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Abstract—We describe a case-control study to identify risk factors that are associated with higher rates of webserver compromise. We
inspect a random sample of around 200 000 webservers and automatically identify attributes hypothesized to affect the susceptibility to
compromise, notably content management system (CMS) and webserver type. We then cross-list this information with data on
webservers hacked to serve phishing pages or redirect to unlicensed online pharmacies. We find that webservers running WordPress
and Joomla are more likely to be hacked than those not running any CMS, and that servers running Apache and Nginx are more likely
to be hacked than those running Microsoft IIS. We also identify several WordPress plugins and Joomla extensions that associated with

compromise. Furthermore, using a series of logistic regressions, we find that a CMS’s market share is positively correlated with
website compromise. Surprisingly, we find that webservers running outdated software are less likely to be compromised than those
running up-to date software. We present evidence that this is true for core WordPress software (the most popular CMS platform) and
many associated plugins. Finally, we examine what happens to webservers following compromise. We find that under 5% of hacked
WordPress websites are subsequently updated, but those that do are recompromised about half as often as those that do not update.
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1 INTRODUCTION

ACH month many thousands of websites are compromised by
E criminals and repurposed to host phishing websites, distribute
malware, and peddle counterfeit goods. Despite the substantial
harm imposed, the number of infected websites has remained
stubbornly high. While many agree that the current level of
Internet security is unacceptably low, there is no consensus on
what countermeasures should be adopted to improve security or
where limited resources should be focused. One key reason we
are in such a sorry state is that measuring security outcomes (and
what factors drive them) is hard. In part, this is because those
who fall victim to cybercrime often prefer not to speak out. But it
is also because security mechanisms are deployed in the wild,
where it can be impossible to design a randomized controlled
experiment isolating the effect of a particular countermeasure to
evaluate effectiveness.

However, even when controlled experiments are not feasible,
other techniques may still be usefully applied. In this paper, we
apply a widely-used method from epidemiology, called a case-
control study, in order to better understand the factors driving
webserver insecurity. Working backwards from data on security
incidents and a control sample, we can identify risk factors
associated with compromise. This in turn can help defenders better
allocate scarce defensive resources to do the most good.

We investigate many observable characteristics of webservers
that may affect the likelihood of compromise. Chief among them
is whether or not they run a content management system (CMS),
an application that simplifies the creation of web content. Some
of the more popular CMSes, such as Joomla and WordPress,
are consistently exploited to give a miscreant control over the
webserver. Additional characteristics include the server type (e.g.,
Apache), the hosting country, and whether or not the webserver
has demonstrated savviness in secure administration practices.

We find the following:
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We apply a novel case-control study design to identify risk
factors associated with webserver compromise. We use
two compromise datasets (phishing and search-redirection
attacks) and construct a control dataset of uncompromised
servers, automatically extracting characteristics suspected
of affecting the risk of compromise (Section 2).

We establish a link between running particular content
management systems and an elevated risk of compromise
(Section 3). We present evidence that compromise risk is
linked to both customizability and popularity. We show
that CMSes that are both highly customizable and popular
(e.g., WordPress and Joomla) face the biggest risk.

We further explore the link between popularity and com-
promise and find that the greater the CMS market share,
the more at risk webservers running the CMS are (Sec-
tion 3).

We further explore the link between customizability and
compromise and find that the more WordPress plugins or
Joomla extensions a website has, the greater the odds of
compromise (Section 3.3).

We discover that servers running more up-to-date software
are at greater risk of compromise (Section 4). We find this
to be true for WordPress and many popular WordPress
plugins and Joomla extensions. We hypothesize this is
because the most up-to-date software is both more cus-
tomizable and more popular than previous versions.

We examine what happens to servers following an initial
compromise to distribute malware (Section 5). We find that
webservers running outdated software are compromised
again, or recompromised, most often when compromised
and are not subsequently updated. Recompromise rates are
lowest when webservers are outdated at the time of com-
promise but brought up-to-date following compromise.
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2 METHODOLOGY

We begin by setting out the key research questions in Section 2.1,
then outline the case-control study design in Section 2.2. We dis-
cuss the data collection and classification approach in Section 2.3.
The collected data and analysis scripts are publicly available for
replication purposes at doi:10.7910/DVN/25608.

2.1 Research Questions

We investigate three categories of research questions about factors
that may influence webserver compromise: software type, software
market share, and webserver hygiene.

Most generally, we hypothesize that there are measurable
differences in compromise rates according to the type of software
run on webservers.

HO: Running a CMS is a positive risk factor' for compromise.
HOb: (corollary) Some CMS types are risk factors for compro-
mise.
HOc: (corollary) Some CMS add-ons are risk factors for com-
promise.
H1: Some server types are risk factors for compromise.

There are several reasons why servers running CMSes may
be compromised more often. First, CMSes simplify configuration
by reducing technical barriers, which means that they are often
administered by non-experts. This could lead to a greater chance
for server misconfiguration. Second, CMS platforms are a form
of software monoculture, exhibiting common vulnerabilities in
both the underlying code and the default configurations. We also
expect some CMS platforms to be more secure than others. For
similar reasons, we expect some CMS add-on software, which
adds customization to the standard platform, will also increase the
likelihood of infection

We also anticipate that there will be differences in compromise
rates based on the type of server software used. This is because
there are different amounts of exploitable vulnerabilities present
in the underlying code bases. Additionally, some applications (in-
cluding CMSes) run only or primarily on particular server types,
and each application has its own susceptibility to compromise.

Furthermore, we suspect that a key driving force behind
the variation in compromise rates across software types is the
software’s market share. When more webservers run a particular
type of software, they collectively become a more attractive target
for miscreants. The cost of crafting new exploits can be amortized
over many more infections for more popular software. While many
would agree with such logic on software types, we hypothesize
that the same logic also applies to different versions of the same
software: more popular software versions tend to be targeted more
often than less popular ones. We suspect this is true even when the
less popular version is more outdated and has more vulnerabilities.

H2: CMS market share is a positive risk factor for webserver
compromise.
H2b: (corollary) Outdated software with limited market pene-
tration is a negative risk factor for compromise.
H2c: (corollary) The number of exploits available for a type of

software is a positive risk factor for compromise.

1. In this paper, a positive risk factor is actually a bad thing, as it indicates
greater odds of compromise. By contrast, a negative risk factor indicates lower
odds of compromise.

Our final group of hypotheses involve the individual security
practices of webserver administrators. We believe that, indepen-
dent of the software running on a webserver, adopting security
best practices that improve server “hygiene” can influence the
likelihood of compromise.

H3: Actively hiding detailed software version information is a
negative risk factor for compromise.

H4: Running a webserver on a shared hosting platform is a
positive risk factor for compromise.

HS: Setting the HTTPONLY cookie, which protects against

cross-site scripting attacks, is a negative risk factor for
compromise.

We note that there are other reasons why a webserver could be
put at greater risk of being hacked than just the factors discussed
above. For example, administrator competence (not captured by
the hygiene indicators) certainly plays a role. Security policies
also matter: lax password policies or practices could lead to
compromise. Finally, the value of the target influences what gets
hacked: high-reputation websites, for instance, are targeted for
compromise more frequently in search-redirection attacks [1].

