-
tics might include attributes of the hosting provider (e.g.,
large vs. small, shared vs. dedicated hosting, country
headquarters), site owner (company size, company vs.
individual, country headquarters) or associated registrar.
Regarding malware characteristics, we already observed
a small but not statistically significant difference between
purely malicious and infected hosts. We saw no differ-
ence between those distributing executables and others.
But perhaps we need to draw better distinctions, such as
between intermediaries and malware delivery end-points,
or between the technology of attack (e.g., JavaScript or
browser plugins).

This brings us to another limitation of the current
study: the relatively small size of the data set. Reports to
BadwareBusters constitute a very small fraction of over-
all malware observed. While the sample size was suffi-
cient to reach statistically significant results, it would be
nice to carry out an experiment on larger samples, partic-
ularly if we want to differentiate between malware and
defender characteristics as suggested above.

It would also be nice to test empirically whether the
reputation of the report sender affects response rates.
For example, many website operators are more likely to
listen to reports coming from an organization such as
Google, where there is a fear of punishment in search
results if the report is ignored. Similarly, sending re-
ports from well-known universities or organizations may
be handled differently to reports coming from security
firms or unknown groups.

A final issue that could be examined in future work
is the potential for re-infection. We frequently observed
websites that would be cleaned up quickly, only for the
infection to re-appear days later. In this study, we treated
re-infected sites as not cleaned up. In fact, the operators
of the websites may very well be responding to the no-
tice, but they lack the skills or dedication to completely
eradicate infection. It would be interesting to investigate
what goes wrong on these sites to prevent complete re-
mediation.
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