### Syntax of the Finite Model Property

Zachary Ernst

University of Missouri-Columbia

July 23, 2008

#### **Preliminaries**

A logic L has the finite model property if, for every formula  $\alpha$ , if  $L \nvdash \alpha$ , then there is a model  $\mathfrak{M}$  such that:

- 1.  $\mathfrak{M}$  has only finitely many elements in its domain,
- 2.  $\mathfrak{M}$  respects the rules of inference of L,
- 3.  $\mathfrak{M}$  validates all the axioms of L, but
- 4.  $\alpha$  is false in  $\mathfrak{M}$ .

In algebra, it seems that we talk instead about an algebra having 'non-trivial finite models'.

# An Example (from last year)

Here is the simplest example I can think of: The logic L has the following axioms:

- 1.  $p \rightarrow p$
- 2.  $(\Box p \rightarrow q) \rightarrow (p \rightarrow q)$
- 3.  $(\Box p \rightarrow p) \rightarrow q$
- 4. Modus Ponens (from  $p \to q$  and q, infer q) and Universal Substitution.
- $\triangleright$  Any finite model of L validates every formula whatsoever.
- ▶ All theorems L are either instances of the axioms, or  $\Box^n p \to \Box^m p$ , with  $n \leq m$ .
- $\triangleright$  So L smells like an algebra with no non-trivial finite models.
- ▶ A very simple argument, originating with Gödel, is used to prove this fact.

### Makinson's Modal Logic

$$h(\Box^{n+1}p \ \land \ \neg\Box^{n+2}p) \neq 0,$$
 so 
$$h(\Box^{n+1}p) \neq h(\Box^{n+2}p),$$
 and so since \*a  $\leq$  a, 
$$h(\Box^{n+2}p) < h(\Box^{n+1}p).$$

Thus by induction we have  $h(\Box p) > h(\Box^2 p) > h(\Box^3 p) > \cdots$  and so each of these elements of A is distinct. Hence A has infinitely many elements.

THEOREM 2.  $\mu$  is not a thesis of C.

PROOF. We construct an infinite relational model K=(K,R) and show that it validates all theses of C but does not validate  $\mu$ . Let K be the set of all natural numbers  $0, 1, 2, \cdots$ ; and for all x and y in K put xRy iff  $x \le y + 1$ . Note that this relation is reflexive over K, but neither transitive nor symmetric.

# Dudek's Algebra (1)

▶ Dudek's algebra D has the identity: (ex)y = x. Although this system has non-trivial models, they are all infinite.

# Let $e^n = e(e(\cdots e(ee)\cdots))$ .

We can show that for any  $n \neq m$ , if a model of D has  $e^n = e^m$ , then it has ee = e:

$$(ex)y = ((ee)x)y$$

$$x = ey$$

$$x = (ee)y$$

$$x = e$$

▶ So any non-trivial model has to map each  $e^i$  onto a different element of its domain.

# Dudek's Algebra (2)

$$xy = \begin{cases} 2^{y} & \text{if } x = 3\\ i & \text{if } x = 2^{i} \text{ for some } i\\ x & \text{otherwise} \end{cases}$$

$$e = 3$$

- Recall that for every  $n \neq m$ , a nontrivial model must map  $e(e(\cdots e(ee)))$  and  $e(e(\cdots e(ee)))$  onto different elements.
- ▶ The model does this by raising 2 to higher powers:

$$\begin{array}{rcl} ee & = & 2^5 \\ e(ee) & = & 2^{2^5} \ {\rm and \ so \ on...} \end{array}$$

▶ It is a model:

$$(ex)y = (3x)y = 2^{x}y = 2^{x}$$



#### UCTA Evaluation

- ▶ This tree automaton moves up from the leaves of a tree to the root.
- ▶ Its state and counter change at each node, depending upon:
  - the symbol at the current node,
  - ▶ the states of the automaton at each child node, and
  - the counter values at each child node.
- ▶ Think of a model in which the elements of the domain are the possible states of the automaton.
- ▶ By having a counter that can take any of  $|\mathbb{N}|$  values, such a model has an infinite domain.
- ▶ At least with respect to propositional logics, these can be discovered automatically.

# Example Evaluation (1)



▶ The automaton starts at the leaves and moves up toward the root.



## Example Evaluation (2)



Left Child < Right Child

|   | 1 | 2 |
|---|---|---|
| 1 | 1 | 2 |
| 2 | 1 | 1 |

Left Child = Right Child

|   | 1 | 2 |  |
|---|---|---|--|
| 1 | 1 | 2 |  |
| 2 | 2 | 2 |  |

Left Child > Right Child

|   | 0 |  |  |
|---|---|--|--|
| 1 | 2 |  |  |
| 2 | 2 |  |  |
| 1 | 1 |  |  |

### Example Evaluation (3)



## Example Evaluation (4)



### Example Evaluation (5)



# Limits of UCTA (1)

- ▶ More problematic with algebra than propositional logic.
  - With propositional logics, whether a formula is true (provable, designated) on the model depends only on the state, not the counter.
  - ▶ In an algebra, we are interested in establishing equalities.
  - ▶ Equalities are intersubstitutable.
  - ▶ But since there are only a finite number of states, then whether two terms are equal cannot depend only upon the state.
  - ▶ So a UCTA for an algebra cannot be automatically discovered using a first-order model finder.

# Limits of UCTA (2)

We might need more than one counter:

$$egin{aligned} p &
ightarrow p \ igl(\Box p &
ightarrow qigr) &
ightarrow igl(p &
ightarrow qigr) &
ightarrow q \ igl(\diamond p &
ightarrow qigr) &
ightarrow igl(p &
ightarrow qigr) \ igl(\diamond p &
ightarrow pigr) &
ightarrow q \end{aligned}$$

Worse yet, we might need infinitely many counters.

#### Questions

- 1. Can we automate the search for algebraic models with equality?
- 2. When the 'provability predicate' acts like equality, does this block UCTA countermodels?
- 3. Can we determine automatically whether a logic would require a UCTA with infinitely many counters?
- 4. Is there a relationship between regular languages and the finite model property?
- 5. Does there exist, for each finitely axiomatizable logic, a UCTA countermodel for any of its non-theorems?