We have chosen not to examine the impact of these additional
factors in the present study. We decided to focus on CMSes, server
software, and webserver hygiene indicators for three reasons.
First, as explained above, there is substantial evidence that these
factors strongly affect compromise rates (e.g., the large number of
exploits available that target CMSes). Second, we have restricted
ourselves to factors that could manageably be observed directly
and in an automated fashion. By contrast, many of the factors
that we chose not to study are not not directly observable, such
as a company’s password policy. Factors that require extensively
crawling or fuzzing a domain to observe, such as inferring firewall
policies, are also excluded because they cannot be carried out
at sufficient scale. Third, we have restricted ourselves to factors
that appear in our sample population with sufficient frequency.
In particular, we investigated many of the risk factors from [2]
and found the vast majority of them to occur too infrequently to
include in our study. It is our view that the methods of analysis
presented here could in fact be applied to additional factors, but
we defer the task to future work.

2.2 Case-Control Study Design

In a case-control study typically used in epidemiology, data on
those afflicted with a disease are compared against as similar a
population as possible of those not afflicted [3]. For example, in
the seminal case-control study that uncovered the link between
smoking and lung cancer, Doll and Arthur surveyed British doctors
about their smoking habits, then compared it against data collected
subsequently on doctors’ mortality rates [4]. They found that
doctors who smoked were much more likely to die than doctors
who did not. In general, case-control studies work by comparing
two populations, one with a condition (the ‘case’) to one without
who are otherwise similar (the ‘control’). Researchers can then
work backwards to identify important risk factors by comparing
the relative incidence of different characteristics in the case and
control populations.

Similarly, we sample a population of webservers and compare
them to other populations of webservers that have been compro-
mised. Figure 1a demonstrates the design for the phishing dataset.
We start with a comparable webserver population — domains
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(a) Case-control study design, demonstrated for phishing dataset
and CMS type as risk factor.

.COM
90 million

(b) Venn diagram demonstrates how we
join webserver and phishing datasets.

Fig. 1: We join the webserver and compromise datasets to compare risk factors with outcomes.

registered in . com. We then assign the .com domains from the
phishing dataset as the case and the domains from the webserver
dataset as the control. We can then treat characteristics such as
CMS type, server type, and hosting country as potential risk
factors. (We explain how each of these datasets and risk factors are
collected in the next subsection below.) Figure 1b shows a Venn
diagram that explains how the phishing and webserver datasets
are joined. A similar approach is used for the search-redirection
attacks dataset and the webserver dataset.

Note that with case-control data, we do not make any claims
about the overall incidence of compromise in the population. This
is because we compare two different samples (the compromised
and broader samples). Instead, we analyze the prevalence of
compromise relative to the occurrence of risk factors such as CMS

type.

2.3 Data Collection Overview
2.3.1 Control Population: Webserver Sample

To answer our research questions, we need a random sample of
webservers; however, obtaining a perfectly representative sample
of all webservers is not possible since there is no global list
available from which to sample. According to Verisign, there are
over 252 million registered domains [5], but most zone files listing
domains are not made public. Instead, we take a random sample
of domains listed in the . com zone file. While limited to a single
TLD, it is worth noting that .com comprises nearly half of all
registered domains, and it is used by websites in many countries.
Furthermore, . com domains include websites from a wide range
of popularities. Thus, we feel that sampling from . com is broad
enough to be representative of all webservers online.

We sampled webservers over a period of 9 days, obtaining
information on 210496 domains selected at random from the
.com zone file downloaded January 15, 2013. We chose this
sample size to ensure that it would likely include enough websites
running CMSes with at least 1% market share. This, in turn,
improves the chances of obtaining statistically significant results.

We remove all free hosting and URL shortening services
(where the URLs are likely set up purposely by the criminals)
from our collection. Finally, we refer to the trimmed sample of
.com domains as the webserver dataset.

2.3.2 Case Populations: Compromised Webservers

We consider two sources of data on hacked webservers. First, we
examine an amalgamated “feed” of phishing URLSs, comprising
real-time reports from two firms that remove phishing websites

on behalf of banks, a large brand owner, the crowdsourced list
from PhishTank [6], and the Anti-Phishing Working Group’s
community feed [7]. We examined 97 788 distinct URLs from
29682 domains impersonating 1098 different brands reported
between November 20, 2012 and January 7, 2013 in the phishing
dataset. According to [8], 94% of domains used for phishing
during this period were compromised websites. Since nearly all
of the remainder are highly-ranked sites that we excluded as
described below, we are confident that the domains used in our
study were compromised to serve phishing pages.

The second dataset on webserver compromise came from
websites observed to be engaging in search-redirection attacks.
Here, websites with high reputation are hacked and reconfigured
to surreptitiously channel traffic from search engines to unlicensed
pharmacies. Notice that we do not gather information on phar-
macies set up by criminals, but rather on domains that were set
up by legitimate Internet users and compromised to redirect to
criminal websites. We obtained the dataset gathered by the authors
of [1], who updated their system to detect advanced forms of
cookie-based redirection as described in [9]. The dataset includes
web search results from 218 pharmaceutical-related search terms.
Webservers are included in the list if they are observed to redirect
to a third-party website and subsequently found to engage in
cloaking. The search-redirection attacks dataset includes 58 516
distinct URLs gathered between October 20, 2011 and December
27, 2012. These correspond to 10677 unique domains, 6 226 of
which have a . com TLD.

2.3.3 Extracting Webserver Risk Factors

The head of an HTML webpage often contains metadata
about the webpage in so-called meta tags. One piece of in-
formation that many content management system (CMS) au-
thors (and text editors) include is a “generator” tag. This
optional tag generally contains the text editor type, content
management system, version number and/or any special CMS
themes used. For example, a website running WordPress version
3.2.1 might contain the tag <meta name="'‘generator’’
content="‘WordPress 3.2.1’">. We downloaded a
copy of the HTML for the top-level webpage on a given domain,
and then parsed the HTML to extract the tag.

We then attempted to identify the CMS, if any, along with
the version information if included. We used manually crafted
regular expressions to complete the task. We focused on the top
13 CMSes with at least 1.0% of CMS market share as of January
2013 according to W3Techs [10]. These 13 CMSes collectively
comprise 88.4% of all websites using CMSes. We could identify
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CMS type for 9 of the top 13 (84.6% of all CMSes). We also
included 3 more CMSes, each with less than 1.0% of market share.

However, we cannot solely rely on generator tags to classify
websites by CMS. For instance, most websites running Drupal,
one of the most popular CMSes, do not display generator infor-
mation in their metadata. Consequently, in addition to gathering
generator information, we ran a number of regular expressions
corresponding to 3 of the 4 most popular CMSes against the
dataset. Appendix A compares our custom approach to several
off-the shelf tools for CMS identification.

To identify server software, we collected the packet headers
along with the HTML code. In each header was a line specifying
the server such as Server: Microsoft-IIS/7.5.From this
we extracted the server type and version number. We also fetched
the IP address of the server and mapped this to the country of
origin using MaxMind [11].

