
Syntax of the Finite Model Property

Zachary Ernst

University of Missouri-Columbia

July 23, 2008

Preliminaries

A logic L has the finite model property if, for every formula α, if
L ! α, then there is a model M such that:

1. M has only finitely many elements in its domain,
2. M respects the rules of inference of L,
3. M validates all the axioms of L, but
4. α is false in M.

In algebra, it seems that we talk instead about an algebra having
‘non-trivial finite models’.

An Example (from last year)

Here is the simplest example I can think of:
The logic L has the following axioms:

1. p → p

2. (!p → q) → (p → q)

3. (!p → p) → q

4. Modus Ponens (from p → q and q, infer q) and Universal
Substitution.

! Any finite model of L validates every formula whatsoever.
! All theorems L are either instances of the axioms, or !np → !mp,

with n ≤ m.
! So L smells like an algebra with no non-trivial finite models.
! A very simple argument, originating with Gödel, is used to prove

this fact.

Makinson’s Modal Logic

Dudek’s Algebra (1)

! Dudek’s algebra D has the identity: (ex)y = x . Although this
system has non-trivial models, they are all infinite.

! Let en =

n times︷ ︸︸ ︷
e(e(· · · e(ee) · · ·)).

! We can show that for any n #= m, if a model of D has en = em,
then it has ee = e:

(ex)y = ((ee)x)y

x = ey

x = (ee)y

x = e

! So any non-trivial model has to map each e i onto a different
element of its domain.

Dudek’s Algebra (2)

xy =






2y if x = 3

i if x = 2i for some i

x otherwise
e = 3

! Recall that for every n #= m, a nontrivial model must map
n︷ ︸︸ ︷

e(e(· · · e(ee))) and

m︷ ︸︸ ︷
e(e(· · · e(ee))) onto different elements.

! The model does this by raising 2 to higher powers:

ee = 25

e(ee) = 225

and so on...

! It is a model:

(ex)y =

(3x)y =

2xy = x

UCTA Evaluation

! This tree automaton moves up from the leaves of a tree to the
root.

! Its state and counter change at each node, depending upon:
! the symbol at the current node,
! the states of the automaton at each child node, and
! the counter values at each child node.

! Think of a model in which the elements of the domain are the
possible states of the automaton.

! By having a counter that can take any of |N| values, such a
model has an infinite domain.

! At least with respect to propositional logics, these can be
discovered automatically.

Example Evaluation (1)

Figure:

1

CCppp

Cpp p

p

p p

CpCCppp

(1,0) (1,0)

(1,0)

(1,0)

2

1

1 2
Left Child < Right Child

2

1

1 2
Left Child = Right Child

Initial State: 1
Initial Counter: 0

U−Formula: Cpp
States: {1,2}

+: Increment
−: Set to zero

2

1

1 2
Left Child > Right Child

1 2

1 1

2

22

2 2

1 1

! The automaton starts at the leaves and moves up toward the
root.

Example Evaluation (2)

Figure:

−: Set to zero
2

1

1 2
Left Child < Right Child

2

1

1 2
Left Child = Right Child

2

1

1 2
Left Child > Right Child

1 2

1 1

2

22

2 2

1 1

1

CCppp

Cpp p

p

p p

CpCCppp

(1,0) (1,0)

(1,0)

(1,0)

Initial State: 1
Initial Counter: 0

U−Formula: Cpp
States: {1,2}

+: Increment

Example Evaluation (3)

Figure:

1

2

1

1 2
Left Child < Right Child

2

1

1 2
Left Child = Right Child

2

1

1 2
Left Child > Right Child

Left child and right child
have counters equal to zero.
States of both children are 1.
Counter is incremented because
subtree unifies with Cpp.

1 2

1 1

2

22

2 2

1 1

CCppp

Cpp p

p

p p

CpCCppp

(1,0) (1,0)

Initial State: 1
Initial Counter: 0

U−Formula: Cpp
States: {1,2}

+: Increment
−: Set to zero

(1,1)

Example Evaluation (4)

Figure:

than right child counter (1>0).

2

1

1 2
Left Child < Right Child

2

1

1 2
Left Child = Right Child

2

1

1 2
Left Child > Right Child

1 2

1 1

2

22

2 2

1 1

CCppp

Cpp

p

p p

CpCCpppInitial State: 1
Initial Counter: 0

U−Formula: Cpp
States: {1,2}

+: Increment
−: Set to zero

(1,1)
1

(1,0)
p

(2,0)

Left child counter is greater

Example Evaluation (5)

Figure:

(2,0)

2

1

1 2
Left Child < Right Child

2

1

1 2
Left Child = Right Child

2

1

1 2
Left Child > Right Child

1 2

1 1

2

22

2 2

1 1

CCppp

Cpp

p

p p

CpCCpppInitial State: 1
Initial Counter: 0

U−Formula: Cpp
States: {1,2}

+: Increment
−: Set to zero

(1,1)
1

p

(2,0)
(1,0)

Limits of UCTA (1)

! More problematic with algebra than propositional logic.
! With propositional logics, whether a formula is true (provable,

designated) on the model depends only on the state, not the
counter.

! In an algebra, we are interested in establishing equalities.
! Equalities are intersubstitutable.
! But since there are only a finite number of states, then whether

two terms are equal cannot depend only upon the state.
! So a UCTA for an algebra cannot be automatically discovered

using a first-order model finder.

Limits of UCTA (2)

We might need more than one counter:

p → p

(!p → q) → (p → q)

(!p → p) → q

($p → q) → (p → q)

($p → p) → q

Worse yet, we might need infinitely many counters.

Questions

1. Can we automate the search for algebraic models with equality?
2. When the ‘provablity predicate’ acts like equality, does this block

UCTA countermodels?
3. Can we determine automatically whether a logic would require a

UCTA with infinitely many counters?
4. Is there a relationship between regular languages and the finite

model property?
5. Does there exist, for each finitely axiomatizable logic, a UCTA

countermodel for any of its non-theorems?