We also detected the presence of add-on software commonly
used in CMSes, called plugins by WordPress and extensions by
Joomla. It has been frequently argued that this third-party add-on
software is a natural target for attackers, especially as the core
CMS software becomes hardened. We focus on the top fifty most
popular WordPress plugins and Joomla extensions (100 in total),
as determined by their occurrence in the control dataset.

We identified WordPress plugins by scanning each
website’s stored HTML files for paths beginning
with /wp—content/plugins/. The following
directory indicates the corresponding plugin, e.g., a
website using the WP eCommerce plugin has the

/wp—content/plugins/wp—e—commerce/ path.

We detected Joomla extensions in a similar manner. Extensions
are comprised of components, modules, plugins, templates, and
languages. We used regular expressions to identify each plugin,
such as /components/com_\wx/ for finding components.

We also tried to find versioning information for
WordPress plugins. As there is no standard way to convey
version information in plugins, from manual inspection we
successfully identified plugin information for 19 of the top
50. Some WordPress plugins broadcast their version in a
parameter handed to their scripts. For example, a website
running version 6.1 of Google Analyticator would contain
wp-content/plugins/google-analyticator/
external-tracking.min. js?ver=6.1. Unfortunately
not all plugins are so transparent with versions, and those that are
may not be specifying the plugin’s version (instead, a version of
the script or the WordPress installation).

2.3.4 Reducing False Positives in the Infection Datasets
Not all of the URLSs in the compromise datasets are from hacked
webpages. For the phishing dataset, we deem any URL to be a
false positive if the URL does anything other than impersonate
another website. For the search-redirection attacks dataset, we
classify any URL as a false positive if the destination website
following redirection appears related to the source website (e.g.,
ilike.comredirects to myspace . com, which bought the com-
pany).

Since the false positive rates for phishing are consistently
higher than for search-redirection attacks, we developed auto-
mated techniques to discard websites that were errantly placed
on these lists. We removed all FQDNs that redirected to legit-
imate US-based banks®> and other known non-banks frequently

2. Found on the FDIC website [12].

targeted by phishing, such as paypal.com, amazon.com
and facebook.com. We also generated a sequence of regular
expressions that detected Microsoft Outlook Web Applications
and coupon websites and checked them against the HTML we
downloaded previously. These initial steps reduced our overall
false positive rate for the phishing dataset from 9.4% to 5.0%.
To further improve, we manually inspected all URLs in the
Alexa top million sites and excluded any false positives from
further consideration, yielding final false positive rates of 2.3%
for phishing and 4.3% for search-redirection attacks. These false
positive rates were calculated by inspecting a stratified random
sample by Alexa rank.

3 IDENTIFYING RISK FACTORS FOR COMPROMISE
3.1 Odds Ratios

Odds are defined by the ratio of the probability that an event will
occur to the probability it will not occur. For example, if p = 0.2,
then the odds are 1%} = % = 0.25. Odds express relative
probabilities. Odds ratios compare the odds of two events, each
occurring with different probabilities.

In case-control studies, odds ratios compare the odds of a
subject in the case population exhibiting a risk factor to the odds
of a subject in the control population exhibiting a risk factor.

Consider the four cases:
Case (afflicted)

PcaseRF

Control (not afflicted)

Has risk factor PDCHRF
No risk factor DCaseRE DCuRE
The odds ratio, then, is the following product of probabilities:

PcaseRF /pCaseﬁ DPCaseRF * PcurE

odds ratio (OR) = =
y4eliinNg / DPcarr

PcaseRF * PCtRF

An odds ratio of 1 means that there is no difference in
proportions of the risk factor among the case and control groups.
An odds ratio greater than 1 indicates that those in the case group
are more likely to exhibit the risk factor (so-called positive risk
factors). By contrast, an odds ratio less than 1 indicates that those
in the case group are less likely to exhibit the risk factor (indicating
a negative risk factor).

Results

Table 1 reports odds ratios for different CMS and server types
for both compromise datasets. We computed odds ratios for web-
servers running each of the major CMSes compared to webservers
not running any CMS. We denoted statistically significant positive
risk factors in red and statistically significant negative risk factors
in green. We can interpret these results as webservers running
WordPress were more than four times as likely to be compromised
to serve phishing pages than a webserver running no CMS, but
a webserver running Blogger was only about a third as likely
to be compromised to serve phishing pages than a webserver
running no CMS. For the phishing dataset, some less popular
CMSes fare better than not using a CMS, but the more popular
CMSes are positive risk factors. WordPress, Joomla and Zen Cart
had increased odds of compromise, while Blogger, TYPO3 and
Homestead reduced risk.

This supports hypothesis HOb, but partially refutes hypothesis
HO that using any CMS increases the odds of compromise. For
search-redirection attacks, CMSes are either as bad or worse than
not using a CMS, supporting HO. Notably, the odds ratios for
Joomla and WordPress are even higher than for phishing. The
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Content Management System (CMS) Type

Risk  Odds Phishing dataset Risk  Odds Search-redirection attacks dataset
factor ratio  95% CI #Phish ~ # Not phish | factor ratio  95% CI # Redir.  # Not redir.
No CMS 1.00 8747 190305 1.00 2260 190314
WordPress + 4.44  (4.24,4.65) 2673 13101 + 1718  (16.20, 18.22) 2674 13106
Joomla + 7.11  (6.62,7.63) 1106 3384 + 2396 (22.05,26.04) 963 3385
Drupal 0.79  (0.58,1.04) 46 1279 + 6.59  (5.33,8.07) 100 1279
Zen Cart + 4.84  (3.26,6.96) 33 149 235  (0.71, 5.56) 4 149
Blogger - 028 (0.13,0.52) 8 637 1.08  (0.49,2.02) 8 637
TYPO3 - 014 (0.03,0.37) 3 481 + 423 (2.72,6.24) 24 481
Homestead - 0.04 (0.00,0.18) 1 607 - 0.16  (0.01, 0.69) 1 607

Server Type

Risk  Odds Phishing dataset Risk  Odds Search-redirection attacks dataset
factor ratio  95% CI # Phish  # Not phish | factor ratio  95% CI # Redir.  # Not redir.
Microsoft IIS 1.00 1002 60495 1.00 193 60497
Apache + 544  (5.10,5.81) 10549 117017 + 1412 (12.26, 16.36) 5276 117031
Nginx + 224  (2.01,250) 507 13649 + 8.63  (7.26, 10.30) 376 13649
Yahoo - 0.62 (0.41,0.89) 27 2634 1.57  (0.85,2.64) 13 2634
Google 0.63  (0.35,1.03) 14 1359 1.88  (0.84,3.57) 8 1359

TABLE 1: Odds ratios for varying CMS and server types. Statistically significant results are listed in bold. Odds ratios less than one
are negative risk factors, while odds ratios greater than one are positive risk factors for compromise.

WordPress odds ratio jumps from 4.4 phishing to 17 for search-
redirection attacks; for Joomla, the jump is from 7 to nearly 24!

For some smaller CMSes, the evidence for phishing and
search-redirection attacks is mixed. Homestead has a negative risk
factor for phishing and search-redirection attacks dataset. TYPO3
and Blogger are negative for phishing, but TYPO3 has a positive
risk factor for search-redirection attacks, whereas Blogger is not
statistically significant.

We note that the larger CMSes tend to be the strongest
positive risk factors for compromise, according to both datasets.
This supports hypothesis H2 that CMS market share is positively
correlated with compromise, but more analysis is needed.

For server software type, we compute risk factors relative to
Microsoft IIS, the second-most popular server software. Apache
and Nginx are positive for both phishing and search-redirection
attacks. Note that we are not making any claims about the relative
security levels of the different software classes. All software
contains vulnerabilities, and we are not taking sides on the debate
over whether open- or closed-source software has fewer unpatched
holes [13]. Instead, our results simply show that, relative to
software popularity, criminals tend to use Apache and Nginx more
for perpetrating their crimes than Microsoft IIS.

3.2 Logistic Regressions

We now present logistic regressions to study why websites are
compromised. We run four regressions in all: two for webservers
running a CMS (one each for the phishing and search-redirection
attacks datasets) and two for webservers not running any CMS
(one for each compromise dataset). We run the additional regres-
sions because some explanatory variables only apply to CMSes,
but many of the variables measuring security signals apply regard-
less of whether or not a webserver uses a CMS.

We group the following explanatory variables into three
categories: CMS market share, webserver hygiene and server
attributes.

CMS Market Share

# Servers: We took market share for each CMS from [10] as
of January 1, 2013 and multiplied it by population of registered
.com domains (106.2 million) and estimated server response rate
(85%) [5]. This variable was omitted for non-CMS regressions.

Webserver Hygiene
HTTPONLY cookie: We checked the header for an HTTPONLY

cookie used to protect against cross-site-scripting attacks. We
interpret setting this cookie as a positive signal of overall server
hygiene. Checking for this cookie was one measure of server
hygiene also used in [2].

Server Version Visible: We analyzed the server headers for any
version information regarding the server, whether it be Apache 2
or Apache 2.2.22. This is a Boolean variable which is true if the
server gave any potentially valid version information.

Shared Hosting: We counted the number of times we observed an
IP address in the combined webserver and compromised datasets.
We deem a domain to be part of a shared host if 10 domains
resolve to the same IP address. A recent Anti-Phishing Working
Group report presents evidence that some attackers target shared
hosting in order to simultaneously infect many domains [8].

Server Attributes

Country: We took the top ten countries from the combined dataset

and compared each of them the domains hosted in all the other

countries in the dataset.

Server Type: This categorical variable looks at the type of server

software a webserver is running. We only consider the 5 most

popular types: Apache, Microsoft IIS, Nginx, Google, and Yahoo.
The model takes the following form:

Pcomp

log = ¢p +c1 lg (# Servers) + co HTTPONLY

1- Pcomp
+c3 Server Vsn + ¢4 Shared Hosting

+c5 Country + cg Server type + ¢

Table 2 shows the results from these four regressions. CMS
popularity is positively correlated with compromise in the phish-
ing dataset. Each doubling of the number of webservers running
the CMS increases the odds of compromise by 9%, supporting
hypothesis H2. The result is inconclusive for search-redirection
attacks, but the trend is similar. Also, Appendix B studies the
link between market share and exploitability. The analysis in
Appendix B shows that the number of exploits is also a positive
risk factor for being hacked to serve phishing pages, which
supports H2c.

We consider hygiene variables next. We do not observe any
consistent evidence that hiding server information promotes or
inhibits compromise, so we can neither refute nor support H3.
Setting an HTTPONLY cookie appears to be a negative risk factor
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CMS No CMS
Phish Search-redirection attacks Phish Search-redirection attacks
coef.  odds p-value | coef. odds p-value coef.  odds p-value | coef. odds p-value
Intercept -4.77 001 < 0.0001 | -4.10 0.02 < 0.0001 -4.11 002 <0.0001 | -599 0.00 < 0.0001
1g # Svrs 0.09 1.09 < 0.0001 0.02 1.02 0.16
HTTPONLY 022 125 0.06 | -0.83 0.44 < 0.0001 -0.87 042 < 0.0001 0.15  1.17 0.12
No Svr Vsn -0.15  0.86 0.0001 0.10 111 0.01 0.04 1.04 0.09 032 138 < 0.0001
Shared Host 095 258 <0.0001 | -1.58 0.21 < 0.0001 028 1.32 < 0.0001 | -1.27 028 < 0.0001
Apache 149 445 < 0.0001 1.48 438 < 0.0001 1.80  6.06 < 0.0001 1.37 394 < 0.0001
Nginx 059  1.80 0.003 1.37 3.93 < 0.0001 070  2.00 < 0.0001 143 419 < 0.0001
Yahoo -0.34 072 0.59 272 1512 < 0.0001 -0.54  0.58 0.009 | -0.02 098 0.97
Google -1.50  0.22 0.0003 | -0.81 0.44 0.10 -0.36  0.70 0.35 025 1.29 0.67
Other 1.92  6.84 < 0.0001 0.83 2.30 0.0009 0.81 224 < 0.0001 096 2.62 < 0.0001
Model fit: | x? =1353,p < 0.0001 x? = 1825,p < 0.0001 X2 = 5937, p < 0.0001 x? = 2113,p < 0.0001

TABLE 2: Table of coefficients for logistic regressions comparing rate of compromise to many explanatory variables. Statistically
significant odds ratios are listed in bold. Odds ratios less than one are negative risk factors, while odds ratios greater than one are

positive risk factors for compromise.

for being compromised, but we need more data to support the
associated hypothesis H5.

Running on a shared host is a positive risk factor for being
hacked to serve phishing pages, which supports H4 and findings
from [8]. However, we note that it is a negative risk factor for
being hacked for search-redirection attacks. It appears that cyber-
criminals engaged in phishing have adopted different techniques
for infecting webservers than those carrying out search-redirection
attacks. Further investigation shows that there is a correlation
between being on a shared host and having a low or no Alexa
rank: 13% of the top 10M, 26% of the next 10M, and 55% of
websites without an Alexa rank are hosted on a shared host (from
our combined webserver and search-redirection attacks dataset).
This result could signal that search-redirection attacks attackers
target higher ranked pages, which makes sense in light of [1],
which showed that compromised websites with a higher PageRank
stay in search results longer.

Previous results from webservers in Section 3.1 are similar
to those in this regression — notably that Apache and Nginx
webservers remain positive risk factors compared to Microsoft IIS
in all cases.

Finally, we note that there is more consistency between the re-
gressions examining CMSes and no CMSes than there is between
regressions for phishing and search-redirection attacks. The results
for the shared host variable are the same, regardless of whether a
CMS is used, as are the results for server types and most countries.
Only the practice of hiding detailed server version information
was very inconsistent, being a negative risk factor for phishing
on CMSes and a negative risk factor for search-redirection attacks
when no CMS is used.

3.3 The Role of CMS Add-on Software in Compromise

Even if all the exploitable holes in core CMS software are
patched, a large weakness in the form add-on software remains.
As described in Section 2, we identified the 100 most popular
WordPress plugins and Joomla extensions.

We first examine whether running one of these popular plugins
increases the odds for compromise. 57.8% of webservers running
WordPress and 60.1% running Joomla run at least one top 100
add-on. Indeed, WordPress servers running a top-50 plugin are at
21.9% greater odds of compromise, and Joomla servers running
a top-50 extension are at 54.3% greater odds of compromise.
Running a popular add-on software, regardless of what it is, is
a positive risk factor for compromise.

We next take a closer look at how individual add-ons can affect
the odds of compromise. Table 3 reports odds ratios for WordPress
plugins and Joomla extensions found to be statistically significant.
Here we compare the odds of websites running the CMS that
also run the plugin against those running the CMS but not the
plugin under study. We find 15 of the top-50 WordPress plugins
are positive risk factors for compromise. MM Forms Community
leads the way, with a 26-times greater odds of compromise com-
pared to running WordPress without the plugin. This plugin is rife
with problems: there was a SQL Injection vulnerability reported
in 20117, an arbitrary file upload vulnerability reported in 2012*,
and was last under active development in 2012. Notably, 4 top-
50 WordPress plugins are negative risk factors for compromise,
including the popular script TimThumb, which had been subject
to a high-profile vulnerability in August 2011 [14] and again in
June 2014°. Meanwhile, 17 top-50 Joomla extensions are positive
risk factors for compromise, and just two are negative risk factors
for compromise.

Figure 2 plots odds ratio for compromise as a function of the
total number of plugins and extensions observed on a given web-
site. The odds are compared against webservers not running any
add-on software. For both WordPress and Joomla, each additional
add-on creates an increasing risk for compromise. For WordPress,
websites running two plugins have a 1.6 times greater odds of
being compromised than those not running any plugins. This rises
to 2 times greater odds for websites running 10 or more plugins.
Adding new Joomla extensions, by contrast, has a more clearly
additive impact on compromise risk. Webservers running 3 Joomla
extensions face 1.86 times greater odds of compromise compared
to those running Joomla without extensions. The odds increase
steadily as more extensions are installed, rising to 4.8 times greater
odds of compromise for webservers running at least 10 Joomla
extensions. Finally, we ran a logistic regression to measure the
impact of software add-ons controlling for CMS version, server
software version and hosting infrastructure. This quantifies the
incremental risk of each additional software add-on. The results
indicate that, all else equal, each new add-on increases the odds of
compromise by 11%.

3. http://www.exploit-db.com/exploits/17725/
4. http://wpsecure.net/2012/06/mm-forms-community/
5. http://seclists.org/fulldisclosure/2014/Jun/117
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WordPress Plugin | Odds  95% CI | Joomla Extension | Odds  95% CI
MM Forms Community 2599  (5.09, 634.31) | JomComment® 7.80 (5.27,11.94)
Dynamic Content Gallery 7.07 (5.47,9.23) Autson Slide Show™ 222 (1.36, 3.68)
Audio Player 223 (1.80,2.76) RokStories® 217  (1.53,3.08)
‘WPaudio MP3 Player 1.87  (1.29,2.69) Social Media Links™ 2.04  (1.28,3.27)
Easing Slider 1.85 (1.22,2.79) Frontpage SlideShow® 1.94 (1.31,2.87)
WordPress Popular Posts 1.72 (1.24, 2.36) JComments® 1.92 (1.41,2.61)
‘WP-Polls 1.70 (1.37, 2.10) RokAjaxSearchC 1.86 (1.42,2.43)
Digg Digg 1.63 (121, 2.17) JA Tabs 1.84 (1.22,2.77)
WP-reCAPTCHA 1.52 (1.11,2.07) News Show Pro GK4M 172 (1.22,2.42)
‘WP-PostRatings 1.50 (1.07, 2.10) Frontpage SlideShow™ 1.64 (1.17, 2.30)
MailChimp 1.40  (1.05, 1.86) AVReloaded 1.64  (1.24,2.16)
Viper’s Video Quicktags 1.39 (1.09, 1.76) Vinaora Visitors Counter™ 1.58 (1.17,2.14)
Sociable 130 (1.06, 1.60) YOOsearch™ 156 (1.01,2.42)
Jetpack 1.28  (1.18, 1.45) K2¢ 1.54  (1.28, 1.85)
Google Analyticator 1.20 (1.03, 1.38) RokBox® 141 (1.19, 1.68)
TimThumb 0.81  (0.68,0.95) YOOeffects 1.37  (1.00, 1.85)
Custom Contact Forms 0.63 (0.44, 0.88) MTupgrade 1.31 (1.04, 1.65)
Gravity Forms 0.63  (0.39,0.97) Joom!Fish® 0.56  (0.41,0.74)
IE SiteMode 0.08  (0.04,0.12) Languages™ 0.42  (0.23,0.74)

TABLE 3: Odds ratios for varying plugin types (all statistically significant).

QOdds of compromise when running WordPress plugins

QOdds of compromise when running Joomla extensions

odds ratio

o+

# plugins

T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9

# extensions

Fig. 2: Odds of compromise based on the number of top-50 WordPress plugins (left) and top-50 Joomla extensions (right). Statistically

significant positive risk factors are indicated by red plus signs.

4 DoOES OUTDATED SOFTWARE GET HACKED
MORE OR LESS OFTEN?

A best practice for webserver security is to run the most recent ver-
sion of software available, as updates tends to plug security holes
as well as add new features. For instance, Google notifies web-
masters via its Webmaster Tools when it detects outdated server
software as a way to improve security [15]. However, updating
server software can be a nuisance, due to cross-dependencies, poor
interfaces and the demands of maintaining uptime. Consequently,
many webservers run software that is many months, or even years,
out of date. The security firm Sucuri Labs even runs a website [16]
that names and shames websites running woefully outdated CMS
or server software.

But we wondered whether or not servers running outdated
software actually do get compromised more often than those that
do not. We hypothesize that the opposite is usually true: that
outdated webservers are compromised less often provided that
most other webservers are already upgraded. To test this and
related hypotheses, we first restrict ourselves to the servers running
WordPress. This is for two reasons: WordPress is the most popular
content management system and, by default, WordPress installs
provide detailed version information ordered straightforwardly.

4.1 Comparing Compromise Across Major WordPress
Subversions

Odds Ratios for Major Version Differences in WordPress

First, we investigated whether servers running WordPress that
hid version information were at less risk of compromise (to
test hypothesis H3). The results are shown in the first row of
the table in Figure 3c. In fact, hiding WordPress version is a
positive risk factor for being hacked for phishing pages. This
contradicts the frequently held view that hiding detailed version
information improves security, and it instead lends credence to
the view that publishing information helps defenders more than
attackers. For instance, WordPress and Google send out reminder
emails to server administrators to update their software, but those
who obscured their generator version for security reasons do not
receive the reminders. We also note that even though we looked at
version information through the generator tag, attackers oftentimes
try their hack on any server running WordPress, regardless of what
version it says it is. We see no statistically significant effect for
search-redirection attacks, though the trend is similar.

There are differing degrees of outdated software. For servers
with version information, we first compared the risk facing servers
at the most recent version (3.5.1 during our collection time) to
running any other version of WordPress. Running the most up-to-
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date version is a positive risk factor for being hacked for search-
redirection attacks. This too goes against conventional wisdom,
and indirectly supports hypothesis H2 since the most recent
version is also the most popular one.

We also looked at the difference in major versions, ignoring
version 1 since we only had 7 instances in our combined datasets.
We compared all of WordPress 2.* and WordPress 3.* against
WordPress installs with no version information. We see that Word-
Press 3.* installs face more risk of being hacked to serve phishing
pages than WordPress 2.*. We observe similar but statistically
insignificant results for search-redirection attacks.

Chi-squared Test for Risk Across Subversions

The odds ratios just discussed offer initial evidence that being
out of date reduces the risk of infection for webservers running
WordPress, at least when comparing major versions. We now drill
down and investigate differences across WordPress subversions
(e.g., WordPress 3.3.%). Figure 3a plots the relative frequency of
servers in our webserver and compromise datasets running each
WordPress subversion. Note the different scales to the vertical axes
— the left axis tracks the frequency in the webserver dataset while
the right axis is used for the two compromise datasets. We first
observe that more outdated subversions are indeed less popular
compared to the most recent subversions. We also see that the
compromise rate roughly follows the popularity of the subversion,
but with substantial variation and lower compromise rates for more
outdated versions.

But are the differences in compromise rates statistically signif-
icant? We can answer that using a x? test, but first, we can inspect
the differences visually using the mosaic plot in Figure 3b. The
vertical axis shows for each version the proportion of compro-
mised webservers (either phishing or search-redirection attacks)
compared to the proportion of uncompromised webservers (from
the webserver dataset). The horizontal axis is scaled so that the
area of each cell matches the frequency of each category. For
instance, the dark blue cell in the bottom right corner shows
the proportion of webservers running WordPress Version 3.5.*%
that have been compromised. This plot shows that the fraction
compromised falls steadily as the subversions grow more outdated.
It also shows that the collective proportion of outdated servers is
still quite substantial.

Finally, the cells are lightly shaded if the difference in pro-
portion for being compromised is statistically significant at the
95% confidence interval according to the x? test, and over 99%
confidence interval if darkly shaded. Red cells are underrepre-
sented and blue cells are overrepresented. We can see that most
of the WordPress 2.* versions are statistically overrepresented in
the webserver dataset and underrepresented in the compromise
datasets. WordPress 3.0 and 3.3 are also overrepresented in
the compromise datasets and underrepresented in the webserver
dataset. The most recent, WordPress 3.5, is the only subversion
overrepresented in the phish dataset and underrepresented in the
webserver dataset. These findings support hypothesis H2b that un-
popular outdated CMSes are negative risk factors for compromise.
It is also consistent with our findings from the odds ratios that the
most recent version is the most at risk of compromise.

Logistic Regressions

The final check we make comparing compromise rates in
WordPress versions is to run a simple logistic regression com-
paring the popularity of a version to the compromise rate in the
phishing dataset.

WordPress plugin % up-to-date % out-of-date  %-pts. difference  Odds

compromised  compromised for up-to-date  ratio
WP-Table Reloaded 48.28 24.71 23.57 2.83
The Events Calendar 48.84 28.30 20.54 2.39
WP eCommerce 40.43 22.70 17.73 2.30
WP jQuery Lightbox 37.14 21.74 15.40 2.07
Theme My Login 37.93 25.00 12.93 1.82
Contact Form 7 3391 24.47 9.44 1.58
Google Analyticator 38.26 29.03 9.23 1.51
WP-Polls 43.72 36.88 6.84 1.33
MailChimp 42.12 3579 6.32 1.31
Audio Player 47.77 41.94 5.84 1.26
Easing Slider 46.67 41.27 5.40 1.24
Lightbox Plus Colorbox 33.33 28.96 437 1.30
Digg Digg 40.52 36.84 3.68 1.16
WPaudio MP3 Player 4343 42.11 1.33 1.05
NextGEN Gallery 28.57 30.59 -2.06 095
Gravity Forms 17.65 22.58 -4.93 0.74
WooCommerce 23.68 28.81 -5.13 0.77
cforms 25.00 31.33 -6.33 0.80
WP-Paginate 29.70 39.13 -9.43 0.66

TABLE 4: Comparing compromise rates for webservers running
up-to-date versus outdated WordPress plugins (statistically signif-
icant odds ratios in bold).

# Servers: We took the market share for each WordPress sub-
version from [10] as of January 1, 2013 and multiplied it by
population of registered .COM domains (106.2 million) and the
estimated server response rate (85%) from [5].

Pcomp

log =cog + c1 g (# Servers) + .

1- Pcomp

The logistic regression yields the following results:

coef. Odds Ratio 95% conf. int.  Significance
Intercept -5.60 0.00 (0.00, 0.01) p < 0.0001
lg(# Servers)  0.19 1.20 (1.17,1.24)  p < 0.0001
Model fit: x* = 200.31,p < 0.0001

These results show that each time the number of servers
running the same subversion of WordPress doubles, the risk of
the server being hacked to serve phishing pages increases by 20%.
This offers further evidence supporting H2.

4.2 Comparing Compromise Across Plugin Versions

As described in Section 2, we were able to automatically extract
detailed version information for 19 of the top-50 WordPress plug-
ins. We now examine whether we see a similar pattern as already
found for WordPress, namely that more up-to-date software is
in fact hacked more often. For each plugin, table 4 reports the
percentage of websites running an up-to-date version of the plugin
that are compromised, compared against the percentage running
outdated software that are compromised.

To be consistent with the findings just presented for Word-
Press, we would expect to see a greater incidence of compromise
among up-to-date plugins than outdated ones. In fact, this is
usually what happens. For 14 of the 19 plugins, the up-to-date
version is compromised more often than servers running outdated
versions of the plugin. In five cases, the odds ratio is statistically
significant, indicating that the higher rate of compromise cannot
be attributed to chance. Notably, in all cases with statistically
significant odds ratios, running up-to-date plugin software is a
positive risk factor for compromise. This lends further empirical
support to the surprising finding that running up-to-date software
may actually put webservers at greater risk of being hacked.
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(a) Incidence of compromise by WordPress version, along with (b) Mosaic plot of WordPress version popularity and incidence of
the popularity of WordPress version. compromise (red cells indicate statistically significant underrepre-
sentation, blue cells overrepresentation).
Risk  Odds Phishing dataset Risk  Odds Search-redirection attacks dataset
factor ratio 95% CI #Phish  # Not phish | factor ratio 95% CI # Redir.  # Not redir.
Version Found 1.00 1834 9676 1.00 1936 9680
No Version + 129 (1.18, 1.41) 839 3425 1.08 (0.98, 1.18) 738 3426
Other WordPress versions 1.00 1606 8599 1.00 1440 8601
WordPress 3.5.1 1.13  (0.97, 1.32) 228 1077 + 275 (2.43,3.09) 496 1079
No Version 1.00 839 3425 1.00 738 3426
WordPress 2.* - 0.2 (0.08,0.17) 26 918 0.88 (0.73, 1.05) 173 918
WordPress 3.* - 084 (0.77,0.92) 1808 8751 0.93  (0.85, 1.03) 1762 8755
(c) Odds ratios by WordPress versioning.
Fig. 3: Exploring the relationship between WordPress version and the incidence of webserver compromise.
5 WHAT HAPPENS TO CMS SOFTWARE FOLLOW- % of hacked % recomp. Odds ratio
5 websites for recompromise
ING A COMPROMISE ¢ Up-to date when compromised 29.1% 22.6% 1
. . . . Never updated 66.2% 335% 1.72  (1.63, 1.81)
Up to now, our analysis has focused on identifying which web- Updated after compromise 4.7% 17.0% 070  (0.62,0.79)

servers are more likely to be compromised. We have also collected
additional data to find out what happens after a compromise
takes place: what actions webmasters take and how that affects
recompromise rates. Cleaning up after an infection can be tricky.
Because many webmasters are unaware of how the attackers got
in [17], they do not always fix the hole that the attacker used to
get in the first time. We hypothesize that the steps a webmaster
takes after being hacked can greatly influence whether or not the
website is hacked later on.

To that end, we set up an ongoing collection using malware
URL data from StopBadware’s Data Sharing Project. This in-
cludes data from ESET, Fortinet, Internet Identity, Malware Must
Die, Sophos, among others. We access each FQDN associated with
a malware URL within an hour of the URL being submitted to the
feed. We then follow up 1, 2, 5, 9, and 15 days after the initial
access to check whether or not the CMS software gets updated.
We accessed 464 737 FQDNs from unique domains from February
2014 through October 2014. Of these, 50 179 ran WordPress, the
sole CMS we investigate here due to its popularity and the ease of
tracking versions. We whittle this down to 44 712 of those which
had easily discernible versioning

Of the WordPress sites, 88.7% had the same WordPress ver-
sion throughout the observational period; 21.6% of these were up
to date on the last day of measurement. Of the WordPress sites that
updated their CMS, 56.4% did so to stay up to date with a new
WordPress version being released. The other 43.6% who were out
of date on the first day of measurement took 5 days, on average,
to update their website an average of 7 subversions.

TABLE 5: Observed updating behavior WordPress websites
hacked with drive-by-downloads, and the effect on recompromise
rates.

Table 5 examines how often WordPress gets updated after
a breach. 29.1% of WordPress websites were up-to-date when
they were hacked. Of the remaining sites, 4.7% updated after a
compromise and 66% continued to run the outdated software. But
what impact does the decision whether or not to update have
on recompromise? We can see that 22.6% of already updated
WordPress websites are recompromised, compared to 33.5% of
sites that never updated. Surprisingly, the group that fares best of
all are those websites that are updated only after a compromise
takes place: they are recompromised just 17% of the time. Thus,
the outdated websites that do get hacked would be wise to update
to the latest version, likely plugging the hole that the attacker used
to get in the first time.

6 DISCUSSION

We now sum up the results of the prior sections by first revisiting
the original hypotheses and second discussing how the results can
be leveraged by security engineers.

Evaluating Research Questions We summarize the analysis of
the previous section by returning to the original research questions.
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HO (Running a CMS pos. RF) Supported for search-
redirection attacks, not uniformly for phishing

HOb  (Some CMS types are RFs) Broadly supported

HOc:  (Some CMS add-ons are RFs) Broadly supported.

H1 (Some server types are RFs) Broadly supported

H2 (CMS market share pos. RF) Broadly supported,
across all CMSes and across WordPress subversions

H2b  (Outdated unpopular software neg. RF) Supported
across WordPress subversions

H2c¢  (# exploits pos. RF) Supported

H3 (Hiding version info neg. RF) Contradicted

H4 (Shared hosting pos. RF) Supported for phishing,
contradicted for search-redirection attacks

H5 (HTTPONLY cookie pos. RF) Inconclusive

Many hypotheses are broadly supported, especially that server
type and CMS market share are positive risk factors. We find
less support for hypothesis HO that all CMSes exhibit higher
rates of compromise; instead, most CMSes, especially the popular
ones, are positive risk factors for compromise. Similarly, many
CMS add-on software components are also positive risk factors
for compromise. Finally, it does not appear that hiding version
information is a negative risk factor in most circumstances, but it
is unclear how often it may be a positive risk factor.

Making the Results Actionable So what can be made of these
results? At a high level, the findings can help reduce information
asymmetries regarding security outcomes for different webserver
configurations [18]. By making security outcomes such as com-
promise incidents more directly comparable across of platforms,
we can help others make more informed decisions about the rela-
tive risks posed. Publishing such data can also motivate software
developers to improve the security of their code.

We have seen, however, that not all “name-and-shame” poli-
cies are consistent with empirical observation. Notably, efforts to
call out websites running outdated software are misguided, since
they obscure our finding that up-to-date servers tends to be hacked
more often. Instead, relative metrics such as odds ratios can be
used to identify the worst offenders and apply peer pressure to
improve. They can also be used as positive reinforcement by
encouraging everyone to improve compared to others.

For the system administrator, our results can be applied in
two ways. First, the results can be used to make better choices
when choosing among available software types and configuration.
Second, after systems have been deployed, the findings can be
used to manage heterogeneous configurations (e.g., environments
with multiple CMSes and server software types). Here, administra-
tors can prioritize how defensive countermeasures such as attack
detection should be deployed. Security policies could even be set
in accordance with the observed relative risk.

More broadly, we have demonstrated a general method of
studying how webserver characteristics affect the risk of com-
promise. The methods presented here can be applied to other
characteristics if the data can be collected. Furthermore, odds
ratios help to identify relationships that should be tested further
using experimental methods.

7 RELATED WORK

While often challenging to carry out, substantial progress has
been made over the past several years in conducting large-scale
measurements of cybercrime. The most relevant work to ours

is from Soska and Christin who use website features to predict
whether a webserver will be hacked in the future [19]. Where we
explicitly parse out webserver features, Soska and Christin let their
algorithm determine the relevant features.

Some work is particularly relevant due to the results from
studying the security of webservers. Doupe et al. describe a
state-aware fuzzer in which they evaluate vulnerabilities in CMS
platforms [20]. Scholte et al. study vulnerabilities in CMS plat-
forms, though they do not relate vulnerabilities to exploits or
observed compromise [21]. Wardman et. al. analyze phishing
URLs to find common substrings; their method inadvertently
finds vulnerable CMS plugins [22]. Nikiforakis et al. crawl many
webpages on top webservers to measure the quality of third-
party JavaScript libraries running on the webservers [2]. John et.
al. create “heat-seeking” honeypots for attackers, some running
commonly exploited CMSes, to observe attacker behavior [23].
Moore and Clayton measure the recompromise of webservers
abused for phishing and find that attackers using targeted, “evil”
Google search queries to discover the webserver is a positive risk
factor for reinfection [24].

Another series of papers are relevant to the compromise
datasets we study. For example, Wang et al. performed a large-
scale study of cloaking, which is often caused by search-
redirection attacks [25]. Notably, the authors dealt with false posi-
tives using clustering. While our data source on search-redirection
attacks focuses exclusively on redirections to unlicensed phar-
macies [1], the attack technique is general [26]. Provos et. al.
study drive-by-download URLs [27]. They find more outdated
versions of server software on malware landing pages than up-
to-date versions.

Various techniques from epidemiology have been applied to
cybersecurity, not just case-control studies. For example, Moore
et al. and Zou et al. constructed analytical models to model
the spread of the the computer worm Code Red as well as
efforts to contain it [28] [29]. Holt et al. and Bossler et al. use
routine activity theory to look at factors affecting cybercrime
victimization [30] [31].

A number of studies deploy methods in common with our
own. Notably, Lee describes the use of a small case-control study
to identify characteristics that predispose academics to spear-
phishing attempts [32]. This paper was expanded by Thonnard
et. al. to identify characteristics that predispose business people
to targeted attacks [33]. Allodi and Massacci analyze the risk of
a vulnerability being exploited based on the CVSS score using a
case-control study [34]. Additionally, Carlinet et. al. use a case-
control study to quantify which ISP customer computers are more
at risk to generate malicious traffic [35].

We adopt one of the signals of security hygiene used by [2],
while Pitsillidis et al. measure the purity of spam feeds in a manner
consistent with how we detect false positives in our compromise
datasets [36].

Many studies have been primarily descriptive in nature, though
some have managed to tease out the factors affecting the preva-
lence and success of attacks. For instance, Ransbotham connected
vulnerability information with intrusion detection system data to
show that open-source software tends to be exploited faster than
closed-source software following vulnerability disclosure [37].

Our work is distinguished from prior work in two ways.
First, we focus extensively on the relationship between webserver
characteristics, notably CMS type and market share, and compro-
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mise. Second, we use the case-control method to understand the
characteristics of large cybercrime datasets.

8 CONCLUDING REMARKS

We have presented a case-control study identifying several web-
server characteristics that are associated with higher and lower
rates of compromise. We joined two infection datasets on phishing
and search-redirection attacks with a large sample of webservers,
then automatically extracted several characteristics of these web-
servers hypothesized to affect the likelihood the webserver will
be compromised. Notably, our approach is data-driven and our
analysis has focused on security outcomes, not security levels. By
studying compromise data, we have reported on what factors affect
the likelihood of actually being hacked, not merely what makes a
system vulnerable.

Supported by statistical methods of odds ratios and logistic
regression models, we found that certain server types (notably
Apache and Nginx) and content management systems (notably
Joomla and WordPress) face higher odds of compromise, rel-
ative to their popularity. We also found dozens of WordPress
plugins and Joomla extensions that were positive risk factors
for compromise. We established that a key driving factor behind
which CMSes are targeted most is the underlying popularity of
the platform. This in turn led to perhaps our most surprising
finding: outdated CMS software is hacked less often than up-to-
date software. We showed this to be true for the core WordPress
software, as well as for 14 of the 19 plugins where we could obtain
reliable versioning information. In many respects, this finding can
be thought of as a webserver-based corollary to the old truism for
desktop operating systems that Macs are more secure than PCs
because they have less market share.

By inspecting a supplementary dataset of 50000 WordPress
websites that were hacked to distribute malware, we found that less
than 5% updated their software after being compromised. Those
that did, however, were much less likely to be recompromised
later on: 16% were recompromised, compared to 32% for those
that never updated. Hence, while our results suggest that websites
need not rush to update their CMS software prior to compromise,
they definitely should do so once a hack has occurred, since it may
close the hole that allowed the attacker to get in.

We are optimistic that the case-control method employed
here may be applied to many other contexts of cybercrime
measurement. We note that, when possible, the findings of case-
control studies should be complemented by other forms of ex-
perimentation that directly isolate explanatory factors. It is our
hope that both retrospective case-control studies and prospective
experimentation will be more widely adopted by cybercrime
researchers, which will in turn yield deeper understanding of the
issues defenders should prioritize.
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APPENDIX A
COMPARISON OF METHODS TO IDENTIFY CMS
TYPE

While a number of tools provide CMS detection as part of
more general-purpose web-service fingerprinters (e.g., BlindEle-
phant [38], WhatWeb [39] and the WordPress-specific Plecost
[40]), we opted to build the custom CMS detector described
above to improve efficiency and accuracy over existing tools.
Both BlindElephant and Plecost issue many HTTP requests to
characterize each server. We ruled these tools out because we
needed a lightweight solution that could quickly detect CMS
type and version for hundreds of thousand webservers. Like our
method, WhatWeb issues a single HTTP request per server (at its
lowest “aggressiveness” level). Combined with its multi-threaded
design, WhatWeb should offer fast identification of CMS versions.
We therefore decided to evaluate its performance and accuracy
compared to our own system.

We selected 2000 random URLs from the webserver dataset
and attempted to identify the CMS type using our system and
WhatWeb’s. In terms of efficiency, we were surprised to find
that WhatWeb took nearly twice as long to finish, despite being
multithreaded. We speculate that the difference in speed can be
attributed to its general-purpose nature. We also found that our sys-
tem was substantially more accurate, identifying the correct CMS
on more websites and having far fewer inaccurate classifications.
We manually inspected all disagreements between WhatWeb and
our tool in order to establish the following detection, false positive
and false negative rates:

Method ‘ FN Rate FP Rate TN Rate TP Rate # Results
WhatWeb 40.7% 6.1% 74.3% 59.3% 1297
Our Method 5.4% 0.1% 99.0% 92.2% 1674

Based on these findings, we conclude that our custom method
is best-suited to the task of identifying CMS type.

APPENDIX B
DoeEs CMS POPULARITY AFFECT EXPLOITABIL-
ITY?

Results from the Subsection 3.1 showed that the some of the
most popular CMS platforms, notably WordPress and Joomla, are
compromised disproportionately often. We now dig a bit deeper
to see if there is a statistically robust connection between CMS
popularity and compromise. Before inspecting the compromise
rates directly, we first compare CMS popularity to the number of
readily-available exploits targeting the CMS platform.

For this analysis, we considered many more CMSes than in

other sections. We consider all 52 CMS platforms tracked in [10].
These additional CMSes all have very small market shares, and
so not enough registered in our datasets to include in the other
analysis. For each CMS we collected the following two indicators:
# Servers: We took the market share for each CMS from [10] as
of January 1, 2013 and multiplied it by population of registered
.com domains (106.2 million) and the estimated server response
rate (85%) from [5].
# Exploits: The Exploit Database [41] is a search engine that
curates working and proof-of-concept exploits from a variety of
sources, including the popular penetration-testing tool Metasploit.
We searched the Exploit Database for each CMS and recorded the
number of hits as a measure of how “exploitable” each CMS is.
We discarded any results not matching the searched-for CMS. We
deem this to be a more accurate measure of attacker interest in and
the “hackability” of a content management system than would be
counting the vulnerabilities reported for a CMS. Unlikely many
vulnerabilities, exploits provide directly actionable information to
compromise machines.

We hypothesize that the number of exploits available for a
CMS depends directly on the number of servers in use. Because
both variables are highly skewed, we apply a log transformation
to each. Here is the statement of the linear regression:

lg (# Exploits) = ¢o + ¢1 lg (# Servers) + €.

The regression yields the following results:

coef.  95% conf. int.  Significance
Intercept -8.53 (-3.37,-13.69) p=0.002
lg(# Servers)  0.64 (0.33, 0.95) p = 0.0001

Model fit: R? = 0.23

Indeed, this simple linear model has a reasonably good fit.
While there is additional unexplained variation, this lends indirect
support to H2. Due to the collinearity of these variables, we only
use one of them (# Servers) in our regressions in this paper.
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